Spatiotemporal Effects and Driving Factors of Water Pollutants Discharge in Beijing–Tianjin–Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methods
2.1.1. Exploratory Spatial-Time Data Analysis (ESTDA)
2.1.2. Standard Deviational Ellipse
2.1.3. Geographical Weighted Regression Model
2.2. Research Materials
2.2.1. Regional Overview
2.2.2. Data Sources
3. Results
3.1. Spatiotemporal Characteristics of the Discharge of Water Pollutants in the Beijing–Tianjin–Hebei Region
3.1.1. Emission Characteristics
3.1.2. Characteristics of Water Pollutants Discharge in Counties
3.2. Characteristics of the Spatiotemporal Evolution of Water Pollutants Discharge in the Beijing–Tianjin–Hebei Region
3.2.1. Spatial Correlation Analysis
3.2.2. Spatiotemporal Transition Analysis
3.2.3. Spatial Pattern Analysis
3.3. Analysis of the Factors Driving the Discharge of Water Pollutants in Beijing–Tianjin–Hebei Counties
3.3.1. Estimation Results of OLS Model
3.3.2. Analysis of the Spatial Heterogeneity of the Driving Factors
4. Conclusions and Policy Suggestions
5. Study limitations and Future Prospects
- Since legal and financial conditions stand in the way, change is not always possible or proceeds at an insufficient pace, the implementation effect of the policy will be obvious in a long time. If we can use longer or more periods of data, we will get better results. Due to the limitation of statistics of county units, unfortunately, this study only analyzed the data of 2012 and 2016. It is expected that more years of data will be used to analyze this phenomenon in the future.
- This paper analyzed the influencing factors of water pollution discharge from social and economic perspectives. In fact, climate and hydrological conditions are also important factors affecting the pattern of water pollution discharge. Therefore, the follow-up research should fully consider the climate and hydrological conditions. In addition, according to the current research [20], the differences in policy intensity of different pollutant discharge in industrial sectors and main functional zones also have an important impact on pollutants discharge, so both of them should be considered as the influencing factors of analysis when the data can be collected.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finance Sina. Environmental Governance Becomes a Hot Topic of the National People’s Congress and the Chinese Political Consultative Conference (NPC & CPPCC): Green Water and Green Mountains are Necessary. 2015. Available online: http://finance.sina.com.cn/china/20150304/014221637280.shtml (accessed on 4 March 2015).
- Hu, Y.; Cheng, H. Water pollution during China’s industrial transition. Environ. Dev. 2013, 8, 57–73. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, W.; Jiang, M.; He, J.; Zheng, Z. Black-odor water analysis and heavy metal distribution of Yitong River in Northeast China. Water Sci. Technol. 2017, 76, 2051–2064. [Google Scholar] [CrossRef]
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Yasir, M.; Khan, A. Environmental and health impacts of industrial wastewater effluents in Pakistan: A review. Rev. Environ. Health 2019, 34, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Noguerol-Arias, J.; Rodríguez-Abalde, A.; Romero-Merino, E.; Flotats, X. Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement. Anal. Chem. 2012, 84, 5548–5555. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, S.; He, Y.; Song, G. Molecular sieve 4A–TiO2–K2Cr2O7 coexisted system as sensor for chemical oxygen demand. Sens. Actuators B. 2011, 160, 189–195. [Google Scholar] [CrossRef]
- Li, L.G.; Zhang, P.Y.; Liu, W.X.; Li, J.; Wang, L.F. Spatial-temporal evolution characteristics and influencing factors of county-scale environmental pollution in Jilin Province, Northeast China. Chin. J. Appl. Ecol. 2019, 30, 2361–2370. [Google Scholar]
