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Abstract: A series of experiments exploring the propagation of a solitary wave over a submerged
step were performed using a flow-field visualization measurement system, an image-connection
technique as well as model simulations. The experimental data were used to validate a one-layer
finite-element non-hydrostatic model and a multi-layer finite-difference non-hydrostatic σ model for
various submerged step configurations and wave conditions—combinations of step height ratios
d/h, width ratios B/h and solitary wave height ratios H/h, where d denotes the step height, B the step
width, H the solitary wave height, and h the still water depth. The main differences between the
numerical results and the experimental data are highlighted. The effect of the height and width of the
submerged step as well as the wave height of the solitary wave are quantified in terms of reflection
(R), transmission (T), and energy dissipation (D). Through a series of numerical experiments, an
optimal combination of the height ratio d/h, width ratio B/h, and solitary wave height ratio H/h for
breakwater design for coastal protection is suggested.

Keywords: dissipation; non-hydrostatic; reflection; solitary wave; submerged step; transmission

1. Introduction

Tsunamis, which are typically generated by underwater earthquakes, are one of the
most destructive natural disasters. These powerful, large, and long waves have caused
devastating tragedies in many coastal regions. For example, the 2004 Indian Ocean tsunami
led to at least 230,000 dead or missing people, representing the deadliest recorded tsunami
in human history. In 2011, a strong earthquake struck eastern Japan and produced a
tsunami with a height exceeding 40 m, leading to at least 20,000 casualties and losses in
excess of 360 billion dollars [1]. To protect residential communities in coastal areas [2–4],
artificial structures with an appropriate design can be used to mitigate the impacts of such
events. In this context, understanding the influences of submerged obstacles on tsunamis
is essential and important for effective engineering.

To represent the kinematic characteristics of tsunamis, solitary waves (solitons) have
been frequently utilized since the 1970s. Solitary waves derived from the KdV equation can
be used as the proper inputs of tsunamis for physical and mathematical models [5–8]. It is
particularly noteworthy that the NOAA Technical Memorandum implies that the solitary
wave is still the preferred model of tsunamis [9], while some studies have been seeking a
link between solitary waves and geophysical tsunamis [10].

As solitary waves propagate through a shallow water region over an irregular bed
(e.g., a mild slope or underwater obstacle), several interesting phenomena occur. Part of
the wave energy is reflected (i.e., as a reflected wave), while the remainder passes over
the obstacle and continues to propagate forward (i.e., as a transmitted wave) [11–16];
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additionally, some of the energy is lost due to the friction on the wave-bottom or the corner
(i.e., as a dissipation) [17–22]. Moreover, nonlinearity becomes more important for solitary
wave propagation as the ratio of wave height and relative depth increases [23]. Thus, the
coastal structures along the shoreline need to be properly designed (in terms of geometry)
to provide the required protection standard with an economic balance [24,25].

Over the past decades, in addition to analytical theories, laboratory experiments and
numerical simulations have been widely applied to investigate solitary waves passing
over a submerged step (e.g., [5,18,26,27]). Regarding analytical theories, Kanoglu and
Synolakis [28] provide a general method to evaluate the evolution of solitary waves under
linearly varying ocean topographies or constant-depth segments. A weakly nonlinear-
dispersive theory (e.g., the Korteweg-de Vries (KdV) equation) has also been applied
to study the solitary transformation over a step and the process of soliton fission if the
submerged obstacle length is larger than the solitary wave length [29,30]. For conventional
experiments, researchers have utilized wave gauges to record the deformation as waves
cross a sudden change of the channel geometry [5,17,31]. However, owing to the limitations
of measuring instruments, a complete spatial wave profile cannot be easily obtained.
In the last three decades, non-intrusive particle image velocimetry (PIV) systems (with
single-section images) have been developed. Furthermore, effective image-connection
techniques [32,33] have been proposed to capture the entire variation of the free surface as
the water waves propagate onto an uneven topography. Therefore, full spatial information
can be utilized to study not only the reflection, transmission, and dissipation of waves, but
also the generation of vortices and their variations on the lee and weather sides and run-up
processes [34–40].

Moreover, the availability of sufficient experimental data provides numerical models
for rigorous/thorough validation. Numerical simulations of complex flow fields offer an
alternative way to study the interactions between solitary waves and structures. Besides,
numerical modeling reduces the workload involved in physical experiments such as
wave–structure interaction during the process of vortex generation [41,42] and wave
breaking [43–45]. For example, Lin [18] examined this effect with a complete range of step
width–height ratios; e.g., from a thin plate to a shelf and from a submerged obstacle to an
emerged object.

The purpose of this study is two-fold: first, a series of experiments with a flow-field
visualization measurement system and the image-connection technique were conducted
to investigate the interactions of a propagating solitary wave with a submerged step.
Experimental conditions included various heights and widths of the step as well as incident
wave heights. Second, these experimental data were used as the validation benchmark for
two non-hydrostatic models: a one-layer depth-averaged model [46] (hereafter referred to
as the FE model) and multi-layer σ model [47] (hereafter referred to as the FD model). Both
FE and FD models were employed to examine the effects of submerged step configurations
and solitary wave conditions on the reflection (R), transmission (T), and energy dissipation
(D) through a series of numerical experiments. The two models were first verified with a
solitary wave propagating in a constant-depth channel where an analytical solution was
available. The combined effect of the height and width of the submerged step and wave
height of solitary wave is then discussed.

In the following, Section 2 describes the experimental setup and the treatment of
image processing. Section 3 briefly introduces the two non-hydrostatic models. Section 4
presents the data analysis processes. Section 5 presents the model verification. The results
and discussion are given in Section 6. Finally, the conclusions are presented in Section 7.

2. Experimental Setups and Image Processing

A series of experiments were conducted in a 20 m (L) × 0.8 m (H) wave flume at
the Fundamental Fluid Laboratory in the Department of Engineering Science and Ocean
Engineering at National Taiwan University, with a working depth h of 0.1 m (as shown in
Figure 1a). A piston-type wave maker with a feedback displacement sensor equipped at the
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front end of the tank was utilized to generate solitary waves using Rayleigh’s method [48].
A 1:10 slope was constructed at the other end of the tank to reduce the reflected waves
returning into the measurement area. A submerged obstacle was placed 7 m from the wave
maker with the coordinate origin located at the still water level above, where the positive
X-axis was directed toward the rear of the tank and the vertical Z-axis was positive and
upward. Eight laboratory experiments (see Table 1) with two submerged step height–still
water depth ratios (d/h of 0.5 and 0.7), four submerged step width–height ratios (B/h of
10–30, and 50), and two solitary wave height ratios (H/h of 0.09 and 0.133) were conducted.

Figure 1. Illustration of setup of (a) experiments and (b) model simulations.

Table 1. Summary of configuration of submerged steps and conditions of solitary wave of experi-
ments and model simulations (e.g., working depth h of 0.1 m).

