Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Area
2.2. Physicochemical Analysis
2.3. Microbiological Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties
3.2. Microbiological Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiatkowski, M.; Paul, L. Surface water quality assessment in the Troja River catchment in the context of Włodzienin Reservoir construction. Pol. J. Environ. Stud. 2009, 18, 923–929. [Google Scholar]
- de Melo, R.; Rameh Barbosa, I.; Ferreira, A.; Lee Barbosa Firmo, A.; da Silva, S.; Cirilo, J.; de Aquino, R. Influence of extreme strength in water quality of the Jucazinho Reservoir, Northeastern Brazil, PE. Water 2017, 9, 955. [Google Scholar] [CrossRef] [Green Version]
- Matysik, M.; Absalon, D.; Habel, M.; Maerker, M. Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote Sens. 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Szczepanek, M. Ptaki Jeziora Turawskiego. Przyr. Górnego Śląska 2003, 32, 16. [Google Scholar]
- Nthunya, L.N.; Maifadi, S.; Mamba, B.B.; Verliefde, A.R.; Mhlanga, S.D. Spectroscopic Determination of Water Salinity in Brackish Surface Water in Nandoni Dam, at Vhembe District, Limpopo Province, South Africa. Water 2018, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- Ling, T.-Y.; Soo, C.-L.; Liew, J.-J.; Nyanti, L.; Sim, S.-F.; Grinang, J. Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river. J. Chem. 2017, 2017, 5737452. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, Z.; Duan, X.; Pan, B. Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia 2014, 729, 247–259. [Google Scholar] [CrossRef]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, F.K.; Grote, K. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA. Environ. Sci. Pollut. Res. 2019, 26, 1487–1506. [Google Scholar] [CrossRef] [Green Version]
- Mazurkiewicz, J.; Mazur, A.; Mazur, R.; Chmielowski, K.; Czekała, W.; Janczak, D. The process of microbiological remediation of the polluted Słoneczko Reservoir in Poland: For reduction of water pollution and nutrients management. Water 2020, 12, 3002. [Google Scholar] [CrossRef]
- Buta, B.; Wiatkowski, M.; Gruss, P. Comparative Analysis of the Loads of Biogens in the Waters of the Turawa Dam Reservoir Within the Installation Improving Water Quality. In Book of Abstracts, Proceedings of the 2nd International Scientific Conference on Ecological and Environmental Engineering, Wrocław, Poland, 30 June–1 July 2021; Bugajski, P., Kotowski, D., Młyński, D., Eds.; Polish Academy of Science: Wrocław, Poland, 2021; pp. 21–22. [Google Scholar]
- Wiatkowski, M.; Czerniawska-Kusza, I. Use of the preliminary Jedlice Reservoir for water protection in the Turawa Reservoir on the Mała Panew River. Oceanol. Hydrobiol. Stud. 2009, 38, 83–91. [Google Scholar] [CrossRef]
- O’Sullivan, P.; Reynolds, C.S. The Lakes Handbook: Limnology and Limnetic Ecology; Wiley: New York, NY, USA, 2008; Volume 1, p. 712. [Google Scholar]
- Wagner, T.; Erickson, L.E. Sustainable management of eutrophic lakes and reservoirs. J. Environ. Prot. 2017, 08, 436–463. [Google Scholar] [CrossRef] [Green Version]
- Huser, B.J. Aluminum application to restore water quality in eutrophic lakes: Maximizing binding efficiency between aluminum and phosphorus. Lake Reserv. Manag. 2017, 33, 143–151. [Google Scholar] [CrossRef]
- Łopata, M.; Augustyniak, R.; Grochowska, J.; Parszuto, K.; Tandyrak, R. Selected aspects of lake restorations in Poland. In Polish River Basins and Lakes—Part II: Biological Status and Water Management; Korzeniewska, E., Harnisz, M., Eds.; The handbook of environmental chemistry; Springer International Publishing: Cham, Switzerland, 2020; Volume 87, pp. 327–352. ISBN 978-3-030-12138-9. [Google Scholar]
- Lewis, M.A.; Weber, D.E.; Stanley, R.S.; Moore, J.C. Dredging impact on an urbanized Florida bayou: Effects on benthos and algal-periphyton. Environ. Pollut. 2001, 115, 161–171. [Google Scholar] [CrossRef]
- Bormans, M.; Maršálek, B.; Jančula, D. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: A review. Aquat. Ecol. 2016, 50, 407–422. [Google Scholar] [CrossRef]
- Zakaria, Z.; Gairola, S.; Shariff, N.M. Effective Microorganisms (EM) Technology for Water Quality Restoration and Potential for Sustainable Water Resources and Management. In Proceedings of the International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, QC, Canada, 5–8 July 2010; Swayne, D.A., Yang, W., Voinov, A.A., Rizzoli, A., Filatova, T., Eds.; International Environmental Modelling and Software Society (iEMSs): Lancaster, UK, 2010. Available online: http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings (accessed on 10 November 2021).