- Canals, A.; Del Remedio Hernandez, M. Ultrasound-assisted method for determination of chemical oxygen demand. Anal. Bioanal. Chem. 2002, 374, 1132–1140. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, D.; Zhang, Y.; Li, Y.; Liu, Y.; Cen, Y.; Zhang, W.; Geng, W.; Rong, T.; Liu, Y. Re-examining the drive forces of China’s industrial wastewater pollution based on GWR model at provincial level. J. Clean. Prod. 2020, 262, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Luan, W.; Kang, M. COD pollution load of social and economic activities in liaohe river basin, China. Geog. Res. 2013, 32, 1802–1813. [Google Scholar]
- Zhao, X.W.; Shen, Z.L.; Zhang, H.Z.; Feng, H.B.; Liu, G.H.; Xu, J.J.; Zhao, N. Study on the COD Emission Trends and the Reduction Measures in Hebei Province. South North Water Transf. Water Sci. Technol. 2010, 8, 65–67. [Google Scholar]
- Maringanti, C.; Chaubey, I.; Popp, J. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resour. Res. 2009, 45, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.J.; Varis, O.; Yin, H. China’s water resources vulnerability: A spatio-temporal analysis during 2003–2013. J. Clean. Prod. 2017, 142, 2901–2910. [Google Scholar] [CrossRef]
- Zhou, K.; Fan, J. Regional disparity of environmental pollution source and its socio-economic influencing factors: Based on the cross-section data of 339 cities at prefecture level or above in China. Acta Geog. Sin. 2016, 71, 1911–1925. [Google Scholar]
- Lu, Y.; Wu, S.; Zhu, J.H.; Jia, J.L. Analysis on effect decomposition of industrial COD emission. Procedia Environ. Sci. 2012, 13, 2197–2209. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Sun, Q.; Jiang, S.; Wang, J.K. Evaluation of Pollution Source of the Bays in Fujian Province. Procedia Environ. Sci. 2011, 10, 685–690. [Google Scholar]
- Zhao, X.F.; Huang, X.J.; Zhang, X.Y.; Zhu, D.M.; Lai, L.; Zhong, T.Y. Application of spatial autocorrelation analysis to the COD, SO2 and TSP emission in Jiangsu Province. Environ. Sci. 2009, 30, 1580–1587. [Google Scholar]
- Gao, S.; Wei, Y.H.; Chen, W.; Zhao, H.X. Study on spacial-correlation between water pollution and industrial agglomeration in the developed region of China: A case study of Wuxi City. Geog. Res. 2011, 30, 902–912. [Google Scholar]
- Yu, H.; Zhong, J.; Liu, S.Q.; Yang, D.W. The coupling characteristics between polluting industrial agglomeration and water pollution discharge in Zhangjiakou. J. Nat. Resour. 2020, 35, 1416–1424. [Google Scholar]
- Ma, H.L.; Nie, X.; Li, D. Study on Water Pollution Governance Effect of Taihu Basin: Based on Pollution Index Analysis. Ecol. Econ. 2014, 30, 183–189. [Google Scholar]
- Zhou, K.; Wu, J.X.; Qian, Z.D.; Fan, J.; Wang, Q. Spatial effects on emission reduction of water pollutants and its driving forces in Yangtze River Economic Belt. China Environ. Sci. 2020, 40, 885–895. [Google Scholar]
- Bai, L.; Sun, Y.Y.; Zhao, X.T.; Qiao, Q.; Li, X.Y.; Zhou, X.Y. Discharge Characteristics and Pollution Aggregation Pattern of Water Pollution in Yellow River Basin. Res. Environ. Sci. 2020, 33, 2683–2694. [Google Scholar]
- He, L.P.; Zhang, X.; Chen, S. An Analysis of Water Pollution Situation and Its Main Causes in Pearl River Basin. Environ. Sci. Surv. 2012, 31, 24–28. [Google Scholar]
- Wen, Q.; Chen, X.; Shi, Y.; Ma, J.; Zhao, Q. Analysis on Composition and Pattern of Agricultural Nonpoint Source Pollution in Liaohe River Basin, China. Procedia Environ. Sci. 2011, 8, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water pollution characteristics and assessment of lower reaches in Haihe River Basin. Procedia Environ. Sci. 2010, 2, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Yue, Y.; Cheng, H.G.; Yang, S.T.; Hao, F.H. Integrated assessment of non-point source pollution in Songhuajiang river basin. Sci. Geog. 2007, 27, 231–236. [Google Scholar]
- Amaya, F.L.; Gonzales, T.A.; Hernandez, E.C.; Luzano, E.V.; Mercado, N.P. Estimating Point and Non-Point Sources of Pollution in Biñan River Basin, the Philippines. Apcbee Procedia 2012, 1, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.L. Progress and the future direction of research into urban agglomeration in China. Acta Geog. Sin. 2014, 69, 1130–1144. [Google Scholar]
