An Attempt to Utilize a Regional Dew Formation Model in Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Data and Site Description
2.2. Dew Formation Model and Simulation
2.2.1. Model Description
2.2.2. Meteorological Input Database
2.3. Model versus Experimental Data Comparison
2.4. Cluster Analysis
- calculating the distance measure between all entries (data points);
- merging the two closest entries as a new cluster;
- recalculating the distance between all entries;
- repeating steps 2 and 3 until all entries are grouped into distinct groups (i.e., clusters).
3. Results and Discussion
3.1. Dew Yields—Model Simulation versus Measurement
3.2. Simple Regression Analysis between Observed and Simulated Yields
3.3. Long-Term Gridded Model Simulation—Spatial and Temporal Variations
3.4. Dew Formation Zones—Cluster Analysis
3.4.1. Dew Zone A–Arid and Semi-Arid Region
3.4.2. Dew Zone B—Mountain Region
3.4.3. Dew Zone C—Coastal Regions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zala, B.; The Strategic Dimensions of Water 17. Water Security: Principles, Perspectives and Practices. 2013. Available online: http://bellschool.anu.edu.au/sites/default/files/publications/attachments/2016-07/zala_water_chapter_2013.pdf (accessed on 28 April 2021).
- Human Development Report. Beyond Scarcity: Power, Poverty and the Global Water Crisis; United Nations: New York, NY, USA, 2006. [Google Scholar]
- Tropp, H.; Jagerskog, A. Water Scarcity Challenges in the Middle East and North Africa (MENA); Human Development Paper; UNDP: New York, NY, USA, 2006. [Google Scholar]
- Lekouch, I.; Muselli, M.; Kabbachi, B.; Ouazzani, J.; Melnytchouk-Milimouk, I.; Beysens, D. Dew, fog, and rain as supplementary sources of water in southwestern Morocco. Energy 2011, 36, 2257–2265. [Google Scholar] [CrossRef] [Green Version]
- Michel, D.; Pandya, A.; Hasnain, S.I.; Sticklor, R.; Panuganti, S. Water Challenges and Cooperative Response in the Middle East and North Africa; Brookings Institution: Washington, DC, USA, 2012; Available online: https://www.brookings.edu/wp-content/uploads/2016/06/Water-web.pdf (accessed on 28 April 2021).
- Mehryar, S.; Sliuzas, R.; Sharifi, M.; Van Maarseveen, M.F.A.M. The water crisis and socio-ecological development profile of Rafsanjan Township, Iran. In Ravage of the Planet IV; WITPRESS LTD: Southampton, UK, 2015; Volume 199, pp. 271–284. [Google Scholar]
- Chahine, M.T. The hydrological cycle and its influence on climate. Nature 1992, 359, 373–380. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Smith, L. The Mass of the Atmosphere: A Constraint on Global Analyses. J. Clim. 2005, 18, 864–875. [Google Scholar] [CrossRef]
- Hamed, A.M.; Kabeel, A.E.; Zeidan, E.S.B.; Aly, A.A. A technical review on the extraction of water from atmospheric air in arid zones. Int. J. Heat Mass Trans. 2010, 4, 213–228. [Google Scholar]
- Raman, C.R.V.; Venkatraman, S.; Krishnamurthy, V. Dew over India and its contribution to winter-crop water balance. Agric. Meteorol. 1973, 11, 17–35. [Google Scholar] [CrossRef]
- Rajvanshi, A.K. Large scale dew collection as a source of fresh water supply. Desalination 1981, 36, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Kidron, G.J.; Herrnstadt, I.; Barzilay, E. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid. Environ. 2002, 52, 517–533. [Google Scholar] [CrossRef]
- Jumikis, A.R. Aerial wells: Secondary source of water. Soil Sci. 1965, 100, 83–95. [Google Scholar] [CrossRef]
- Leopold, L.B. Dew as a source of plant moisture. Pac. Sci. 1952, 6, 259–261. [Google Scholar]
