Water Footprint, Blue Water Scarcity, and Economic Water Productivity of Irrigated Crops in Peshawar Basin, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Estimation of Blue and Green Water Footprints of Major Crops in Peshawar Basin
2.3.2. Blue Water Scarcity and Economic Water Productivity
3. Results
3.1. Spatial Distribution of Blue and Green WFs of Major Crops in Sub-Regions of Peshawar Basin
3.2. Temporal Variation in Blue and Green Water Consumption by Major Crops in Peshawar Basin
3.3. Blue Water Consumption versus Available Surface Water
3.4. Economic Water Productivity
4. Discussion
4.1. Comparison with Literature
4.2. Limitations and Uncertainties
4.3. Practical Implications
4.4. Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dessu, S.B.; Melesse, A.M.; Bhat, M.G.; McClain, M.E. Assessment of Water Resources Availability and Demand in the Mara River Basin. Catena 2014, 115, 104–114. [Google Scholar] [CrossRef]
- United Nations. Water and Energy; World Water Development Report. 2014. Available online: https://www.unwater.org/publications/world-water-development-report-2014-water-energy/ (accessed on 22 February 2020).
- Dos Santos, C.E.; Dal Pizzol, V.I.; Aragão, S.C.; Filho, A.R.; Marques, F.M. Vasculite C-ANCA Relacionada Em Paciente Com Retocolite Ulcerativa: Relato de Caso. Rev. Bras. Reumatol. 2013, 53, 441–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oel, P.R.; Hoekstra, A.Y. Towards Quantification of the Water Footprint of Paper: A First Estimate of Its Consumptive Component. Water Resour. Manag. 2012, 26, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.P.; Hoekstra, A.Y.; Mathews, R.E. Water Footprint Assessment (WFA) for Better Water Governance and Sustainable Development. Water Resour. Ind. 2013, 1–2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Malley, Z.J.U.; Taeb, M.; Matsumoto, T.; Takeya, H. Environmental Sustainability and Water Availability: Analyses of the Scarcity and Improvement Opportunities in the Usangu Plain, Tanzania. Phys. Chem. Earth 2009, 34, 3–13. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision Global Perspective Studies Team FAO Agricultural Development Economics Division; FAO: Rome, Italy, 2012. [Google Scholar]
- Launiainen, S.; Futter, M.N.; Ellison, D.; Clarke, N.; Finér, L.; Högbom, L.; Laurén, A.; Ring, E. Is the Water Footprint an Appropriate Tool for Forestry and Forest Products: The Fennoscandian Case. Ambio 2014, 43, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Eyshi Rezaei, E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, F.; et al. Global-scale drought risk assessment for agricultural systems. Natl. Hazards Earth Syst. Sci. NHESS 2020, 20, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Dowlatchahi, M.; Gunarathna Mahipala, P.; Curran, F.; Girma, A. Pakistan Overview of Food Security and Nutrition; United Nation: New York, NY, USA, 2019. [Google Scholar]
- Khoso, S.; Wagan, F.H.; Tunio, A.H.; Ansari, A.A. An Overview on Emerging Water Scarcity in Pakistan, Its Causes, Impacts and Remedial Measures. J. Appl. Eng. Sci. 2015, 13, 35–44. [Google Scholar] [CrossRef]
- Ahmad, B. Water Management: A Solution to Water Scarcity in Pakistan. J. Indep. Stud. Res. 2011, 9, 111–125. [Google Scholar] [CrossRef]
- Hassan, M. Development Advocate Pakistan-Water Security in Pakistan Issues and Challenges. Dev. Advocate Pak. 2016, 3, 1–33. [Google Scholar]
- WFP. WFP Pakistan Brief. 2016, No. 1 October–31 December 2014, 2021–2022. Available online: https://www.wfp.org/countries/pakistan (accessed on 9 January 2020).
- Khan, M.J.; Sarwar, T.; Khan, M.J. Comparative Study of Crop Water Productivity at Farm Level under Public and Civil Canal Irrigation Systems in Peshawar, Pakistan. Sarhad J. Agric. 2015, 31, 175–182. [Google Scholar]
- Government of Pakistan. Bureau of Statistics. 2018. Available online: http://www.pbs.gov.pk/ (accessed on 9 November 2020).
- World Bank. World Bank Development Indicators. 2011. Available online: http://siteresources.worldbank.org/DATASTATISTICS/Resources/wdi_ebook.pdf (accessed on 22 March 2020).