Case No.
Step Geometry

H (m)
B (m) d (m)

Case 01 * 10 0.05 0.009
Case 02 * 10 0.05 0.0133
Case 03 * 10 0.07 0.009
Case 04 * 20 0.05 0.009
Case 05 * 20 0.07 0.009
Case 06 * 20 0.07 0.0133
Case 07 30 0.05 0.009
Case 08 50 0.05 0.009

* indicates condition of laboratory experiments for model verification.

A non-intrusive measurement system was used to record free-surface elevations. This
system comprised a 3 W green-colored diode laser with a 532 nm wavelength, a set of
optical lenses (i.e., a spherical lens with a 500 mm focal length, a cylindrical lens with a
12.7 mm focal length, and several reflectors), and a high-speed video camera. The point-
source laser was directed into the measurement area through optical lenses, forming a
light sheet at the center of the water tank (0.15 m from both of the lateral sides). With
the tracer dye Rhodamine-B illuminated in the water, waveforms could be recorded by a
high-speed camera.
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The high-speed video camera had a maximum frame rate of 250 frames/s at full
resolution (512 × 480 pixels). Two cylindrical lenses with focal lengths of 100 mm and
200 mm were placed in front of the camera to increase the resolution along the vertical axis
(Z). The horizontal and vertical resolutions of the images were 12.2 and 44.0 pixels/cm,
respectively, with a magnification of 3.6. The video area began from x = 5.0 m in front of the
submerged obstacle (i.e., offshore) and covered a length of 5.2 m (see Figure 1a). Note that
the full length of 5.2 m could not be captured instantaneously due to the design capacity of
the video camera and the limited space of the laboratory.

As suggested in past studies [32,33], the region of examination (ROE) was further divided
into 26 sections. The waveform in each section was recorded by moving the video camera
along the sidewall of the tank with the same trigger time. In addition, the total recording
time and frame rate were set to 15.0 s and 125 frames/s, respectively. Overall, the difference
between the measured and averaged waveforms was less than 2 pixels (±0.045 cm) along the
Z axis, demonstrating the excellent capability of the measurement system.

Figure 2 depicts a typical snapshot (Case 06) of the waveform in the ROE and the
complete free surface variations in the spatial–temporal 2D domain. The white and gray
pixels in Figure 2a represent water areas, and the black pixels above the red line represent
air. Through an edge-detection technique, the free-surface at the interface of the air and
water can be distinguished (see the red curve). Note that the dark gray bars indicate
the steel columns of the wave flume. The unknown waveform is interpolated from the
information on both sides of the column in the blocked area. The simple three-point
moving average method is utilized to smooth the small surface fluctuations from the
edge-detection process.

Figure 2. (a) Snapshot of the free surface and (b) 2D spatial-temporal results of the waveforms of
experimental results of Case 06 after post-processing.

Further, Figure 2b shows the full spatial–temporal information of waveforms by
arranging the free-surface spatial profiles detected at different time instances. The compli-
cated patterns imply the existence of the incident and reflected waves and fission solitons.
The detailed physical process and model simulations of solitary wave propagation over
the submerged step are described in Sections 5 and 6.
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3. Numerical Models

Two non-hydrostatic models based on the Navier–Stokes equations/Euler equations
with non-hydrostatic pressure were developed and used in this study: one is the multi-layer
finite-difference (FD) σ model [47,49], and the other is the one-layer finite-element (FE)
model [46]. Both FD and FE models are developed based on the hydrostatic predecessors.

3.1. Multi-Layer Finite-Difference Non-Hydrostatic Shallow-Water σ Model

The multi-layer finite-difference non-hydrostatic σ model (NHM) developed in [47,49]
was used to simulate the propagation of solitary waves in this study. With the aid of
advanced computer capacity, this type of model provides a general simulation tool for
ocean/coastal research [50–53]; e.g., periodic wave propagation over a rapidly varying
topography [52]. The efficient σ model solves the unsteady, incompressible Navier–Stokes
equation with the coordinate mapped from the Cartesian domain x*-z*-t* (e.g., the sym-
bol star represents under Cartesian domain) into the x-σ-t terrain following one (e.g.,
see [47,50,54]). Through the boundary-fitted transformation, the free surface (i.e., σ = 0
for z* = η (x*, t*)) and the irregular bottom (i.e., σ = −1 for z* = −h (x*, t*)) can be exactly
represented to ensure computational accuracy. Based on the commonly-used staggered
grid system [47,51,55], the pressure is arranged at the center of the cell.

The total pressure consists of the hydrostatic component caused by the free-surface
elevation and the non-hydrostatic component attributed to the vertical acceleration [56].
A special treatment to integrate the vertical momentum equation from the center of the
top-layer cell to the free surface was proposed to obtain the top-layer pressure boundary
condition [47,49]. Thus, only a small number of vertical layers is required to accurately
simulate highly nonlinear dispersive waves; e.g., 2–5 vertical layers for a dimensionless
water depth kh of 3–15 [51]. For boundary conditions, an irregular unmovable bottom is
applied. Through the integration of the continuity equation over the water depth with
associated kinematic conditions, the conservative form of free-surface equation is utilized.
At the inflow boundary, either the free-surface elevation or horizontal velocities of incident
waves (according to the analytical solutions or laboratory conditions) are specified [55]
with a ramp-function to avoid undesired disturbance from the impulse motion [57,58]. For
the outflow boundary, both a Sommerfeld radiation boundary condition and a sponge
layer technique are employed to minimize wave reflection [55].

3.2. One-Layer Finite-Element Non-Hydrostatic Shallow-Water Model

A 2D depth-averaged finite-element non-hydrostatic shallow water model has been
developed and applied to simulate the ocean circulation the Dongsha waters [46]. The
model is based on the existing hydrostatic shallow-water model [59,60]. In the non-
hydrostatic shallow-water model, the pressure is decomposed into hydrostatic and non-
hydrostatic components, as Casulli [61,62] and the Keller-box scheme [63] did for the
vertical gradient approximation of the non-hydrostatic pressure in the formulation. The
depth-integrated shallow water equations including non-hydrostatic pressure terms were
solved with the linear distributions assumed in the vertical direction for both the non-
hydrostatic pressure and the vertical velocity. The depth-integrated non-hydrostatic flow
model is solved semi-implicitly: the provisional flow velocity is first implicitly solved
using the hydrostatic shallow-water equations; then, the non-hydrostatic pressure, which
is implicitly obtained by ensuring a divergence-free velocity field, is used to correct the
provisional velocity; and finally, the depth-integrated continuity equation is explicitly
solved for the free-surface elevation to satisfy global mass conservation [57,64–67].

