Groundwater Recharge Assessment Using Multi Component Analysis: Case Study at the NW Edge of the Varaždin Alluvial Aquifer, Croatia
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Water Sampling and Laboratory Analyses
3.2. Qualitative Analysis of Recharge
3.3. Mixing Calculations
4. Results and Discussion
4.1. Temperature, Chloride, and Stable Water Isotopes
4.2. Head Contour Maps
4.3. Mixing Calculations
5. Conclusions
- Stable isotopes compositions showed that surface waters are mainly recharged by precipitation from higher altitudes and less from the precipitation of the study area. The isotope fingerprint of surface waters was visible in groundwater as a consequence of recharge.
- The head contour maps show that aquifer is recharged from Drava River and accumulation lake for low, mean, and high groundwater level conditions. The groundwater levels depend greatly on the surface water level, and remain in a quasi-steady state for all hydrological conditions.
- Calculation of mixing proportions using natural tracers (δ18O and Cl−) showed that surface waters are the dominant source of groundwater recharge with contribution between 55 and 100%. The proportion of surface water in groundwater decreases with distance from the Drava River/accumulation lake, lack of covering layer, and unfavorable hydraulic conditions within the aquifer.
- The water temperature analysis confirmed that close observation wells depend more on the recharge from surface water than distant one. The results indicate a time delay of few months in cyclic water temperature oscillations between surface water and groundwater. However, for more conclusive results in terms of mean groundwater residence time, additional parameters need to be considered and studied in future research.
- Since obtained results showed that groundwater recharge is strongly dependent on surface water in the study area, any change in surface water quantity as a result of climate change and/or anthropogenic influence could potentially affect groundwater reserves. This part of the aquifer should be carefully considered in future water management plans to ensure sustainable groundwater supply.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Healy, R.W. Estimating Groundwater Recharge, 1st ed.; Cambridge University Press: New York, NY, USA, 2010; p. 256. [Google Scholar]
- King, A.C.; Raiber, M.; Cox, M.E.; Cendón, D. Comparison of groundwater recharge estimation techniques in an alluvial aquifer system with an intermittent/ephemeral stream (Queensland, Australia). Hydrogeol. J. 2017, 25, 1759–1777. [Google Scholar] [CrossRef]
- Águila, J.F.; Samper, J.; Pisani, B. Parametric and numerical analysis of the estimation of groundwater recharge from water-table fluctuations in heterogeneous unconfined aquifers. Hydrogeol. J. 2019, 27, 1309–1328. [Google Scholar] [CrossRef]
- Karlović, I.; Marković, T.; Vujnović, T.; Larva, O. Development of a Hydrogeological Conceptual Model of the Varaždin Alluvial Aquifer. Hydrology 2021, 8, 19. [Google Scholar] [CrossRef]
- Marković, T.; Karlović, I.; Perčec Tadić, M.; Larva, O. Application of Stable Water Isotopes to Improve Conceptual Model of Alluvial Aquifer in the Varaždin Area. Water 2020, 12, 379. [Google Scholar] [CrossRef] [Green Version]
- Karlović, I.; Pavlić, K.; Posavec, K.; Marković, T. Analysis of the hydraulic connection of the Plitvica stream and the groundwater of the Varaždin alluvial aquifer. G Eofizika 2021, 38, 15–35. [Google Scholar] [CrossRef]
- Zhu, G.F.; Li, Z.Z.; Su, Y.H.; Ma, J.Z.; Zhang, Y.Y. Hydrogeochemical and isotope evidence of groundwater evolution and recharge in Minqin Basin, Northwest China. J. Hydrol. 2007, 333, 239–251. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Rioual, P. Multivariate indications between environment and ground water recharge in a sedimentary drainage basin in northwestern China. J. Hydrol. 2017, 549, 92–113. [Google Scholar] [CrossRef]
- De Vries, J.J.; Simmers, I. Groundwater recharge: An overview of processes and challenges. Hydrogeol. J. 2002, 10, 5–17. [Google Scholar] [CrossRef]
- Qin, D.; Qian, Y.; Han, L.; Wang, Z.; Li, C.; Zhao, Z. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China. J. Hydrol. 2011, 405, 194–208. [Google Scholar] [CrossRef]