- Kidron, G.J. Altitude dependent dew and fog in the Negev Desert, Israel. Agric. For. Meteorol. 1999, 96, 1–8. [Google Scholar] [CrossRef]
- Alnaser, W.; Barakat, A. Use of condensed water vapour from the atmosphere for irrigation in Bahrain. Appl. Energy 2000, 65, 3–18. [Google Scholar] [CrossRef]
- Richards, K. Observation and simulation of dew in rural and urban environments. Prog. Phys. Geogr. Earth Environ. 2004, 28, 76–94. [Google Scholar] [CrossRef]
- Sharan, G.; Shah, R.; Millimouk-Melnythouk, I.; Beysens, D. Roofs as Dew Collectors: Corrugated Galvanized Iron Roofs in Kothara and Suthari (NW India). In Proceedings of the Fourth International Conference on Fog, Fog Collection and Dew, La Serena, Chile, 22–27 July 2007. [Google Scholar]
- Odeh, I.; Arar, S.; Al-Hunaiti, A.; Sa’Aydeh, H.; Hammad, G.; Duplissy, J.; Vuollekoski, H.; Korpela, A.; Petäjä, T.; Kulmala, M.; et al. Chemical investigation and quality of urban dew collections with dust precipitates. Environ. Sci. Pollut. Res. 2017, 24, 12312–12318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, T.; Vargas, W.; Niklasson, G.; Granqvist, C. Condensation of water by radiative cooling. Renew. Energy 1994, 5, 310–317. [Google Scholar] [CrossRef]
- Muselli, M.; Beysens, D.; Marcillat, J.; Milimouk, I.; Nilsson, T.; Louche, A. Dew water collector for potable water in Ajaccio (Corsica Island, France). Atmos. Res. 2002, 64, 297–312. [Google Scholar] [CrossRef]
- Clus, O.; Ortega, P.; Muselli, M.; Milimouk, I.; Beysens, D. Study of dew water collection in humid tropical islands. J. Hydrol. 2008, 361, 159–171. [Google Scholar] [CrossRef]
- Muselli, M.; Beysens, D.; Mileta, M.; Milimouk, I. Dew and rain water collection in the Dalmatian Coast, Croatia. Atmos. Res. 2009, 92, 455–463. [Google Scholar] [CrossRef]
- Sharan, G.; Clus, O.; Singh, S.; Muselli, M.; Beysens, D. A very large dew and rain ridge collector in the Kutch area (Gujarat, India). J. Hydrol. 2011, 405, 171–181. [Google Scholar] [CrossRef]
- Khalil, B.; Adamowski, J.; Shabbir, A.; Jang, C.; Rojas, M.; Reilly, K.; Ozga-Zielinski, B. A review: Dew water collection from radiative passive collectors to recent developments of active collectors. Sustain. Water Resour. Manag. 2016, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Wang, R.; Zhang, Y.; Wang, J. Progress and Expectation of Atmospheric Water Harvesting. Joule 2018, 2, 1452–1475. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Sogacheva, L.L.; Petäjä, T. Accumulation and Coarse Modes Particle Concentrations during Dew Formation and Precipitation. Aerosol Air Qual. Res. 2018, 18, 2929–2938. [Google Scholar] [CrossRef] [Green Version]
- Vuollekoski, H.; Vogt, M.; Sinclair, V.A.; Duplissy, J.; Järvinen, H.; Kyrö, E.-M.; Makkonen, R.; Petäjä, T.; Prisle, N.L.; Räisänen, P.; et al. Estimates of global dew collection potential on artificial surfaces. Hydrol. Earth Syst. Sci. 2015, 19, 601–613. [Google Scholar] [CrossRef] [Green Version]
- Beysens, D.; Muselli, M.; Nikolayev, V.; Narhe, R.; Milimouk, I. Measurement and modelling of dew in island, coastal and alpine areas. Atmos. Res. 2005, 73, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmos. Res. 2016, 167, 146–155. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M.; Najm, M.A.; Beysens, D.; Alameddine, I.; Zeid, E.B.; El-Fadel, M. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ. 2016, 566–567, 1339–1348. [Google Scholar] [CrossRef]
- Nilsson, T. Initial experiments on dew collection in Sweden and Tanzania. Sol. Energy Mater. Sol. Cells 1996, 40, 23–32. [Google Scholar] [CrossRef]