- Wang, Z.B.; Li, J.X.; Liang, L.W. Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environ. Pollut. 2020, 256, 113419.1–113419.11. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.; Leung, H.L. Urbanization, land use, and water quality in Shanghai: 1947–1996. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Rey, S.J.; Janikas, M.V. Space-Time Analysis of Regional Systems. Geog. Anal. 2006, 38, 67–86. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geog. Anal. 2010, 24, 189–206. [Google Scholar] [CrossRef]
- Rey, S.J. Spatial Empirics for Economic Growth and Convergence. Geog. Anal. 2010, 33, 195–214. [Google Scholar] [CrossRef]
- Lefever, D.W. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. Am. J. Sociol. 1926, 32, 88–94. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plann. A 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Wang, K. Coordinated development of The Beijing-Tianjin-Hebei Region under the new Normal. Small Cities Towns. 2015, 31–34. [Google Scholar]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Zhou, K.; Li, H.; Shen, Y. Spatiotemporal patterns and driving factors of environmental stress in Beijing-Tianjin-Hebei region: A county-level analysis. Acta Geog. Sin. 2020, 75, 1934–1947. [Google Scholar]
Indicator | Code | Definition of Variable |
---|---|---|
Dependent variable | COD | Quantity of COD emissions (10,000 tons) |
NH3-N | Quantity of NH3-N emissions (10,000 tons) | |
Level of economic development | PGDP | GRP per capita (yuan) |
Level of urbanization | UR | Proportion of urban population in total population (%) |
Industrial structure | IS | Proportion of the added value of secondary industry in GDP (%) |
Environmental regulations | ER | Proportion of governance costs for water pollutants in GDP (%) |
Agricultural production input | IPA | Fertilizer consumption (purity) (tons) |
Distance attenuation effect | DC | Distance between the county center and the city center (1000 m) |
2012 | 2016 | |||
---|---|---|---|---|
COD | NH3-N | COD | NH3-N | |
Moran’s I | 0.1666 | 0.1592 | 0.1309 | 0.1933 |
z-score | 3.6114 | 3.6328 | 2.9777 | 4.4142 |
p-value | 0.0003 | 0.0003 | 0.0029 | 0.0000 |
Driving Factors | COD | NH3-N | ||||||
---|---|---|---|---|---|---|---|---|
Coefficient | StdError | T-Statistic | VIF | Coefficient | StdError | T-Statistic | VIF | |
Intercept | 0.036 | 0.046 | 0.777 | — | −0.001 | 0.035 | −0.02 | — |
PGDP | 0.566 *** | 0.102 | 5.534 | 2.062 | 0.550 *** | 0.081 | 6.795 | 2.219 |
UR | 0.200 *** | 0.062 | 3.203 | 2.016 | 0.152 *** | 0.047 | 3.218 | 1.977 |
IS | −0.129 * | 0.066 | −1.971 | 1.205 | −0.037 | 0.021 | −0.73 | 1.231 |
ER | −0.198 *** | 0.066 | −3.022 | 1.171 | −0.265 *** | 0.059 | −4.482 | 1.286 |
IPA | 0.152 *** | 0.052 | 2.943 | 1.036 | 0.165 *** | 0.040 | 4.170 | 1.042 |
DC | −0.066 | 0.052 | −1.268 | 1.339 | −0.069 * | 0.039 | −1.761 | 1.317 |
Model | Adjusted R² | AICc | Koenker (BP) | Jarque–Bera | Adjusted R² | AICc | Koenker (BP) | Jarque–Bera |
Diagnosis | 0.453 | −237.29 | 38.439 ** | 1092.948 ** | 0.542 | −320.299 | 83.947 ** | 434.023 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Q.; Li, H. Spatiotemporal Effects and Driving Factors of Water Pollutants Discharge in Beijing–Tianjin–Hebei Region. Water 2021, 13, 1174. https://doi.org/10.3390/w13091174
Ren Q, Li H. Spatiotemporal Effects and Driving Factors of Water Pollutants Discharge in Beijing–Tianjin–Hebei Region. Water. 2021; 13(9):1174. https://doi.org/10.3390/w13091174
Chicago/Turabian StyleRen, Qilong, and Hui Li. 2021. "Spatiotemporal Effects and Driving Factors of Water Pollutants Discharge in Beijing–Tianjin–Hebei Region" Water 13, no. 9: 1174. https://doi.org/10.3390/w13091174
APA StyleRen, Q., & Li, H. (2021). Spatiotemporal Effects and Driving Factors of Water Pollutants Discharge in Beijing–Tianjin–Hebei Region. Water, 13(9), 1174. https://doi.org/10.3390/w13091174