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.P. Water Pollution in Pakistan and Its Impact on Public Health—A Review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef]
- Jehangir, W.A.; Masih, I.; Ahmed, S. Sustaining Crop Water Productivity in Rice-Wheat Systems of South Asia: A Case Study from the Punjab Pakistan; International Water Management Institute (IWMI): New Delhi, India, 2007. [Google Scholar]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and Classification of Indicators of Green Water Availability and Scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Campos, J.; Carolli, M.; Dantas, I.; Forin, S.; Kosatica, E.; Kramer, A.; Mikosch, N.; Nouri, H.; Schlattmann, A.; et al. Advancing the Water Footprint into an Instrument to Support Achieving the SDGs—Recommendations from the “Water as a Global Resources” Research Initiative (GRoW). Water Resour. Manag. 2021, 35, 1291–1298. [Google Scholar] [CrossRef]
- Blatchford, M.L.; Karimi, P.; Bastiaanssen, W.G.M.; Nouri, H. From Global Goals to Local Gains—A Framework for Crop Water Productivity. ISPRS Int. J. Geo-Inf. 2018, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Stokvis, B.; Galindo, A.; Blatchford, M.; Hoekstra, A.Y. Water Scarcity Alleviation through Water Footprint Reduction in Agriculture: The Effect of Soil Mulching and Drip Irrigation. Sci. Total Environ. 2019, 653, 241–252. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual Water Trade. Proceedings of the Internacional Expert Meeting on Virtual Water Trade. Int. Expert Meet. Virtual Water Trade 2003, 12, 1–244. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Earthscan: London, UK, 2011. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K. Water Footprints of Nations: Water Use by People as a Function of Their Consumption Pattern. Integr. Assess. Water Resour. Glob. Chang. North South Anal. 2007, 21, 35–48. [Google Scholar]
- Boulay, A.; Hoekstra, A.Y.; Vionnet, S. Complementarities of Water-Focused LCA and WFA. Environ. Sci. Technol. 2013, 47, 11926–11927. [Google Scholar]
- Nouri, H.; Stokvis, B.; Chavoshi, S.; Galindo, A.; Brugnach, M.; Blatchford, M.; Alaghmand, S.; Hoekstra, A.Y. Reduce blue water scarcity and increase nutritional and economic water productivity through changing the cropping pattern in a catchment. J. Hydrol. 2020, 588, 125086. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Chavoshi Borujeni, S.; Hoekstra, A.Y. The Blue Water Footprint of Urban Green Spaces: An Example for Adelaide, Australia. Landsc. Urban Plan. 2019, 190, 103613. [Google Scholar] [CrossRef]
- Vanham, D.; Bidoglio, G. A Review on the Indicator Water Footprint for the EU28. Ecol. Indic. 2013, 26, 61–75. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global and High-Resolution Assessment of the Green, Blue and Grey Water Footprint of Wheat. Hydrol. Earth Syst. Sci. 2010, 14, 1259–1276. [Google Scholar] [CrossRef] [Green Version]
- Chapagain, A.K.; Hoekstra, A.Y. The Blue, Green and Grey Water Footprint of Rice from Production and Consumption Perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Duan, P.; Qin, L.; Wang, Y.; He, H. Spatial Pattern Characteristics of Water Footprint for Maize Production in Northeast China. J. Sci. Food Agric. 2016, 96, 561–568. [Google Scholar] [CrossRef]
- Bulsink, F.; Hoekstra, A.Y.; Booij, M.J. The Water Footprint of Indonesian Provinces Related to the Consumption of Crop Products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Chouchane, H.; Hoekstra, A.Y.; Krol, M.S.; Mekonnen, M.M. The Water Footprint of Tunisia from an Economic Perspective. Ecol. Indic. 2015, 52, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Kim, K.S. Estimation of Water Footprint for Major Agricultural and Livestock Products in Korea. Sustainability 2019, 11, 2980. [Google Scholar] [CrossRef] [Green Version]
- Karandish, F.; Hoekstra, A.Y. Informing National Food and Water Security Policy through Water Footprint Assessment: The Case of Iran. Water 2017, 9, 831. [Google Scholar] [CrossRef] [Green Version]
- Ghufran, M.A.; Butt, M.A.; Farooqi, A.; Batool, A.; Irfan, M.F. Water Footprint of Major Cereals and Some Selected Minor Crops of Pakistan. J. Water Resour. Hydraul. Eng. 2015, 4, 358–366. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y. Assessing Water Footprint at River Basin Level: A Case Study for the Heihe River Basin in Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2771–2781. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y.; Wada, Y. Inter- and Intra-Annual Variation of Water Footprint of Crops and Blue Water Scarcity in the Yellow River Basin (1961–2009). Adv. Water Resour. 2016, 87, 29–41. [Google Scholar] [CrossRef]
- Roux, B.L.; van der Laan, M.; Vahrmeijer, T.; Annandale, J.G.; Bristow, K.L. Water Footprints of Vegetable Crop Wastage along the Supply Chain in Gauteng, South Africa. Water 2018, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Lathuillière, M.J.; Coe, M.T.; Castanho, A.; Graesser, J.; Johnson, M.S. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water 2018, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Muzammil, M.; Zahid, A.; Breuer, L. Water Resources Management Strategies for Irrigated Agriculture in the Indus Basin of Pakistan. Water 2020, 12, 1429. [Google Scholar] [CrossRef]
- Naqvi, S.A.; Arshad, M.; Nadeem, F. Water Footprint of Cotton Textile Processing Industries; a Case Study of Punjab, Pakistan. Am. Sci. Res. J. Eng. 2018, 49, 17–24. [Google Scholar]
- Shah, M.T.; Tariq, S. Environmental geochemistry of the soil of Peshawar Basin, NWFP, Pakistan. J. Chem. Soc. Pak. 2007, 29, 438–445. [Google Scholar]
- Bureau of Statistics. Block Wise Provisional Summary Results of 6th Population & Housing Census-2017. 2018. Available online: http://www.pbs.gov.pk/content/block-wise-provisional-summary-results-6th-population-housing-census-2017-january-03-2018, (accessed on 9 November 2020).