- Gandhidasan, P.; Abualhamayel, H. Modeling and testing of a dew collection system. Desalination 2005, 180, 47–51. [Google Scholar] [CrossRef]
- Jacobs, A.; Heusinkveld, B.; Berkowicz, S. Passive dew collection in a grassland area, The Netherlands. Atmos. Res. 2008, 87, 377–385. [Google Scholar] [CrossRef]
- Maestre-Valero, J.F.; MartinezAlvarez, V.; Baille, A.; MartínGórriz, B.; GallegoElvira, B. Comparative analysis of two poly-ethylene foil materials for dew harvesting in a semiarid climate. J. Hydrol. 2011, 410, 84–91. [Google Scholar] [CrossRef]
- Ernesto, A.-T.J.; Jasson, F.-P.J. Winter Dew Harvest in Mexico City. Atmosphere 2015, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Pedro, M.; Gillespie, T. Estimating dew duration. I. Utilizing micrometeorological data. Agric. Meteorol. 1981, 25, 283–296. [Google Scholar] [CrossRef]
- Nikolayev, V.; Beysens, D.; Gioda, A.; Milimouka, I.; Katiushin, E.; Morel, J.-P. Water recovery from dew. J. Hydrol. 1996, 182, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Nikolayev, V.S.; Beysens, D.; Muselli, M. A computer model for assessing dew/frost surface deposition. In Proceedings of the Second International Conference on Fog and Fog Collection, St John’s, NL, Canada, 15–20 July 2001; pp. 333–336. [Google Scholar]
- Monteith, J.L. Dew. Q. J. R. Meteorol. Soc. 1957, 83, 322–341. [Google Scholar] [CrossRef]
- Beysens, D. The formation of dew. Atmos. Res. 1995, 39, 215–237. [Google Scholar] [CrossRef]
- Madeira, A.; Kim, K.; Taylor, S.; Gleason, M. A simple cloud-based energy balance model to estimate dew. Agric. For. Meteorol. 2002, 111, 55–63. [Google Scholar] [CrossRef]
- Tuure, J.; Korpela, A.; Hautala, M.; Hakojärvi, M.; Mikkola, H.; Räsänen, M.; Duplissy, J.; Pellikka, P.; Petäjä, T.; Kulmala, M.; et al. Comparison of surface foil materials and dew collectors location in an arid area: A one-year field experiment in Kenya. Agric. For. Meteorol. 2019, 276–277, 107613. [Google Scholar] [CrossRef]
- Makanga, J.T.; Ngondi, E.N. Status and Constraints of Wind Energy Resources Utilization in Kenya. Wind. Eng. 2010, 34, 255–262. [Google Scholar] [CrossRef]
- Marshall, S. The water crisis in Kenya: Causes, effects and solutions. Glob. Major. E-J. 2011, 2, 31–45. [Google Scholar]
- Billman, K. A Clean 5 Gallons a Day Keeps the Doctor Away: The Water Crisis in Kenya and Rwanda. Glob. Major. E-J. 2014, 75, 75–88. [Google Scholar]
- Blank, H.G.; Mutero, C.M. The Changing Face of Irrigation in Kenya: Opportunities for Anticipating Changes in Eastern and Southern Africa (No. H030816); International Water Management Institute: Giza, Egypt, 2002. [Google Scholar]
- Ayugi, B.O.; Wen, W.; Chepkemoi, D. Analysis of spatial and temporal patterns of rainfall variations over Kenya. J. Environ. Earth Sci. 2016, 6, 69–83. [Google Scholar]
- Gatebe, C.K.; Tyson, P.D.; Annegarn, H.; Piketh, S.; Helas, G. A seasonal air transport climatology for Kenya. J. Geophys. Res. Space Phys. 1999, 104, 14237–14244. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, J.K. The potential of dew making as a source of water. In The Role of Water Resources in Development, Proceedings of the 13th Annual Symposium of the East African Academy, Nairobi, Kenya, 13–16 September 1977; Kenya National Academy for Advancement of Arts and Sciences: Nairobi, Kenya, 1977; Volume 60, p. 60. [Google Scholar]
- Tampkins, A. A Brief Introduction to Retrieving ERA Interim via the Web and Webapi. 2017. Available online: http://indico.ictp.it/event/7960/session/4/contribution/28/material/slides/0.pdf (accessed on 28 April 2021).