- Anderson, M. Heat as a Ground Water Tracer. Ground Water 2005, 43, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater, surface water and their interactions: A review. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 1809–1850. [Google Scholar] [CrossRef] [Green Version]
- Constantz, J. Heat as a Tracer to Determine Streambed Water Exchanges. Water Resour. Res. 2008, 44, 1–10. [Google Scholar] [CrossRef]
- Zagana, E.; Obeidat, M.; Kuells, C.; Udluft, P. Chloride, hydrochemical and isotope methods of groundwater recharge estimation in eastern Mediterranean areas: A case study in Jordan. Hydrol. Process. 2007, 21, 2112–2123. [Google Scholar] [CrossRef]
- Ma, J.Z.; Ding, Z.; Gates, J.B.; Su, Y. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China. Environ. Geol. 2008, 55, 1407–1419. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Wang, G.; Zhang, W.; Cui, H. Estimation of Groundwater Recharge Using Tracers and Numerical Modeling in the North China Plain. Water 2016, 8, 353. [Google Scholar] [CrossRef] [Green Version]
- Vrzel, J.; Solomon, D.K.; Blažeka, Ž.; Ogrinc, N. The study of the interactions between groundwater and Sava River water in the Ljubljansko polje aquifer system (Slovenia). J. Hydrol. 2018, 556, 384–396. [Google Scholar] [CrossRef]
- Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using Water Stable Isotopes for Identifying Groundwater Recharge Sources of the Unconfined Alluvial Zagreb Aquifer (Croatia). Water 2019, 11, 2177. [Google Scholar] [CrossRef] [Green Version]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water 2020, 12, 1797. [Google Scholar] [CrossRef]
- Robl, J.; Hergarten, S.; Stüwe, K. Morphological analysis of the drainage system in the Eastern Alps. Tectonophysics 2008, 460, 263–277. [Google Scholar] [CrossRef]
- Hydrographischer Dienst Land Kärnten & Agencija RS za okolje (ARSO). Report of the Hydrology Working Sub-Group for the Drava River. 2018. Available online: https://www.bundeskanzleramt.gv.at/dam/jcr:053e195d-bd4c-4045-969d-b08b34d17332/34_10_Beilage_2E_nb.pdf (accessed on 18 October 2021).
- Agencija RS za okolje (ARSO). Hydrological Data Archive: Drava–Hydrological Station Dravograd. Available online: http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php?p_vodotok=Drava&p_postaja=2010 (accessed on 18 October 2021).
- Agencija RS za okolje (ARSO). Hydrological Data Archive: Drava–Hydrological Station Borl I. Available online: http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php?p_vodotok=Drava&p_postaja=2150 (accessed on 18 October 2021).
- Agencija RS za okolje (ARSO). Hydrological Data Archive: Drava–Hydrological Station Formin. Available online: http://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php?p_vodotok=Drava&p_postaja=2140 (accessed on 18 October 2021).
- Šoster, A.; Zavašnik, J.; Ravnjak, M.; Herlec, U. REE-bearing minerals in Drava river sediments, Slovenia, and their potential origin. Geologija 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Bermanec, V.; Palinkaš, L.; Šoufek, M.; Zebec, V. Gold in the Drava and Mura rivers–Geological genesis and mineralogical analysis. Podravina 2014, 13, 7–18. [Google Scholar]
- Prelogović, E.; Velić, J. Quaternary tectonic activity in western part of Drava basin. Geološki Vjesn. 1988, 41, 237–253. [Google Scholar]
- Babić, Ž.; Čakarun, I.; Sokač, A.; Mraz, V. On geological features of quaternary sediments of Drava basin on Croatian territory. Geološki Vjesn. 1978, 30, 43–61. [Google Scholar]
- Urumović, K.; Hlevnjak, B.; Prelogović, E.; Mayer, D. Hydrogeological conditions of Varaždin aquifer. Geološki Vjesn. 1990, 43, 149–158. [Google Scholar]
- Karlović, I.; Marković, T.; Šparica Miko, M.; Maldini, K. Geochemical Characteristics of Alluvial Aquifer in the Varaždin Region. Water 2021, 13, 1508. [Google Scholar] [CrossRef]
- Nimac, I.; Perčec Tadić, M. New 1981–2010 Climatological Normals for Croatia and Comparison to Previous 1961–1990 and 1971–2000 Normals. In Proceedings of the GeoMLA Conference; Faculty of Civil Engineering, University of Belgrade: Belgrade, Serbia, 2016; pp. 79–85. [Google Scholar]
- Picarro Technology. Cavity Ring-Down Spectroscopy (CRDS). Available online: https://www.picarro.com/company/technology/crds (accessed on 18 October 2021).