The 2D one-layer non-hydrostatic shallow water model is based on the least-squares
finite-element formation. The resulting system of equations is symmetric and positive-
definite. Therefore, a pre-conditioned conjugate–gradient method is used to solve the
resulting system of equations and found to be very efficient [59,60].
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4. Data Processing

Wave signal analysis plays an important role in defining the wave reflection, transmis-
sion and energy dissipation caused by a submerged structure. Note that the widely used
frequency analysis methods (e.g., the fast Fourier transform or wavelet transform) are inap-
propriate for evaluating a solitary wave because its wavelength (or period) is theoretically
infinite; a soliton is composed of infinite frequency components. Based on the spatial–
temporal measurement results, the reflected and transmitted waves were successfully
separated according to the following approaches.

4.1. Reflected Waves

In the wave flume, the solitary wave generated by the wavemaker was typically
followed by oscillatory tails due to a sudden shut-down of the wavemaker paddle. Gen-
erally, the solitary wave propagates much faster to the step than the oscillatory tails. As
a consequence, on the weather side of the step, the partially reflected wave (see the time
series at position 2) and oscillation tails did not meet each other even briefly. Furthermore,
the free-surface elevation time series at position 1 (see Figure 1) with a time window that
contained neither reflected waves nor tails was carefully selected for the incident signal.
Thus, based on the characteristic of linear superposition, the crest from the deviation be-
tween position 1 and 2 can be defined as a reflected wave (HR) and it can be easily extracted
from complicated wave signals., giving the reflection coefficient R:

R =
HR
HI

, (1)

where HI and HR are the wave heights of incident and reflected waves, respectively.
As the solitary wave propagates onto the submerged step (see the illustration of Case

06 in Figure 2), a number of solitons were generated due to the increased nonlinearity in the
shallow water region. On top of the submerged step, several small crests (light gray color
in Figure 2b) formed between the soliton (white color in Figure 2b) and oscillatory tails,
shown in the red box of Figure 2b. When the solitons re-entered the deep-water region,
the change in depth caused another reflection that could not be easily identified from the
traditional measurements provided by a single wave gauge in the earlier works. Such a
difficult problem is overcome by analyzing the recorded imagery with a similar procedure.
An obvious reflection crest was observed on the lee side beginning at t = 6 s (Figure 2b);
thus, the second reflected waves were calculated by the time series data between positions
3 and 4. Besides, four fissions of soliton-like waves were generated (illustrated in the
red box) in the lee side of the submerged step due to the release of the free energy and
generation of high numbers of harmonics.

4.2. Transmitted Waves

After partial reflection, the fission-induced soliton-like waves continued to propagate
as transmitted waves passing over the step to the lee side. To avoid the disturbance from
the boundary-reflected wave from the end of the flume, the surface elevation time series
between 6 s and 12 s at position 5 were used to represent the general transmitted wave
of Case 06. It is clearly observed that there were four fission solitons with wave heights
smaller than that of the incident wave (see red box of Figure 2b). However, it is not easy to
identify the transmitted wave height during the fission process. Therefore, we utilized the
suggestion of Lin [18], who reported that the integration of energy flux is sensible under
such conditions. Each wave crest before the oscillatory tails arrived (e.g., before t = 12 s) at
position 5 were defined as the transmitted wave height (HT). The transmission coefficient
can be expressed based on the energy conservation:

T =

√
Cgs√
Cgd

HT
HI

(2)
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where Cgd =
√

gh and Cgs =
√

g(h − d) are the group velocities in the deep-water region
and on the step, respectively. The dissipation coefficient is computed with Equation (3),
where the largest wave height of reflected waves and solitons are used in the reflection
and transmission coefficient defined in Equations (1) and (2). In addition, the dissipation
coefficient can be represented as

D =
√

1 − R2 − T2 (3)

5. Model Verification: Propagating Solitary Wave in a Constant Depth Channel

A solitary wave propagating in a one-dimensional channel with a constant depth was
used for model verification. The analytical expressions for a solitary wave are

η(x, t) = Hsec h2

[√
3
4

H
h
(x − x0 − ct)

]
(4)

U(x, t) =
ηc

η + h
(5)

W(x, t) = −(η + h)
∂U
∂x

(6)

q(x, t) = −ρ(η + h)
∂W
∂t

(7)

where H is the wave height, h is the constant water depth, c =
√

g(H + h) is the wave
propagation speed, η is the approximation of free surface, U (W) is the horizontal (vertical)
velocity on the free surface based on the shallow water approximation, and q is the dynamic
pressure at the bottom.

For this case, the channel had a constant water depth h of 0.1 m and length L of 20 m.
A solitary wave with an H of 0.0138 m was considered. For model simulations, spatial
and temporal increments were ∆x = 0.01 m and ∆t = 0.005 s, respectively. In contrast to FE
(∆x = ∆y = 0.01 m; i.e., 2000 uniform quadrilateral elements), the FD utilizes five vertical
layers to allow an accurate wave dispersion property in model computations (∆x = 0.01 m;
i.e., 2000 uniform grids and five vertical layers).

Approximations of η, U and W in Equations (4)–(6) with x0 = 5.0 m and t = 0.0 s were
used as initial conditions for both FD and FE models. Figure 3 shows the comparison of
the horizontal velocity U (Figure 3a), vertical velocity W (Figure 3b), and dynamic pressure
q (Figure 3c) at t = 0, 5, and 10 s of the analytical solution, the one-layer FE model, and
the multi-layer FD model. It can be seen that the simulation of both numerical models
agrees well with the analytical solutions. However, note that the FD model presents some
small fluctuations in the dynamic pressure in the form of dispersive tails. Based on our
previous study [51], the FD model with five vertical layers provided excellent dispersive
properties for free-surface wave modeling up to a dimensionless water depth kh of 15. A
possible reason for such unexpected fluctuations might be attributed to the approximated
horizontal velocities at incident boundaries. The low-order solution of horizontal velocity
(i.e., shallow water approximation) is non-dispersive and not fully consistent with the
wave profile from KdV equation. Further, the solitary wave evolution obtained from
experiments and simulations was compared for various time instances in Figure 4. Note
that wave profiles in an enlarged area (i.e., x = 7.0 m to 9.25 m within ROE) are presented
here for better comparison. Overall, the experimental data and model predictions are in
excellent agreement.
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Figure 3. Comparison of approximations with computed results of a propagating solitary wave in a
flat channel at t = 5 and 10 s: (a) horizontal velocity, (b) vertical velocity, and (c) dynamic pressure,
respectively (circles denote analytical solution; black lines denote FD model results; green lines
denote FE model results).

Figure 4. Comparison of free-surface of experiment with model result for a propagating solitary
wave in a flat channel at various time instances (circles denote experimental data; black lines denote
FD model results; green lines denote FE model results).