- Bisht, M. Water Sector in Pakistan; Policy, Politic, Management, Institute for Defence Studies and Analysis: New Delhi, India, 2013. [Google Scholar]
- Rehman, S.; Shah, M.A.; Salma, S.; Rehman, S.; Shah, M.A.; Salma, S. Rainfall Trends in Different Climate Zones of Pakistan. Pak. J. Meteorol. 2012, 9, 37–47. [Google Scholar]
- Zakir, S.N.; Ali, L.; Khattak, S.A. Variation in Major Element Oxide with Time in the Soils of Peshawar Basin: Their Comparison with the Normal Agricultural Soil. J. Himal. Earth Sci. 2013, 46, 35–4838. [Google Scholar]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 26 September 2018).
- Mcculloch, J.S.G. Hydrology in Practice, 2nd ed.; Calculaton of Potential Evaporation; Chapman and Hall: Boca Raton, FL, USA, 1994; Volume 160, pp. 250–257. [Google Scholar]
- IIASA; ISRIC; ISSCAS; FAO; JRC. Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2018; Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 28 September 2020).
- Saxton, K.; Rawls, W.J.; Romberger, J.; Papendick, R. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Schumann, A.H. Thiessen polygon. In Encyclopedia of Hydrology and Lakes. Encyclopedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998; ISBN 978-1-4020-4497-7. [Google Scholar] [CrossRef]
- National Agromet Centre, Pakistan Meterological Department. Available online: http://namc.pmd.gov.pk/crop-calender.php. (accessed on 26 September 2018).
- Raes, D.; van Gaelen, H. AquaCrop Training Handbook—Book II; FAO: Rome, Italy, 2017. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E. On the Conservative Behavior of Biomass Water Productivity. Irrig. Sci. 2007, 25, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, M.; Iqbal, M.; Tayyab, M. Comparative Productivity Performance of Sugarcane (Saccharum officinarum L.) Sown in Different Planting Patterns at Farmer’s Field. Pak. J. Agric. Sci. 2005, 42, 25–28. [Google Scholar]
- Hsiao, T.C.; Fereres, E.; Steduto, P.; Raes, D. AquaCrop Parameterization, Calibration, and Validation Guide. Crop Yield Response Water 2012, 66, 70–87. [Google Scholar]
- Raes, D. AquaCrop Training Handbooks—Book I Understanding AquaCrop; FAO: Rome, Italy, 2016. [Google Scholar]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and Blue Water Footprint Reduction in Irrigated Agriculture: Effect of Irrigation Techniques, Irrigation Strategies and Mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. Volume 1: Main Report; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2011; pp. 17–21. [Google Scholar]
- Baig, M.B.; Shahid, S.A.; Straquadine, G.S. Making Rainfed Agriculture Sustainable through Environmental Friendly Technologies in Pakistan: A Review. Int. Soil Water Conserv. Res. 2013, 1, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Ding, D.; Si, B.; Zhang, Z.; Hu, W.; Schoenau, J. Temporal variability of water footprint for cereal production and its controls in Saskatchewan, Canada. Sci. Total Environ. 2019, 660, 1306–1316. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y. The Added Value of Water Footprint Assessment for National Water Policy: A Case Study for Morocco. PLoS ONE 2014, 9, e99705. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Shu, R.; Ren, J.; Wu, M.; Huang, X.; Guo, X. Variation and driving mechanism analysis of water footprint efficiency in crop cultivation in China. Sci. Total Environ. 2020, 725, 138537. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.fao.org/faostat/en/#data (accessed on 18 April 2021).