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S.; Uppala, S.; Simmons, A. ERA report series. In The ERA-Interim Archive; ECMWF—European Centre for Medium-Range Weather Forecasts: Reading, UK, 2011; Volume 2. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Natural Computing Series; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Weathington, B.L.; Cunningham, C.J.L.; Pittenger, D.J. Understanding Business Research; Appendix B: Statistical Tables; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Myers, R.H.; Myers, R.H. Classical and Modern Regression with Applications; Duxbury Press: Belmont, CA, USA, 1990; Volume 2. [Google Scholar]
- Burton, P.; Gurrin, L.; Sly, P. Extending the simple linear regression model to account for correlated responses: An introduction to generalized estimating equations and multi-level mixed modelling. Stat. Med. 1998, 17, 1261–1291. [Google Scholar] [CrossRef]
- Harrell, F.E. General Aspects of Fitting Regression Models. In Regression Modeling Strategies; Springer: Cham, Switzerland, 2015; pp. 13–44. [Google Scholar]
- Archdeacon, T.J. Correlation and Regression Analysis: A Historian’s Guide; University of Wisconsin Press: Madison, WI, USA, 1994. [Google Scholar]
- Güngör, E.; Özmen, A. Distance and density based clustering algorithm using Gaussian kernel. Expert Syst. Appl. 2017, 69, 10–20. [Google Scholar] [CrossRef]
- Mimmack, G.M.; Mason, S.J.; Galpin, J.S. Choice of Distance Matrices in Cluster Analysis: Defining Regions. J. Clim. 2001, 14, 2790–2797. [Google Scholar] [CrossRef]
- Nielsen, F. Introduction to HPC with MPI for Data Science; Chapter 8: Hierarchical Clustering; Springer: Berlin, Germany, 2016. [Google Scholar]
- Fovell, R.G.; Fovell, M.-Y.C. Climate Zones of the Conterminous United States Defined Using Cluster Analysis. J. Clim. 1993, 6, 2103–2135. [Google Scholar] [CrossRef] [Green Version]
- Stooksbury, D.E.; Michaels, P.J. Cluster analysis of Southeastern U.S. climate stations. Theor. Appl. Clim. 1991, 44, 143–150. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Ahmed, B.Y.M. Climatic classification of Saudi Arabia: An application of factor—Cluster analysis. GeoJournal 1997, 41, 69–84. [Google Scholar] [CrossRef]
- Yokoi, S.; Takayabu, Y.N.; Nishii, K.; Nakamura, H.; Endo, H.; Ichikawa, H.; Inoue, T.; Kimoto, M.; Kosaka, Y.; Miyasaka, T.; et al. Application of Cluster Analysis to Climate Model Performance Metrics. J. Appl. Meteorol. Clim. 2011, 50, 1666–1675. [Google Scholar] [CrossRef] [Green Version]
- Kalkstein, L.; Tan, G.; Skindlov, J.A. An evaluation of three clustering procedures for use in synoptic climatological clas-sification. J. Appl. Meteorol. Climatol. 1987, 26, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Unal, Y.; Kindap, T.; Karaca, M. Redefining the climate zones of Turkey using cluster analysis. Int. J. Clim. 2003, 23, 1045–1055. [Google Scholar] [CrossRef]