6. Results and Discussion

The main objective of this study was to investigate the effect of step height and width
as well as solitary wave height on solitary wave transformation. The effects were quantified
in terms of the coefficient of reflection (R), transmission (T), and dissipation (D) for both
experimental and numerical results. The computational grids and time integration increases
of the two numerical models used were the same as those in the previous simulations.
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Note that a similar bottom configuration was adopted in numerical simulations except for
virtual slopes (see Figure 1b). In fact, the experimental results indicate that the evolution
of waves (amplitude or energy) presents a smoother transitional variation rather than
an abrupt change as waves propagate onto the submerged step. Therefore, the bottom
smoothing strategy—i.e., a steep virtual slope (1:2)—was proposed to approximate a
true vertical step, especially for a sigma-coordinate model [32,52]. By bottom smoothing,
reasonable modeling results can be obtained for both transmitted and reflected waves.
More discussions can be found in our previous paper [52]. For consistency, this bottom
smoothing strategy has also been used in our one-layer FE model.

6.1. Effect of Submerged Step Height

A propagating solitary wave with a wave height H of 0.009 m over a step with a step
width B of 1.0 m and heights h of 0.05 and 0.07 m in a channel with a still water depth h of
0.1 m were conducted experimentally and numerically to study the effect of the submerged
step height on the free-surface evolution and wave transformation. The computational
grids and time integration increases of the two numerical models used were the same as
those in the previous simulations.

Figure 5 shows the comparison of the experimental measurements with the two model
simulation results. The solitary wave approached the submerged step at around t = 4 s,
passed over the step, and transmitted again to the deep-water region at t > 6 s. Subsequently,
fission solitons were generated. The wave evolution and transformation process was more
pronounced for the tall step (i.e., d/h of 0.7 in Figure 5b) than for the short step (i.e., d/h of
0.5 in Figure 5a). It is also noticeable that the experimental data show some fluctuations
at t = 8 s due to the sudden shut-down of the wavemaker paddle. Overall, the numerical
results agree with the experiment data well in general. As the solitary wave is transmitted
over the higher step, however, one can observe some discrepancies in the simulation results
(see wave profiles at t = 6 and 8 s in Figure 5b), which may result from different dispersive
properties between the two models. In other words, the FE model with one vertical layer
could not capture those high-frequency oscillations.

Figure 5. Cont.
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Figure 5. Snapshots of the wave profiles at t = 2, 4, 6, and 8 s (from bottom to top): (a) Case 01, d/h of
0.5 and (b) Case 03, d/h of 0.7 (circles denote experimental data; black lines denote FD results; grey
lines denote FE results).

A study of solitary waves propagating over a submerged step with two shallow water
depth ratios (i.e., d/h values of 0.5 and 0.7) and various step width ratios ranging from
1 to 50 (i.e., B/h values of 1–50) was performed experimentally and numerically. Figure 6a
shows comparisons of the reflection coefficients with step heights for the experimental
data (red squares), FD model results (black squares), and FE model results (green squares)
with an H/h of 0.09 and B/h of 10. The triangles in Figure 6 represent the value of the
reflection coefficient with an H/h of 0.09 and B/h of 20. In general, the reflection coefficient
(R) increases with the step height–water depth ratio (d/h). It is noticeable that the step
width height (d/h of 0.7) could lead to a 25–30% larger reflection coefficient in comparison
with the cases with a shorter step (d/h of 0.5). Overall, the experimental data agree well
with the FD and FE model results.

Figure 6b shows a comparison of the transmission coefficients with the step heights for
the present experiment data (red squares), FD model results (black squares), and FE model
results (green squares) with an H/h of 0.09 and B/h of 10. The transmission coefficient was
less affected by the submerged step height for short submerged steps; i.e., a d/h <0.5. The
transmission coefficients were quite close between the experimental and model results. For
tall submerged steps, however, the transmission coefficient decreased significantly as the
submerged step height increased; i.e., a d/h > 0.7. The discrepancy for the tall submerged
steps was likely due to the effect of bottom friction and viscosity, which was not considered
in the models.

Figure 6c shows a comparison of the relation of the dissipation coefficient with the
step height ratio for the results of the present experimental and numerical study. The
dissipation of the solitary wave results from energy redistribution to higher-frequency
components as well as energy losses due to bottom friction and viscous effects. As expected,
the dissipation of energy was not strongly affected by short steps (see small dissipation
coefficients for a d/h < 0.5). By contrast, over a tall step (a d/h > 0.5) where the effects of
nonlinearity and the step corner would be significant, the wave energy rapidly dissipated.
Note that both FD and FE models without the consideration of bottom friction and viscous
effects would give a smaller dissipation coefficient that can be simply attributed to wave
energy redistribution. It is also noted that the experimental data (red squares and triangles)
and FD model results (black square and triangles) were over 30% and 85% larger than
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those of Lin [18]. The possible reason for this difference may result from the working depth
of 0.1 m used in the present study, which is much smaller than the depth of 1.0 m used by
Lin [18].

Figure 6. Relation of (a) reflection (b) transmission and (c) dissipation coefficient with step height
for the solitary wave over a submerged step with step widths B/h = 10 and 20 (red squares denote
experimental results with B/h = 10 and red triangles denote experimental results with B/h = 20; black
squares denote FD model results with B/h = 10 and black triangles denote FD model results with
B/h = 20; green squares denote FE model results with B/h = 10 and green triangles denote FE model
results with B/h = 20, respectively).

6.2. Effect of Submerged Step Width

A propagating solitary wave with a wave height H of 0.009 m over a step with a height
h of 0.5 m and step widths B of 1.0, 3.0, and 5.0 m in a channel with a still water depth h of
0.1 m were conducted numerically to study the effect of the submerged step width on the
free-surface evolution and wave transformation.

Figure 7 show the comparison of the wave profiles of the two model simulation
results. The wave profile of the two models showed good agreement as the solitary wave
approached the submerged step (t = 4 s in Figure 7a). As the solitary wave propagated
into the deep-water region in the lee side of the submerged step, secondary soliton-like
waves can be seen to have been generated (t = 12 s in Figure 7b). It is noticeable that
the predictions of the FE model (green lines) could not properly reproduce the process
of energy transition due to these processes being outside of the applicable range of the
depth-integrated non-hydrostatic models [46,55,57].
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Figure 7. Comparison of the free surface at t = (a) 4 s and (b) 12 s for B/h values of 10, 30, and 50 (black
lines: FD model results; green lines: FE model results; the black thick line indicates the position of
the submerged step).

Figure 8a depicts the relation of the reflection coefficient with different step widths
(B/h = 0–50) for a propagating solitary wave with a wave height H/h of 0.09 over a sub-
merged step with height ratios d/h of 0.5 and 0.7. The reflection coefficient approached a
constant (black squares) as the step width increased for steps with a d/h of both 0.5 and
0.7. The reflection coefficient was found to be insensitive for submerged steps with a
large width—i.e., a B/h > 10—for steps with a d/h of both 0.5 and 0.7. In general, the
present results are consistent with the early numerical works of Lin [18]. The prediction of
the FD model and experimental data are consistent with early experimental results [27].
However, the value of the reflection coefficient of the present study is smaller than the
value of Lin [18]. This discrepancy might be attributed to the linear wave assumption of
Equation (1), which may be invalid here, especially for tall submerged steps (a d/h > 0.5).

