A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice
Abstract
:1. Introduction
2. Rainfall Data Characteristics
3. Rainfall Data Time Resolution at Global Scale
4. Effect of Rainfall Time Resolution on Estimating Annual Maximum Depths
4.1. Hyetograph Shape and Hd Underestimation
4.2. Correction Procedure for Hd Series
- -
- On a specific value, the underestimation error has a random behaviour and is within 50%;
- -
- The average error depends on both ta/d and d;
- -
- The average error can be approximately supposed independent from the device location;
- -
- The largest value of the average error occurs for d = ta and is theoretically less than or equal to 16.67%;
- -
- In the case of d = nta, the average error is less than or equal to (1/n) × 16.67%.
5. Role of ta in Hydrological Applications
- -
- Underestimation errors caused by coarse time resolution produce significant effects on least-squares linear trend analysis. The usage of a correction factor for the Hd values, independent of the selected approach, can make the trend sign change from positive to negative, and the effects are more evident for series with larger numbers of elements with ta/d = 1.
- -
- -
- The application of Sen’s method [46] gives different outcomes depending on whether uncorrected or corrected Hd values are considered.
- -
- Because analysis of possible climatic trends requires data series at least 60 years long to include the effect of large-scale climate oscillations (see also [47]), it is not feasible to consider only rainfall data with ta = 1 min that have historical series of only two/three decades in most geographic zones (see also [35]).
- -
- Common homogeneity tests such as the standard normal homogeneity test for a single break point [48] or the Pettitt test [49] are not capable of detecting discontinuities in Hd series determined by different time resolutions. This result can be justified with the hypothesis that for annual maximum rainfall data, underestimation errors do not produce sufficiently relevant break points.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilhelm, B.; Ballesteros Canovas, J.A.; Macdonald, N.; Toonen, W.; Baker, V.; Barriendos, M.; Benito, G.; Brauer, A.; Corella Aznar, J.P.; Denniston, R.; et al. Interpreting historical, botanical, and geological evidence to aid preparations for future floods. WIREs Water 2019, 6, e1318. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Brandes, E.A. Radar measurement of rainfall. Bull. Am. Meteorol. Soc. 1979, 60, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.M. Relation between measured radar reflectivity and surface rainfall. Mon. Weather Rev. 1987, 115, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Fread, D.L.; Shedd, R.C.; Smith, G.F.; Farnsworth, R.; Hoffeditz, C.N.; Wenzel, L.A.; Wiele, S.M.; Smith, J.A.; Day, G.N. Modernization in the National Weather Service River and Flood Program. Weather Forecast. 1995, 10, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Seo, D.-J.; Baeck, M.L.; Hudlow, M.D. An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res. 1996, 32, 2035–2045. [Google Scholar] [CrossRef]
- Seo, D.-J. Real-time estimation of rainfall fields using radar rainfall and rain gage data. J. Hydrol. 1998, 208, 37–52. [Google Scholar] [CrossRef]
- Barrett, E.C.; Beaumont, M.J. Satellite rainfall monitoring: An overview. Remote Sens. Rev. 1994, 11, 23–48. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Kuligowski, R.J. A self-calibrating real-time GOES rainfall algorithm for short-term rainfall estimates. J. Hydrometeorol. 2002, 3, 112–130. [Google Scholar] [CrossRef]
- Turk, F.J.; Miller, S.D. Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. Geosci. Remote Sens. 2005, 43, 1059–1069. [Google Scholar] [CrossRef]
- Joyce, R.J.; Xie, P.; Janowiak, J.E. Kalman filter-based CMORPH. J Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Kucera, P.A.; Ebert, E.E.; Turk, F.J.; Levizzani, V.; Kirschbaum, D.; Tapiador, F.J.; Loew, A.; Borsche, M. Precipitation from space: Advancing Earth system science. Bull. Am. Meteorol. Soc. 2013, 94, 365–375. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurements Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D.; Ladoy, P. Fractal characterization of inhomogeneous geophysical measuring networks. Nature 1986, 319, 43–44. [Google Scholar] [CrossRef]
- Deidda, R.; Mascaro, G.; Piga, E.; Querzoli, G. An automatic system for rainfall signal recognition from tipping bucket gage strip charts. J. Hydrol. 2007, 333, 400–412. [Google Scholar] [CrossRef]
- Hershfield, D.M.; Wilson, W.T. Generalizing of Rainfall-Intensity-Frequency Data. In IUGG/IAHS Publication No. 43; 1958; pp. 499–506. Available online: http://hydrologie.org/redbooks/a043/043051.pdf (accessed on 2 November 2020).