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 2013; p. 342. [Google Scholar]
- Vázquez-Suñé, E.; Carrera, J.; Tubau, I.; Sánchez-Vila, X.; Soler, A. An approach to identify urban groundwater recharge. Hydrol. Earth Syst. Sci. 2010, 14, 2085–2097. [Google Scholar] [CrossRef] [Green Version]
- Hepburn, E.; Cendón, D.I.; Bekele, D.; Currell, M. E[nvironmental isotopes as indicators of groundwater recharge, residence times and salinity in a coastal urban redevelopment precinct in Australia. Hydrogeol. J. 2020, 28, 503–520. [Google Scholar] [CrossRef]
- Jeen, S.-W.; Kang, J.; Jung, H.; Lee, J. Review of Seawater Intrusion in Western Coastal Regions of South Korea. Water 2021, 13, 761. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey Techniques and Methods, Book 6; USGS: Denver, CO, USA, 2013; Chapter A43; p. 497. Available online: https://pubs.usgs.gov/tm/06/a43/ (accessed on 10 November 2021).
- Kelly, V.R.; Lovett, G.M.; Weathers, K.C.; Findlay, S.E.G.; Strayer, D.L.; Burns, D.J.; Likens, G.E. Long-Term Sodium Chloride Retention in a Rural Watershed: Legacy Effects of Road Salt on Streamwater Concentration. Environ. Sci. Technol. 2008, 42, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Daley, M.L.; Potter, J.D.; McDowell, W.H. Salinization of urbanizing New Hampshire streams and groundwater: Effects of road salt and hydrologic variability. J. N. Am. Benthol. Soc. 2009, 28, 929–940. [Google Scholar] [CrossRef]
- Ostendorf, D.W.; Peeling, D.C.; Mitchell, T.J.; Pollock, S.J. Chloride persistence in a deiced access road drainage system. J. Environ. Qual. 2001, 30, 1756–1770. [Google Scholar] [CrossRef]
- OG 125/17. Rulebook on Compliance Parameters, Methods of Analysis, Monitoring and Water Safety Plans for Human Consumption. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2017_12_125_2848.html (accessed on 18 October 2021).
- Hager, B.; Foelsche, U. Stable isotope composition of precipitation in Austria. Austrian J. Earth Sci. 2015, 108, 2–13. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Lin, H.-I.; Lee, C.-H.; Hsu, K.-C.; Wu, C.-S. Identifying Seasonal Groundwater Recharge Using Environmental Stable Isotopes. Water 2014, 6, 2849–2861. [Google Scholar] [CrossRef]
- Ganot, Y.; Holtzman, R.; Weisbrod, N.; Bernstein, A.; Siebner, H.; Katz, Y.; Kurtzman, D. Managed aquifer recharge with reverse-osmosis desalinated seawater: Modeling the spreading in groundwater using stable water isotopes. Hydrol. Earth Syst. Sci. 2018, 22, 6323–6333. [Google Scholar] [CrossRef] [Green Version]
Country | Basin Area (km2) | Basin Area (%) |
---|---|---|
Italy | 345 | 2.24 |
Austria | 11,774 | 76.47 |
Slovenia | 3277 | 21.28 |
Total | 15,396 | 100.00 |
Location | Border IT/AUT | Border AUT/SI | Border SI/HR |
---|---|---|---|