Figure 8b shows the comparisons between the FE model results (green squares), FD
model results (black squares), and experimental data (red squares) under an H/h of 0.09,
B/h of 1–50, and d/h of 0.5 and 0.7. Steps with a small height (d/h of 0.5) resulted in a 45%
larger transmission coefficient than tall steps (d/h of 0.7). In comparison with Lin [18], the
transmission coefficients obtained by the present FD model were in good agreement for the
step with a d/h of 0.5. However, the transmission coefficients were found to be influenced
by the steps with a d/h of 0.7. This observation might be due to waves breaking above
the submerged step—the breaking process can lead to strong turbulence, large energy
dissipation, and a smaller wave height, which were not considered in the present FD
model. Figure 8c compares the dissipation coefficient with the submerged step width
(B/h of 0–50) for an H/h of 0.09. Similarly, the energy dissipation did not increase with step
width, particularly for a d/h of 0.5. However, for steps with a d/h of 0.7, the prediction of
the dissipation coefficient of the FD model was smaller than that of Lin [18]. The reason for
such a difference is the same; i.e., waves breaking above the submerged step, which leads
to rapid energy loss (e.g., 60%).
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Figure 8. Relation of (a) reflection (b) transmission and (c) dissipation coefficient with the step width
ratio (B/h) for the solitary wave over a submerged step with step heights d/h of 0.5 and 0.7 (red and
filled squares denote experimental results with a d/h of 0.5 and 0.7; black and filled squares represent
FD model results with a d/h of 0.5 and 0.7; green and filled squares denote FE model results with a
d/h of 0.5 and 0.7, respectively).

6.3. Effect of Solitary Wave Height

Simulations of a solitary wave with wave heights H of 0.009 and 0.0133 m propagating
over a submerged step with a d of 0.05 m, B of 1.0 m and h of 0.1 m were performed
to study the effect of solitary wave height, which is associated with nonlinearities and
generation of high numbers of harmonics, on the wave evolution and transformation.
Figure 9 shows the comparison between the results of the two models. Table 2 shows the
summary of computed coefficients for the reflected (R) and transmitted (T) waves, and the
dissipation (D). Both FE and FD models presented adequate agreement in their simulations
with experimental data with different initial wave heights (H/h values of 0.09 and 0.133).
The wave evolution and transformation of the larger initial wave height (Case 02) is more
noticeable than with a smaller initial wave height (Case 01). The case with the higher initial
wave height (Case 02) exhibited more energy transition than the case with the smaller
initial wave height (Case 01) when the solitary wave propagated into the deep water of the
lee side of the submerged step (t > 6 s).

Table 2. Summary of computed coefficients for the reflected (R) and transmitted (T) waves, and the dissipation (D).

Case No. h/d R_EXP R_FD R_FE T_EXP T_FD T_FE D_EXP D_FD D_FE

Case 01 0.5 0.175 0.154 0.142 0.961 0.946 0.928 0.214 0.284 0.345
Case 02 0.5 0.161 0.142 0.132 0.914 0.953 0.900 0.372 0.266 0.415
Case 03 0.7 0.210 0.247 0.209 0.745 0.856 0.839 0.633 0.454 0.502
Case 04 0.5 0.163 0.157 0.144 0.917 0.956 0.922 0.365 0.247 0.359
Case 05 0.7 0.255 0.247 0.228 0.714 0.846 0.842 0.652 0.472 0.489
Case 06 0.7 0.229 0.192 0.215 0.795 0.850 0.861 0.562 0.490 0.461
Case 07 0.5 NA 0.157 0.139 NA 0.956 0.965 NA 0.247 0.222
Case 08 0.5 NA 0.157 0.139 NA 0.956 0.966 NA 0.247 0.218

EXP experimental results, FD finite difference model results, FE finite element model results, NA available.
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Figure 9. Snapshots of the wave profiles from bottom to top at t = 2, 4, 6, and 8 s (red circles and dashed lines denote H/h
values of 0.09 and 0.13 for the experimental data; black dashed and solid lines denote H/h values of 0.09 and 0.13 for the FD
model; grey dashed and solid lines denote H/h values of 0.09 and 0.13 for the FE model).

Energy dissipation is important for the protection and the design of coastal structures.
To better depict the energy dissipation of a solitary wave, we proposed a set of combined
parameters including the ratio of submergence height to water depth (d/h), step width ratio
(B/h), and incident condition (H/h):

D = A(d/h)p(H/h)q(B/h)r· (8)

Figure 10 shows the multivariate regression results for the numerical experiments
data with the powers p = 3.0, q = 0.5, and r = 0.1, and an optimal correlation coefficient
CC = 0.94:

D = 1.667(d/h)3(H/h)0.5(B/h)0.1 (9)

Equation (8) indicates that D is mostly influenced by the submergence ratio (d/h) with
an exponent of 3 and a square root of the incident condition (H/h), and that it is barely
influenced by the step width ratio (B/h). Equation (8) serves as a reference for designing
effective submerged breakwaters when in-situ environmental or numerical factors and
marine meteorology data are available. A suitable value for the relative submerged height
d/h (the most significant parameter) can be chosen to yield a greater energy dissipation
(D > 40%).
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Figure 10. A parameter study of the relation of the dissipation coefficient D with the combined
parameters of d/h, B/h, and H/h (the black line denotes the optimal regression; black and green circles
denote FD and FE model results, respectively).

7. Conclusions

A series of solitary waves propagating over a submerged step was studied experimen-
tally and numerically. A flow visualization measurement system and an image-connection
technique [32,33] were used in the experiment to record and process the evolution of the
free surface and wave transformation. The experimental data were used to validate the
one-layer finite-element and multi-layer finite-difference non-hydrostatic σ model [47,52].
Various submerged step configurations and incident conditions of solitary waves were
chosen to study their effects on reflection (R), transmission (T), and energy dissipation
(D). Based on the theory approximations, experimental data, and numerical results, the
following conclusions can be drawn.

For simulation tools, two different models were employed. In general, the FE model
can easily handle complicated geometries and boundary conditions. However, the FE is a
x–y 2D depth-averaged one-layer model. Since a small grid size (dx) is used in simulations,
the number of grids and degrees-of-freedom become large, even when one layer of the
mesh is employed in the y-coordinate. As a result, the design and structure of the present
FE model leads to a higher computational cost. For the model verification case, the CPU
time of FE model is about 3–10 times that of that of the FD model. In contrast, the FD model
is a high-order accurate multi-layer σ model. The advantages, merits, and applications of
the FD model can be found in [51,52]. Overall, the FD model outperforms the FE model in
terms of computational accuracy and efficiency. Considering that the one-layer FE model
is incapable of modeling dispersive short waves, the multi-layer modeling approach is
suggested to improve the applicability scope of the FE in future study.