- Hershfield, D.M. Rainfall frequency atlas of the United States for durations from 30 minutes to 24 hours and return periods from 1 to 100 years. In US Weather Bureau Technical Paper N. 40; U.S. Department of Commerce: Washington, DC, USA, 1961. [Google Scholar]
- Weiss, L.L. Ratio of true to fixed-interval maximum rainfall. J. Hydraul. Div. 1964, 90, 77–82. [Google Scholar] [CrossRef]
- Harihara, P.S.; Tripathi, N. Relationship of the clock-hour to 60-min and the observational day to 1440-min rainfall. Ind. J. Meteorol. Geophys. 1973, 24, 279–282. [Google Scholar] [CrossRef]
- Natural Environment Research Council. Flood Studies Report; Natural Environment Research Council: London, UK, 1975. [Google Scholar]
- Van Montfort, M.A.J. Sliding maxima. J. Hydrol. 1990, 118, 77–85. [Google Scholar] [CrossRef]
- Faiers, G.E.; Grymes, J.M.; Keim, B.D.; Muller, R.A. A re-examination of extreme 24 hour rainfall in Louisiana, USA. Clim. Res. 1994, 4, 25–31. [Google Scholar] [CrossRef]
- Van Montfort, M.A.J. Concomitants of the Hershfield factor. J. Hydrol. 1997, 194, 357–365. [Google Scholar] [CrossRef]
- Young, C.B.; McEnroe, B.M. Sampling adjustment factors for rainfall recorded at fixed time intervals. J. Hydrol. Eng. 2003, 8, 294–296. [Google Scholar] [CrossRef]
- Yoo, C.; Park, M.; Kim, H.J.; Choi, J.; Sin, J.; Jun, C. Classification and evaluation of the documentary-recorded storm events in the Annals of the Choson Dynasty (1392–1910), Korea. J. Hydrol. 2015, 520, 387–396. [Google Scholar] [CrossRef]
- Papalexiou, S.M.; Dialynas, Y.G.; Grimaldi, S. Hershfield factor revisited: Correcting annual maximum precipitation. J. Hydrol. 2016, 524, 884–895. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Cifrodelli, M.; Picciafuoco, T.; Corradini, C.; Casas-Castillo, M.C.; Fowler, H.J.; Wilkinson, S.M. Effect of temporal aggregation on the estimate of annual maximum rainfall depths for the design of hydraulic infrastructure systems. J. Hydrol. 2017, 554, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Corradini, C.; Wilkinson, S.M.; Fowler, H.J. Influence of temporal data aggregation on trend estimation for intense rainfall. Adv. Water Resour. 2018, 122, 304–316. [Google Scholar] [CrossRef]
- Sevruk, B.; Klemm, S. Catalogue of national standard precipitation gauges. Instruments and observing methods. In Report No. 39, WMO/TD-No. 313; 1989; Available online: https://library.wmo.int/index.php?lvl=notice_display&id=11246#.YG179a8zZPY (accessed on 2 November 2020).
- New, M.; Todd, M.; Hulme, M.; Jones, P.D. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001, 21, 1899–1922. [Google Scholar] [CrossRef]
- Strangeways, I. Precipitation: Theory, Measurement and Distribution; Cambridge University Press: Cambridge, UK, 2007; ISBN 13978-0-521-85117-6. [Google Scholar]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.-L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Morbidelli, R.; García-Marín, A.P.; Al Mamun, A.; Atiqur, R.M.; Ayuso-Muñoz, J.L.; Bachir Taouti, M.; Baranowski, P.; Bellocchi, G.; Sangüesa-Pool, C.; Bennett, B.; et al. The history of rainfall data time-resolution in different geographical areas of the world. J. Hydrol. 2020, 590, 125258. [Google Scholar] [CrossRef]
- Miller, J.F.; Frederick, R.H.; Tracey, R.J. Precipitation-Frequency Atlas of the Western United States; NOAA Atlas 2; National Weather Service, National Oceanic and Atmospheric Administration, U.S. department of Commerce: Washington, DC, USA, 1973.