- Rajfur, M.; Kłos, A.; Wacławek, M. Algae utilization in assessment of the Large Turawa Lake (Poland) pollution with heavy metals. J. Environ. Sci. Health Part A 2011, 46, 1401–1408. [Google Scholar] [CrossRef]
- International Standardization Organization (ISO). ISO 13395:1996; Water Quality—Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection. International Organization for Standardization: Geneva, Switzerland, 1996.
- International Standardization Organization (ISO). ISO 15681-2:2018; Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA)—Part 2: Method by Continuous Flow Analysis (CFA). International Organization for Standardization: Geneva, Switzerland, 2018.
- International Standardization Organization (ISO). ISO 6222:1999; Water Quality—Enumeration of Culturable Micro-Organisms-Colony Count by Inoculation in a Nutrient Agar Culture Medium. International Organization for Standardization: Geneva, Switzerland, 1999.
- International Standardization Organization (ISO). ISO 9308-1:2014; Water Quality—Enumeration of Escherichia coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora. International Organization for Standardization: Geneva, Switzerland, 2014.
- International Standardization Organization (ISO). ISO 7899-2: 2002; Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method. International Organization for Standardization: Geneva, Switzerland, 2002.
- International Standardization Organization (ISO). ISO 19250:2010; Water Quality—Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2010.
- Al-Badaii, F.; Shuhaimi-Othman, M.; Gasim, M.B. Water quality assessment of the Semenyih River, Selangor, Malaysia. J. Chem. 2013, 2013, 871056. [Google Scholar] [CrossRef] [Green Version]
- Szymanski, N.; Patterson, R.A. Effective Microrganisms (EM) and wastewater systems. In Future Direction for On-Site Systems: Best Management Practice, Proceedings of the On-Site’03 Conference, Armidale, Australia, 30 September–2 October 2003; Patterson, R.A., Jones, M.J., Eds.; Lanfax Laboratories Armidale: Armidale, Australia, 2003; pp. 348–355. [Google Scholar]
- Mingjun, S.; Yanqiu, W.; Xue, S. Study on bioremediation of eutrophic lake. J. Environ. Sci. 2009, 21, S16–S18. [Google Scholar] [CrossRef]
- Lurling, M.; Tolman, Y.; van Oosterhout, F. Cyanobacteria blooms cannot be controlled by Effective Microorganisms (EM®) from mud- or Bokashi-balls. Hydrobiologia 2010, 646, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Sitarek, M.; Napiórkowska-Krzebietke, A.; Mazur, R.; Czarnecki, B.; Pyka, J.P.; Stawecki, K.; Olech, M.; Sołtysiak, S.; Kapusta, A. Application of effective microorganisms’ technology as a lake restoration tool—A case study of Muchawka Reservoir. J. Elem. 2017, 22, 529–543. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2001; pp. 1–1006. [Google Scholar]
- Hanekom, D.; Prinsloo, J.F.; Schoonbee, H.J. A Comparison of the Effect of Anolyte and Effective Micro-Organisms (Kyusei EMTM) on the Fecal Bacterial Loads in the Water and on Fish Produced in Pig-Cum-Fish Integrated Production Units. Water SA. 2000. Available online: http://www.emturkey.com.tr/eskisite/TR/dosya/1-126/h/02-a-comparison-of-the-effect-of-anolyte-and-effective-.pdf (accessed on 10 November 2021).
- Dunalska, J.A.; Sieńska, J.; Szymański, D. The use of biopreparations in lake restoration—Experimental research. Oceanol. Hydrobiol. Stud. 2015, 44, 500–507. [Google Scholar] [CrossRef]
- Sharip, Z.; Abd Razak, S.B.; Noordin, N.; Yusoff, F.M. Application of an Effective Microorganism product as a cyanobacterial control and water quality improvement measure in Putrajaya Lake, Malaysia. Earth Syst. Environ. 2020, 4, 213–223. [Google Scholar] [CrossRef]
- Mazur, R. The application of microbiological biopreparations in the process of water remediation of the dam reservoir in Głuchów. Acta Sci. Pol. Form. Circumiectus 2020, 19, 81–95. [Google Scholar] [CrossRef]
- Peirong, Z.; Wei, L. Use of fluidized bed biofilter and immobilized Rhodopseudomonas palustris for ammonia removal and fish health maintenance in a recirculation aquaculture system. Aquac. Res. 2013, 44, 327–334. [Google Scholar] [CrossRef]