The computed coefficient of reflection and transmission shows good agreement with
the experimental data for a shorter d/h of 0.5 steps. It is also noticed that steps with a
large depth (i.e., d/h > 0.7) increase the reflection coefficient by 25~30% and decrease the
transmission coefficient by 40~45% in both the numerical results and the experimental data.
The reflection coefficient approaches a constant as the step width ratio increases and B/h
becomes >10. In general, the reflection coefficients of the study are consistent with earlier
numerical work [18].

The value of the transmission coefficient for the experiments with steps with a d/h of
0.5 was close to the prediction of FD model. The transmission coefficient of a step with
a small height (d/h of 0.5) increased by 45% compared with that of a tall step (d/h of 0.7).
Generally, the numerical results of the width effect were also in reasonable agreement with



Water 2021, 13, 1302 16 of 18

the previous study by Lin [18]. Note that the breaking process considered in Lin [18] was
not included in the present numerical models. As a result, the transmission coefficients
were found to be influenced for cases with tall steps (d/h of 0.7). In other words, the
discrepancy could be attributed to wave breaking, which leads to strong turbulence, large
energy dissipation, and a smaller wave height above the submerged step.

Wave energy dissipation is important for the protection and design of coastal struc-
tures. The ratio of the submerged height (d/h) has been found to be the most important
parameter affecting the energy dissipation, as Equation (8) indicates. For a short step
(d/h < 0.5), the dissipation of energy is not strongly affected by the step. In contrast, the
wave energy over a tall step (d/h > 0.5) is rapidly dissipated. The dissipation coefficient of
experimental (red squares and triangles) and numerical results (black squares and trian-
gles) is 30% to 85% larger than that of an earlier study [18]. The possible reason for this
discrepancy may result from the working depth of 0.1 m used in the present study, which
is much smaller than the depth of 1.0 m used by Lin [18]. The effect of the step corners
on wave dissipation cannot be ignored, especially for the short steps. The dissipation
coefficient increases significantly as the ratio of submerged height (d/h) becomes greater
than 0.6. For tall steps (i.e., d/h of 0.7), the breaking process, which was not included in our
numerical models, leads to strong and rapid energy loss, leading to a reduction of 60% in
the study by Lin [18]. Moreover, the effect of the ratio of submerged widths (B/h) on the
dissipation becomes insignificant as the ratio grows larger than 10.

Author Contributions: Conceptualization, W.-T.C., C.-C.Y. and S.-J.L.; experiment, W.-T.C. and
C.-L.T.; numerical study, C.-C.Y. and S.-J.L.; formal analysis, W.-T.C., C.-C.Y. and C.-L.T.; writing—
original draft preparation, W.-T.C. and C.-C.Y.; writing—review and editing, W.-T.C. and S.-J.L.;
visualization, W.-T.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Technology, Taiwan, under grant
number NSC99-2221-E-002-221-MY3, 107-2221-E-019-010-MY3 and 108-2218-E-019-001-MY2, and
MOST 109-2221-E-019-043.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The date presented in this study are available on request from the
corresponding author (it is mandatory to cite the present paper when the data are used).

Acknowledgments: This study was provided by the Ministry of Science and Technology (MOST)
and Ministry of Education (MoE), Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mimura, N.; Yasuhara, K.; Kawagoe, S.; Yokoki, H.; Kazama, S. Damage from the great east Japan earthquake and tsunami—A

quick report. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 803–818. [CrossRef]
2. Strusi’nska-Correia, A. Tsunami mitigation in Japan after 2011 Tohoku tsunami. Int. J. Disaster Risk Reduct. 2017, 22, 397–411.

[CrossRef]
3. Ware, M.; Long, J.W.; Fuentes, M.M.P.B. Using wave runup modeling to inform coastal species management: An example

application for sea turtle nest relocation. Ocean Coast. Manag. 2019, 173, 17–25. [CrossRef]
4. Wu, Y.T.; Hsiao, S.C. Propagation of solitary waves over a submerged slotted barrier. J. Mar. Sci. Eng. 2020, 8, 419. [CrossRef]
5. Goring, D.G. Tsunamis—The Propation of Long Waves onto a Shelf ; California Institute of Technology: Pasadena, CA, USA, 1978.
6. Synolakis, C.E. The runup of solitary waves. J. Fluid Mech. 1987, 185, 523–545. [CrossRef]
7. Yeh, H.; Liu, P.L.-F.; Briggs, M.; Synolakis, C.E. Propagation and amplification of tsunamis at coastal boundaries. Nature 1994, 372,

353–355. [CrossRef]
8. Synolakis, C.E.; Bernard, E.N. Tsunami science before and beyond boxing day 2004. Philos. Trans. R. Soc. A 2006, 364, 2231–2265.

[CrossRef]
9. Synolakis, C.E.; Bernard, E.N.; Titov, V.V.; Kãnoglu, U.; González, F.I. Validation and verification of tsunami numerical models.

Pure Appl. Geophys. 2008, 165, 2197–2228. [CrossRef]
10. Macayel, D.R.; Abbot, D.S.; Sergienko, O.V. Iceberg-Capsize tsunamigenesis. Ann. Glaciol. 2011, 52, 51–56. [CrossRef]

http://doi.org/10.1007/s11027-011-9297-7
http://doi.org/10.1016/j.ijdrr.2017.02.001
http://doi.org/10.1016/j.ocecoaman.2019.02.011
http://doi.org/10.3390/jmse8060419
http://doi.org/10.1017/S002211208700329X
http://doi.org/10.1038/372353a0
http://doi.org/10.1098/rsta.2006.1824
http://doi.org/10.1007/s00024-004-0427-y
http://doi.org/10.3189/172756411797252103


Water 2021, 13, 1302 17 of 18

11. Liu, P.L.F.; Synolakis, C.E.; Yeh, H. Report on the international workshop on long-wave run-up. J. Fluid Mech. 1991, 229, 675–688.
[CrossRef]

12. Russell, J.S. Report on Waves, Proceedings of the 14th Meeting of the British Association for the Advancement of Science, York, UK,
September 1844; British Association for the Advancement of Science: London, UK, 1845; pp. 311–390.

13. Mei, C.C.; Black, J.L. Scattering of surface waves by rectangular obstacles in waters of finite depth. J. Fluid Mech. 1969, 38, 499–511.
[CrossRef]

14. Vaziri, N.; Chern, M.J.; Borthwick, A.G. A pseudo spectral σ-transformation model of solitary waves in a tank with uneven bed.
Comput. Fluids 2011, 49, 197–202. [CrossRef]

15. Li, J.; Liu, H.; Gong, K.; Tan, S.K.; Shao, S. SPH modeling of solitary wave fissions over uneven tank bottoms. Coast. Eng. 2012, 60,
261–275. [CrossRef]

16. Papoutsellis, C.; Charalampopoulos, A.; Athanassoulis, G. Implementation of a fully nonlinear Hamiltonian coupled-mode
theory, and application to solitary wave problems over bathymetry. Eur. J. Mech. B Fluids 2018, 72, 199–224. [CrossRef]

17. Losada, M.A.; Vidal, V.; Medina, R. Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res.
1989, 94, 14557. [CrossRef]

18. Lin, P. A numerical study of solitary wave interaction with rectangular obstacles. Coast Eng. 2004, 51, 35–51. [CrossRef]
19. Lu, J.; Yu, X. Numerical study of solitary wave fission over an underwater step. J. Hydrodynam. B 2008, 20, 398–402. [CrossRef]
20. Ji, Q.; Dong, S.; Luo, X.; Guedes, S.C. Wave transformation over submerged breakwaters by the constrained interpolation profile

method. Ocean Eng. 2017, 136, 294–303. [CrossRef]
21. Wu, Y.T.; Hsiao, S.C. Propagation of solitary waves over double submerged barriers. Water 2017, 9, 917. [CrossRef]
22. Han, X.; Dong, S. Interaction of solitary wave with submerged breakwater by smoothed particle hydrodynamics. Ocean Eng.