- Kaufmann, P.; Weber, R.O. Classification of Mesoscale Wind Fields in the MISTRAL Field Experiment. J. Appl. Meteorol. 1996, 35, 1963–1979. [Google Scholar] [CrossRef] [Green Version]
- Burlando, M. The synoptic-scale surface wind climate regimes of the Mediterranean Sea according to the cluster analysis of ERA-40 wind fields. Theor. Appl. Climatol. 2009, 96, 69–83. [Google Scholar] [CrossRef]
- Richards, K. Adaptation of a leaf wetness model to estimate dewfall amount on a roof surface. Agric. For. Meteorol. 2009, 149, 1377–1383. [Google Scholar] [CrossRef]
- Sutherland, R.; Bryan, R.; Wijendes, D.O. Analysis of the monthly and annual rainfall climate in a semi-arid environment, Kenya. J. Arid. Environ. 1991, 20, 257–275. [Google Scholar] [CrossRef]
- Parry, J.E.; Echeverria, D.; Dekens, J.; Maitima, J. Climate Risks, Vulnerability and Governance in Kenya: A Review; Commissioned by: Climate Risk Management Technical Assistance Support Project (CRM TASP), Joint Initiative of Bureau for Crisis Prevention and Recovery and Bureau for Development Policy of UNDP; UNDP: New York, NY, USA, 2012. [Google Scholar]
- Vargas, W.; Lushiku, E.; Niklasson, G.; Nilsson, T. Light scattering coatings: Theory and solar applications. Sol. Energy Mater. Sol. Cells 1998, 54, 343–350. [Google Scholar] [CrossRef]
- Ogallo, L.A. Dynamics of the East African climate. Proc. Indian Acad. Sci. Earth Planet. Sci. 1993, 102, 203–217. [Google Scholar]
- Hanisch, S.; Lohrey, C.; Buerkert, A. Dewfall and its ecological significance in semi-arid coastal south-western Madagascar. J. Arid. Environ. 2015, 121, 24–31. [Google Scholar] [CrossRef]
- Sharan, G.; Beysens, D.; Milimouk-Melnytchouk, I. A study of dew water yields on Galvanized iron roofs in Kothara (North-West India). J. Arid. Environ. 2007, 69, 259–269. [Google Scholar] [CrossRef]
- Lekouch, I.; Kabbachi, B.; Milimouk-Melnytchouk, I.; Muselli, M.; Beysens, D. Influence of temporal variations and climatic conditions on the physical and chemical characteristics of dew and rain in South-West Morocco. In Proceedings of the 5th International Conference on Fog, Fog Collection and Dew 2010, Münster, Germany, 25–30 July 2010; pp. 43–46. [Google Scholar]
- Lekouch, I.; Lekouch, K.; Muselli, M.; Mongruel, A.; Kabbachi, B.; Beysens, D. Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J. Hydrol. 2012, 448–449, 60–72. [Google Scholar] [CrossRef]
Condenser | Mean | Max | Min | Std | MAE | RMSE | Underestimated (%) | Overestimated (%) |
---|---|---|---|---|---|---|---|---|
OPUR1 | 0.09 | 0.32 | 0.00 | 0.06 | 0.05 | 0.07 | 25.66 | 70.07 |
OPUR2 | 0.08 | 0.28 | 0.00 | 0.06 | 0.06 | 0.07 | 21.09 | 76.19 |
PVC1 | 0.09 | 0.31 | 0.00 | 0.06 | 0.05 | 0.07 | 24.75 | 71.57 |
PVC2 | 0.09 | 0.32 | 0.00 | 0.06 | 0.04 | 0.07 | 26.97 | 70.07 |