- Larimer, F.W.; Chain, P.; Hauser, L.; Lamerdin, J.; Malfatti, S.; Do, L.; Land, M.L.; Pelletier, D.A.; Beatty, J.T.; Lang, A.S.; et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 2004, 22, 55–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Liu, Y.; Song, X.; Wang, Y.; Sheng, L.; Wang, H.; Zhang, Y. Rhodopseudomonas sphaeroides treating mesosulfuron-methyl waste-water. Environ. Pollut. 2020, 262, 114166. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Cheng, X.; Li, X.; Mu, H.; Wang, S.; Geng, H.; Duan, J. Preparation and biological activities of an extracellular polysaccharide from Rhodopseudomonas palustris. Int. J. Biol. Macromol. 2019, 131, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Egland, P.G.; Gibson, J.; Harwood, C.S. Reductive, coenzyme A-mediated pathway for 3-chlorobenzoate degradation in the phototrophic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol. 2001, 67, 1396–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Xie, L.; Wu, X.; Wang, Y.; Wu, Y.; Li, N.; Zhang, Y.; Chen, Z. Effect of Rhodopseudomonas sphaeroides –Treated wastewater on yield, digestive enzymes, antioxidants, nonspecific immunity, and intestinal microbiota of common carp. N. Am. J. Aquac. 2019, 81, 385–398. [Google Scholar] [CrossRef]
- Kuo, F.-S.; Chien, Y.-H.; Chen, C.-J. Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour. Technol. 2012, 113, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Pechter, K.B.; Gallagher, L.; Pyles, H.; Manoil, C.S.; Harwood, C.S. Essential genome of the metabolically versatile alphaproteobacterium Rhodopseudomonas palustris. J. Bacteriol. 2016, 198, 867–876. [Google Scholar] [CrossRef] [Green Version]
- Dondajewska, R.; Kozak, A.; Rosińska, J.; Gołdyn, R. Water quality and phytoplankton structure changes under the influence of Effective Microorganisms (EM) and barley straw—Lake restoration case study. Sci. Total Environ. 2019, 660, 1355–1366. [Google Scholar] [CrossRef]
- Liang, C.-M.; Hung, C.-H.; Hsu, S.-C.; Yeh, I.-C. Purple nonsulfur bacteria diversity in activated sludge and its potential phosphorus-accumulating ability under different cultivation conditions. Appl. Microbiol. Biotechnol. 2010, 86, 709–719. [Google Scholar] [CrossRef]
- Stein, T. Bacillus subtilis antibiotics: Structures, syntheses and specific functions: Bacillus subtilis antibiotics. Mol. Microbiol. 2005, 56, 845–857. [Google Scholar] [CrossRef]
- Hu, C.; Ren, L.; Zhou, Y.; Ye, B. Characterization of Antimicrobial Activity of Three Lactobacillus Plantarum Strains Isolated from Chinese Traditional Dairy Food. Food Sci. Nutr. 2019, 7, 1997–2005. [Google Scholar] [CrossRef] [Green Version]
- Bartram, J.; Cotruvo, J.; Exner, M.; Fricker, C.; Glasmacher, A. (Eds.) Heterotrophic Plate Counts and Drinking-Water Safety. The Significance of HPCs for Water Quality and Human Health; IWA Publishing: London, UK, 2003; pp. 1–150. [Google Scholar]
- Chopra, A.K.; Houston, C.W. Enterotoxins in aeromonas-associated gastroenteritis. Microb. Infect. 1999, 1, 1129–1137. [Google Scholar] [CrossRef]
- Shen, H.; Niu, Y.; Xie, P.; Tao, M.I.N.; Yang, X.I. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw. Biol. 2011, 56, 1065–1080. [Google Scholar] [CrossRef]
- Regulation of the Minister of Health of 17 January 2019 on the Supervision of the Quality of Bathing Water and Places Occasionally Used for Bathing. J. Laws 2019. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190000255 (accessed on 10 November 2021).
- Dinev, T.; Beev, G.; Tzanova, M.; Denev, S.; Dermendzhieva, D.; Stoyanova, A. Antimicrobial activity of Lactobacillus plantarum against pathogenic and food spoilage microorganisms: A review. BJVM 2018, 21, 253–268. [Google Scholar] [CrossRef]
- De Giani, A.; Bovio, F.; Forcella, M.; Fusi, P.; Sello, G.; Di Gennaro, P. Identification of a bacteriocin-like compound from Lactobacillus plantarum with antimicrobial activity and effects on normal and cancerogenic human intestinal cells. AMB Expr. 2019, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yin, Z.; Breukink, E.; Moll, G.N.; Kuipers, O.P. An engineered double lipid II binding motifs-containing lantibiotic displays potent and selective antimicrobial activity against Enterococcus faecium. Antimicrob. Agents Chemother. 2020, 64, e02050-19. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrzyński, J.; Kulkova, I.; Wierzchowski, P.S.; Wróbel, B. Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir. Water 2022, 14, 12. https://doi.org/10.3390/w14010012
Dobrzyński J, Kulkova I, Wierzchowski PS, Wróbel B. Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir. Water. 2022; 14(1):12. https://doi.org/10.3390/w14010012
Chicago/Turabian StyleDobrzyński, Jakub, Iryna Kulkova, Paweł Stanisław Wierzchowski, and Barbara Wróbel. 2022. "Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir" Water 14, no. 1: 12. https://doi.org/10.3390/w14010012
APA StyleDobrzyński, J., Kulkova, I., Wierzchowski, P. S., & Wróbel, B. (2022). Response of Physicochemical and Microbiological Properties to the Application of Effective Microorganisms in the Water of the Turawa Reservoir. Water, 14(1), 12. https://doi.org/10.3390/w14010012