2020, 216, 108108. [CrossRef]
23. Goring, D.G.; Raichlen, F.R. Propagation of long waves onto shelf. J. Waterw. Port Coast. Ocean Eng. 1992, 118, 43–61. [CrossRef]
24. World Bank; United Nations. Nature Hazards, Unnatural Disasters: The Economics of Effective Prevention; World Bank: Washington,

DC, USA, 2010.
25. Ha, T.; Yoo, J.; Han, S.; Cho, Y.S. Numerical study on tsunami hazard mitigation using a submerged breakwater. Sci. World J. 2014,

1–11. [CrossRef]
26. Johnson, R.S. Some numerical solutions of variable-coefficient Korteweg-deVries equation (with application to solitary wave

development on a shelf). J. Fluid Mech. 1972, 54, 81–91. [CrossRef]
27. Miles, J.W. On internal solitary waves. Tellus 1979, 31, 456–462. [CrossRef]
28. Kanoglu, U.; Synolakis, C.E. Long wave runup on piecewise linear topographies. J. Fluid Mech. 1998, 374, 1–28. [CrossRef]
29. Nakuolima, O.; Zahibo, N.; Pelenovsky, E.; Taipove, T.; Kurkin, A. Solitary wave dynamics in shallow water over periodic

topography. Chaos 2005, 15, 037107. [CrossRef]
30. Pelinovsky, E.; Choi, B.H.; Talipova, T.; Woo, S.B.; Kim, D.C. Solitary wave transformation on the underwater step: Asymptotic

theory and numerical experiments. Appl. Math. Comput. 2010, 217, 1704–1718. [CrossRef]
31. Seabra-Santos, F.J.; Renouard, D.; Temperville, A. Numerical and experimental study of the transformation of a solitary wave

over a shelf or isolated obstacle. J. Fluid Mech. 1987, 176, 117–134. [CrossRef]
32. Li, F.C.; Ting, C.L. Separation of free and bound harmonics in waves. Coast. Eng. 2012, 67, 29–40. [CrossRef]
33. Ting, C.L.; Chao, W.T.; Young, C.C. Experimental investigation of nonlinear regular wave transformation over a submerged step:

Harmonic generation and wave height modulation. Coast. Eng. 2016, 117, 19–31. [CrossRef]
34. Wu, Y.T.; Hsiao, S.C.; Huang, Z.C.; Hwang, K.S. Propagation of solitary over a bottom-mounted barrier. Coast. Eng. 2012, 62,

31–47. [CrossRef]
35. Lin, C.; Chang, S.C.; Ho, T.C.; Chang, K.A. Laboratory observation of solitary wave propagation over a submerged rectangular

dike. J. Eng. Mech. 2006, 132, 545–554. [CrossRef]
36. Lin, C.; Ho, T.C.; Dey, S. Experimental study on the characteristics of steady horseshoe vortex system near the junction of

rectangular cylinder and base plate. J. Eng. Mech. 2008, 134, 184–197. [CrossRef]
37. Wu, Y.T.; Hsiao, S.C. Turbulence induced by a solitary wave propagating over a submerged object using particle image velocimetry.

J. Coast. Res. 2013, 65, 416–421. [CrossRef]
38. Wu, Y.T.; Hsiao, S.C. Propagation of solitary waves over a submerged permeable breakwater. Coast. Eng. 2013, 81, 1–18. [CrossRef]
39. Liu, P.L.F.; Al-Banaa, K.; Cowen, E.A. Water wave induced boundary layer flows above a ripple bed. In PIV and Water Waves;

World Scientific: Singapore, 2008; pp. 81–117.
40. Athanassoulis, G.; Mavroeidis, C.; Koutsogiannakis, P.; Papoutsellis, C. A numerical study of the run-up and the force exerted on

a vertical wall by a solitary wave propagating over two tandem trenches. J. Ocean Eng. Mar. Energy 2019, 5, 311–331. [CrossRef]
41. Huang, C.J.; Chen, C.H.; Chang, H.H. Propagation of water waves over permeable rippled beds. Ocean Eng. 2011, 38, 579–591.

[CrossRef]
42. Shen, L.; Chan, E.S. Application of a combined ib-vof model to wave-structure interaction. Appl. Ocean Res. 2010, 32, 40–48.

[CrossRef]
43. Lin, P.; Liu, P.L.F. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 1998, 359, 239–264. [CrossRef]
44. Lin, P.; Liu, P.L.F. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J.

Geophys. Res. 1998, 103, 15677–15694. [CrossRef]

http://doi.org/10.1017/S0022112091003221
http://doi.org/10.1017/S0022112069000309
http://doi.org/10.1016/j.compfluid.2011.05.013
http://doi.org/10.1016/j.coastaleng.2011.10.006
http://doi.org/10.1016/j.euromechflu.2018.04.015
http://doi.org/10.1029/JC094iC10p14557
http://doi.org/10.1016/j.coastaleng.2003.11.005
http://doi.org/10.1016/S1001-6058(08)60073-6
http://doi.org/10.1016/j.oceaneng.2017.03.037
http://doi.org/10.3390/w9120917
http://doi.org/10.1016/j.oceaneng.2020.108108
http://doi.org/10.1061/(ASCE)0733-950X(1992)118:1(43)
http://doi.org/10.1155/2014/863202
http://doi.org/10.1017/S0022112072000540
http://doi.org/10.3402/tellusa.v31i5.10460
http://doi.org/10.1017/S0022112098002468
http://doi.org/10.1063/1.1984492
http://doi.org/10.1016/j.amc.2009.10.029
http://doi.org/10.1017/S0022112087000594
http://doi.org/10.1016/j.coastaleng.2012.04.003
http://doi.org/10.1016/j.coastaleng.2016.07.005
http://doi.org/10.1016/j.coastaleng.2012.01.002
http://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(545)
http://doi.org/10.1061/(ASCE)0733-9399(2008)134:2(184)
http://doi.org/10.2112/SI65-071.1
http://doi.org/10.1016/j.coastaleng.2013.06.005
http://doi.org/10.1007/s40722-019-00148-5
http://doi.org/10.1016/j.oceaneng.2010.12.003
http://doi.org/10.1016/j.apor.2010.05.002
http://doi.org/10.1017/S002211209700846X
http://doi.org/10.1029/98JC01360