Hydrological station (country) | Versciaco/Vierschach (IT) | Dravograd (SI) | Borl I + Formin, Drava total (SI) |
Av. discharge (m3/s) | 3.13 | 244 | 289 |
Observation Well | Latitude (° N) | Longitude (° E) | Elevation (m a.s.l.) | Well Depth (m) | Distance from the Surface Water (m) |
---|---|---|---|---|---|
1556 | 46.401421 | 16.14261 | 193.03 | 5.6 | 393 (Drava River) |
1558 | 46.391673 | 16.129586 | 193.97 | 5.0 | 387 (Drava River) |
1559 | 46.384482 | 16.118252 | 196.77 | 7.0 | 193 (Drava River) |
1560 | 46.401302 | 16.147773 | 192.30 | 5.0 | 345 (Drava River) |
1529 | 46.359419 | 16.200068 | 187.32 | 8.0 | 6672 (Drava River) 2519 (accumm. lake) |
Sampling | T (°C) | Cl− (mg/L) | δ18O (‰) | δ2H (‰) | |
---|---|---|---|---|---|
1529 | min | 9.1 | 14.1 | −11.2 | −77.6 |
max | 15.4 | 37.3 | −8.9 | −61.0 | |
mean | 12.8 | 22.4 | −9.7 | −66.9 | |
sd | 1.5 | 4.8 | 0.6 | 4.1 | |
1556 | min | 9.4 | 5.7 | −10.9 | −76.0 |
max | 16.0 | 22.5 | −8.6 | −58.8 | |
mean | 13.4 | 9.8 | −9.5 | −65.4 | |
sd | 1.9 | 3.7 | 0.7 | 5.0 | |
1558 | min | 8.7 | 4.1 | −10.0 | −70.0 |
max | 16.2 | 7.1 | −9.3 | −64.3 | |
mean | 12.8 | 5.7 | −9.7 | −66.4 | |
sd | 2.4 | 1.0 | 0.2 | 1.7 | |
1559 | min | 15.1 | 4.5 | −10.5 | −72.3 |
max | 19.8 | 11.0 | −9.8 | −65.8 | |
mean | 17.5 | 7.1 | −10.1 | −69.7 | |
sd | 1.6 | 2.4 | 0.3 | 2.3 | |
1560 | min | 11.2 | 11.1 | −10.3 | −70.1 |
max | 19.8 | 32.9 | −8.2 | −56.5 | |
mean | 15.6 | 19.8 | −9.5 | −65.6 | |
sd | 2.8 | 5.9 | 0.5 | 3.3 | |
Drava River | min | 2.5 | 0.5 | −11.6 | −80.1 |
max | 24.4 | 36.7 | −8.4 | −59.9 | |
mean | 13.3 | 10.1 | −10.0 | −69.7 | |
sd | 6.8 | 5.4 | 0.7 | 4.8 | |
Accumulation lake | min | 0.5 | 0.6 | −12.1 | −83.6 |
max | 26.6 | 31 | −8.1 | −57.4 | |
mean | 12.6 | 7.4 | −10.3 | −72.1 | |
sd | 6.8 | 4.5 | 0.8 | 5.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlović, I.; Marković, T.; Vujnović, T. Groundwater Recharge Assessment Using Multi Component Analysis: Case Study at the NW Edge of the Varaždin Alluvial Aquifer, Croatia. Water 2022, 14, 42. https://doi.org/10.3390/w14010042
Karlović I, Marković T, Vujnović T. Groundwater Recharge Assessment Using Multi Component Analysis: Case Study at the NW Edge of the Varaždin Alluvial Aquifer, Croatia. Water. 2022; 14(1):42. https://doi.org/10.3390/w14010042
Chicago/Turabian StyleKarlović, Igor, Tamara Marković, and Tatjana Vujnović. 2022. "Groundwater Recharge Assessment Using Multi Component Analysis: Case Study at the NW Edge of the Varaždin Alluvial Aquifer, Croatia" Water 14, no. 1: 42. https://doi.org/10.3390/w14010042
APA StyleKarlović, I., Marković, T., & Vujnović, T. (2022). Groundwater Recharge Assessment Using Multi Component Analysis: Case Study at the NW Edge of the Varaždin Alluvial Aquifer, Croatia. Water, 14(1), 42. https://doi.org/10.3390/w14010042