PVC3 | 0.08 | 0.39 | 0.00 | 0.05 | 0.06 | 0.07 | 19.23 | 78.32 |
PEwhite1 | 0.07 | 0.26 | 0.00 | 0.05 | 0.07 | 0.07 | 19.80 | 76.17 |
PEwhite2 | 0.08 | 0.30 | 0.00 | 0.05 | 0.06 | 0.07 | 21.69 | 72.88 |
PEwhite3 | 0.07 | 0.32 | 0.00 | 0.06 | 0.06 | 0.07 | 18.84 | 77.05 |
PEblack1 | 0.08 | 0.29 | 0.00 | 0.05 | 0.06 | 0.07 | 21.38 | 74.48 |
PEblack2 | 0.08 | 0.31 | 0.00 | 0.05 | 0.06 | 0.07 | 17.47 | 78.42 |
simulated | 0.13 | 0.37 | 0.00 | 0.07 | − | − | − | − |
Condenser | Slope | SES | N | RSS | ESS | TSS | R2_ex |
---|---|---|---|---|---|---|---|
OPUR1 | 0.66 | 0.06 | 304 | 1.51 | 0.58 | 1.18 | 0.49 |
OPUR2 | 0.58 | 0.05 | 294 | 1.05 | 0.44 | 0.90 | 0.49 |
PVC1 | 0.63 | 0.06 | 299 | 1.28 | 0.52 | 1.00 | 0.52 |
PVC2 | 0.68 | 0.06 | 304 | 1.41 | 0.61 | 1.09 | 0.56 |
PVC3 | 0.55 | 0.05 | 286 | 1.06 | 0.37 | 0.86 | 0.44 |
PEwhite1 | 0.52 | 0.05 | 298 | 0.93 | 0.35 | 0.72 | 0.49 |
PEwhite2 | 0.58 | 0.05 | 295 | 1.09 | 0.43 | 0.85 | 0.50 |
PEwhite3 | 0.54 | 0.05 | 292 | 1.07 | 0.36 | 0.90 | 0.41 |
PEblack1 | 0.55 | 0.05 | 290 | 0.98 | 0.38 | 0.79 | 0.48 |
PEblack2 | 0.54 | 0.05 | 292 | 0.94 | 0.37 | 0.79 | 0.47 |
Zone A | Zone B | Zone C | |
---|---|---|---|
Region | Arid and Semi-Arid | Mountain region | Coastal region |
Climate Features | Hot and dry | Mild and humid | Mild to hot and humid |
Tmean (℃) | 25 (24–28) | 19 (11–26) | 23 (22–25) |
Td mean (℃) | 16 (13–19) | 15 (7–13) | 18 (17–20) |
RHmean (%) | 60 (46–73) | 69 (61–80) | 74 (65–82) |
Mean dew yield ± std (L/m2/day) | 0.03 ± 0.02 | 0.05 ± 0.03 | 0.09 ± 0.02 |
25% | 0.007 | 0.031 | 0.055 |
75% (L/m2/day) | 0.049 | 0.074 | 0.129 |
99% (L/m2/day) | 0.130 | 0.130 | 0.215 |
Max/year (L/m2) | >18 | >25 | >40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atashi, N.; Tuure, J.; Alakukku, L.; Rahimi, D.; Pellikka, P.; Zaidan, M.A.; Vuollekoski, H.; Räsänen, M.; Kulmala, M.; Vesala, T.; et al. An Attempt to Utilize a Regional Dew Formation Model in Kenya. Water 2021, 13, 1261. https://doi.org/10.3390/w13091261
Atashi N, Tuure J, Alakukku L, Rahimi D, Pellikka P, Zaidan MA, Vuollekoski H, Räsänen M, Kulmala M, Vesala T, et al. An Attempt to Utilize a Regional Dew Formation Model in Kenya. Water. 2021; 13(9):1261. https://doi.org/10.3390/w13091261
Chicago/Turabian StyleAtashi, Nahid, Juuso Tuure, Laura Alakukku, Dariush Rahimi, Petri Pellikka, Martha A. Zaidan, Henri Vuollekoski, Matti Räsänen, Markku Kulmala, Timo Vesala, and et al. 2021. "An Attempt to Utilize a Regional Dew Formation Model in Kenya" Water 13, no. 9: 1261. https://doi.org/10.3390/w13091261
APA StyleAtashi, N., Tuure, J., Alakukku, L., Rahimi, D., Pellikka, P., Zaidan, M. A., Vuollekoski, H., Räsänen, M., Kulmala, M., Vesala, T., & Hussein, T. (2021). An Attempt to Utilize a Regional Dew Formation Model in Kenya. Water, 13(9), 1261. https://doi.org/10.3390/w13091261