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Trade-off between blue and grey water footprint of crop production at different nitrogen application rates under various field management practices. Sci. Total Environ. 2018, 626, 962–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.; Wu, P.; Wang, Y.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef]
- Zhuo, L.; Hoekstra, A.Y. The Effect of Different Agricultural Management Practices on Irrigation Efficiency, Water Use Efficiency and Green and Blue Water Footprint. Front. Agric. Sci. Eng. 2017, 4, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.N. Impact of Changing Cropping Pattern on the Regional Agricultural Water Productivity. J. Agric. Sci. 2015, 153, 767–778. [Google Scholar] [CrossRef]
- Zhang, C.; McBean, E.A.; Huang, J. A Virtual Water Assessment Methodology for Cropping Pattern Investigation. Water Resour. Manag. 2014, 28, 2331–2349. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. Sensitivity and Uncertainty in Crop Water Footprint Accounting: A Case Study for the Yellow River Basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219–2234. [Google Scholar] [CrossRef] [Green Version]
- Konar, M.; Marston, L. The Water Footprint of the United States. Water 2020, 12, 3286. [Google Scholar] [CrossRef]
Soil Type | Horizons | Texture USDA | Thickness (m) | Sand Fraction (%) | Silt Fraction (%) | Clay Fraction (%) | Bulk Density (kg/dm3) | Organic Matter (wt. %) | Salinity (ds/m) | Stoniness (%) | Soil Water | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PWP | FC | SAT | Ksat | |||||||||||
(Volume%) | (mm/Day) | |||||||||||||
Calcisols | Topsoil | Loam | 0.3 | 39 | 40 | 21 | 1.32 | 0.7 | 1.6 | 4 | 13.5 | 27 | 46 | 196.5 |
Subsoil | Loam | 0.7 | 36 | 40 | 24 | 1.42 | 0.29 | 1.6 | 3 | 15 | 29 | 41 | 131.5 | |
Cambisols | Topsoil | Loam | 0.3 | 42 | 36 | 22 | 1.37 | 1 | 0.1 | 9 | 14 | 27 | 42 | 100 |
Subsoil | Loam | 0.7 | 40 | 35 | 25 | 1.39 | 0.4 | 0.1 | 12 | 15.3 | 28 | 41 | 116 | |
Rock Outcrop | Topsoil | Loam | 0.3 | 43 | 34 | 23 | 1.3 | 1.4 | 0.1 | 26 | 14.7 | 28 | 43 | 151.2 |
Subsoil | Clay loam | 0.7 | 42 | 30 | 28 | 1.37 | 0.3 | 0.7 | 3 | 17.1 | 29 | 41 | 4.37 |
Crop | Maturation Date | Covered Area (103 Hectares) [48] | Harvest Index (%) |
---|---|---|---|
Wheat | 1st November | 142.63 | 45 |
Maize | 15th May | 81.34 | 48 |
Sugarcane | 1st November | 79.64 | 75 [48] |
Rice | 15th July | 2.00 | 43 |
Tobacco | 1st February | 13.09 | 85 |
Barely | 1st November | 7.72 | 33 |
Sugar beet | 15th October | 6.65 | 54 |
Water Scarcity Levels | Thresholds |
---|---|
Low water scarcity | <100% |
Moderate water scarcity | 100–150% |
Significant water scarcity | 150–200% |
Severe water scarcity | >200% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, T.; Nouri, H.; Booij, M.J.; Hoekstra, A.Y.; Khan, H.; Ullah, I. Water Footprint, Blue Water Scarcity, and Economic Water Productivity of Irrigated Crops in Peshawar Basin, Pakistan. Water 2021, 13, 1249. https://doi.org/10.3390/w13091249
Khan T, Nouri H, Booij MJ, Hoekstra AY, Khan H, Ullah I. Water Footprint, Blue Water Scarcity, and Economic Water Productivity of Irrigated Crops in Peshawar Basin, Pakistan. Water. 2021; 13(9):1249. https://doi.org/10.3390/w13091249
Chicago/Turabian StyleKhan, Tariq, Hamideh Nouri, Martijn J. Booij, Arjen Y. Hoekstra, Hizbullah Khan, and Ihsan Ullah. 2021. "Water Footprint, Blue Water Scarcity, and Economic Water Productivity of Irrigated Crops in Peshawar Basin, Pakistan" Water 13, no. 9: 1249. https://doi.org/10.3390/w13091249
APA StyleKhan, T., Nouri, H., Booij, M. J., Hoekstra, A. Y., Khan, H., & Ullah, I. (2021). Water Footprint, Blue Water Scarcity, and Economic Water Productivity of Irrigated Crops in Peshawar Basin, Pakistan. Water, 13(9), 1249. https://doi.org/10.3390/w13091249