- Burlando, P.; Rosso, R. Scaling and multiscaling models of depth-duration-frequency curves for storm precipitation. J. Hydrol. 1996, 187, 45–64. [Google Scholar] [CrossRef]
- Boni, G.; Parodi, A.; Rudari, R. Extreme rainfall events: Learning from raingauge time series. J. Hydrol. 2006, 327, 304–314. [Google Scholar] [CrossRef]
- Balme, M.; Vischel, T.; Lebel, T.; Peugeot, C.; Galle, S. Assessing the water balance in the Sahel: Impact of small scale rainfall variability on runoff, Part 1: Rainfall variability analysis. J. Hydrol. 2006, 331, 336–348. [Google Scholar] [CrossRef]
- Al-Rawas, G.A.; Valeo, C. Characteristics of rainstorm temporal distributions in arid mountainous and coastal regions. J. Hydrol. 2009, 376, 318–326. [Google Scholar] [CrossRef]
- Coutinho, J.V.; Almeida, C.D.N.; Leal, A.M.F.; Barbosa, L.R. Characterization of sub-daily rainfall properties in three rainfall gauges located in Northeast of Brazil. Evolving Water Resources Systems: Understanding, Predicting and Managing Water-Society Interactions. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 345–350. [Google Scholar] [CrossRef]
- Morbidelli, R.; Saltalippi, C.; Flammini, A.; Picciafuoco, T.; Dari, J.; Corradini, C. Characteristics of the underestimation error of annual maximum rainfall depth due to coarse temporal aggregation. Atmosphere 2018, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 46–59. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Khaliq, M.N.; Ouarda, T.B.M.J.; Gachon, P.; Sushama, L.; St-Hilaire, A. Identification of hydrological trends in the presence of serial and cross correlation: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009, 368, 117–130. [Google Scholar] [CrossRef]
- Sen, Z. Innovative trend analysis methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Willems, P. Adjustment of extreme rainfall statistics accounting for multidecadal climate oscillations. J. Hydrol. 2013, 490, 126–133. [Google Scholar] [CrossRef]
- Alexandersson, H. A homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point detection. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
Continent | Rain Gauges (Number) | Record Length min/max (Years) | Beginning of Records (Year) | Ending of Records (Year) | Time Resolution min/max (Minutes) |
---|---|---|---|---|---|
Africa | 30 | 9/41 | 1968 | 2010 | 1440 |
America | 5779 | 1/153 | 1867 | 2019 | 1/1440 |
Asia | 148 | 5/112 | 1879 | 2019 | 1/1440 |
Australia | 17,768 | 1/180 | 1805 | 2019 | 1/1440 |
Europe | 1642 | 1/184 | 1805 | 2019 | 1/43,200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morbidelli, R.; Saltalippi, C.; Dari, J.; Flammini, A. A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice. Water 2021, 13, 1012. https://doi.org/10.3390/w13081012
Morbidelli R, Saltalippi C, Dari J, Flammini A. A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice. Water. 2021; 13(8):1012. https://doi.org/10.3390/w13081012
Chicago/Turabian StyleMorbidelli, Renato, Carla Saltalippi, Jacopo Dari, and Alessia Flammini. 2021. "A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice" Water 13, no. 8: 1012. https://doi.org/10.3390/w13081012
APA StyleMorbidelli, R., Saltalippi, C., Dari, J., & Flammini, A. (2021). A Review on Rainfall Data Resolution and Its Role in the Hydrological Practice. Water, 13(8), 1012. https://doi.org/10.3390/w13081012