Water 2021, 13, 1302 18 of 18

45. Yeganeh-Bakhtiary, A.; Hajivalie, F.; Hashemi-Javan, A. Steady streaming and flow turbulence in front of vertical breakwater
with wave overtopping. Appl. Ocean Res. 2010, 32, 91–102. [CrossRef]

46. Liang, S.J.; Young, C.C.; Dai, C.; Wu, N.J.; Hsu, T.W. Simulation of ocean circulation of Dongsha water using non-hydrostatic
shallow-water model. Water 2020, 12, 2832. [CrossRef]

47. Young, C.C.; Wu, C.H.; Kuo, J.T.; Liu, W.C. A high-order σ-coordinate no-hydrostatic model for nonlinear surface waves. Ocean
Eng. 2007, 34, 1357–1370. [CrossRef]

48. Guizien, K.; Barthelemy, E. Accuracy of solitary wave generation by a piston wave maker. J. Hydraul. Res. 2002, 40, 321–331.
49. Young, C.C.; Wu, C.H.; Liu, W.C.; Kuo, J.T. A high-order non-hydrostatic σ model for simulating non-linear refraction-diffraction

of water waves. Coast. Eng. 2009, 56, 919–930. [CrossRef]
50. Ma, G.; Shi, F.; Kirby, J.T. Shock-Capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 2012,

43, 22–35. [CrossRef]
51. Young, C.C.; Wu, C.H. Nonhydrostatic modeling of nonlinear deep-water wave groups. J. Eng. Mech. 2010, 136, 155–167.

[CrossRef]
52. Young, C.C.; Chao, W.T.; Ting, C.L. Applicable sloping range and bottom smoothing treatment for σ-based modeling of wave

propagation over rapidly varying topography. Ocean Eng. 2016, 125, 261–271. [CrossRef]
53. Young, C.C.; Wu, C.H.; Hsu, T.W. The role of non-hydrostatic effects in nonlinear dispersive wave modeling. Water 2020, 12, 3513.

[CrossRef]
54. Stelling, G.S.; Van-Kester, J.A.T.M. On the approximation of horizontal gradients in sigma co-ordinates for bathymetry with steep

bottom slopes. Int. J. Numer. Methods Fluids 1994, 18, 915–935. [CrossRef]
55. Yuan, H.; Wu, C.H. A two dimensional vertical non-hydrostatic s-model with an implicit method for free-surface flows. Int. J.

Numer. Methods Fluids 2004, 44, 811–835. [CrossRef]
56. Mitotakis, D.; Synolakis, C.; McGuinness, M. A modified Galerkin/finite element method for the numerical solution of the

Serre-Green-Naghdi system. Int. J. Numer. Methods Fluids 2016, 83, 755–778. [CrossRef]
57. Stelling, G.S.; Zijlema, M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with

application to wave propagation. Int. J. Numer. Methods Fluids 2003, 43, 1–23. [CrossRef]
58. Yuan, H.; Wu, C.H. Fully nonhydrostatic modeling of surface waves. J. Eng. Mech. 2006, 132, 447–456. [CrossRef]
59. Liang, S.J.; Tang, J.H.; Wu, M.S. Solution of shallow-water equations using least-squares finite-element method. Acta Mech. Sin.

2008, 24, 523–532. [CrossRef]
60. Liang, S.J.; Hsu, T.W. Least-Squares finite-element method for shallow-water equations with source terms. Acta Mech. Sin. 2009,

25, 597–610. [CrossRef]
61. Casulli, V. Semi-Implicit finite difference methods for two-dimensional shallow water equations. J. Comput. Phys. 1990, 86, 56–74.

[CrossRef]
62. Casulli, V. A semi-implicit finite difference method for non-hydrostatic, free surface flows. Int. J. Numer. Methods Fluids 1999, 30,

425–440. [CrossRef]
63. Keller, H.B. A new difference scheme for parabolic problems. In Numerical Solutions of Differential Equations-II, Proceedings of the

Second Symposium on the Numerical Solution of Partial Differential Equations, College Park, MD, USA, 11–15 May 1970; Hubbard,
B., Ed.; Academic Press: New York, NY, USA, 1971; pp. 327–350.

64. Casulli, V.; Stalelling, G.S. Numerical simulation of 3D quasi-hydrostatic, free surface flows. J. Hydraul. Eng. 1998, 124, 678–686.
[CrossRef]

65. Wei, P.; Jia, Y. A depth-integrated non-hydrostatic finite element model wave propagation. Int. J. Numer. Methods Fluids 2013, 73,
976–1000. [CrossRef]

66. Walters, R.A. A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. Int. J. Numer. Methods Fluids
2005, 49, 721–737. [CrossRef]

67. Yamazaki, Y.; Kowalik, Z.; Cheung, K.F. Depth-Integrated, non-hydrostatic model for wave breaking and run-up. Int. J. Numer.
Methods Fluids 2008, 61, 473–497. [CrossRef]

http://doi.org/10.1016/j.apor.2010.03.002
http://doi.org/10.3390/w12102832
http://doi.org/10.1016/j.oceaneng.2006.11.001
http://doi.org/10.1016/j.coastaleng.2009.05.004
http://doi.org/10.1016/j.ocemod.2011.12.002
http://doi.org/10.1061/(ASCE)EM.1943-7889.0000078
http://doi.org/10.1016/j.oceaneng.2016.08.016
http://doi.org/10.3390/w12123513
http://doi.org/10.1002/fld.1650181003
http://doi.org/10.1002/fld.670
http://doi.org/10.1002/fld.4293
http://doi.org/10.1002/fld.595
http://doi.org/10.1061/(ASCE)0733-9399(2006)132:4(447)
http://doi.org/10.1007/s10409-008-0151-4
http://doi.org/10.1007/s10409-009-0250-x
http://doi.org/10.1016/0021-9991(90)90091-E
http://doi.org/10.1002/(SICI)1097-0363(19990630)30:4&lt;425::AID-FLD847&gt;3.0.CO;2-D
http://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(678)
http://doi.org/10.1002/fld.3832
http://doi.org/10.1002/fld.1019
http://doi.org/10.1002/fld.1952

	Introduction 
	Experimental Setups and Image Processing 
	Numerical Models 
	Multi-Layer Finite-Difference Non-Hydrostatic Shallow-Water  Model 
	One-Layer Finite-Element Non-Hydrostatic Shallow-Water Model 

	Data Processing 
	Reflected Waves 
	Transmitted Waves 

	Model Verification: Propagating Solitary Wave in a Constant Depth Channel 
	Results and Discussion 
	Effect of Submerged Step Height 
	Effect of Submerged Step Width 
	Effect of Solitary Wave Height 

	Conclusions 
	References

