Proximity to Riparian Wetlands Increases Mercury Burden in Fish in the Upper St. Lawrence River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection, Fish Sampling, and Sample Preparation
2.2. Mercury Analysis
2.3. Summary of Statistical Methods
3. Results & Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farrell, J.M.; Murry, B.A.; Leopold, D.J.; Halpern, A.; Rippke, M.B.; Godwin, K.S.; Hafner, S.D. Water-level regulation and coastal wetland vegetation in the upper St. Lawrence River: Inferences from historical aerial imagery, seed banks, and Typha dynamics. Hydrobiologia 2009, 647, 127–144. [Google Scholar] [CrossRef]
- IJC (International Joint Commission). Regulation Plan 2014 for Lake Ontario and the St. Lawrence River: Compendium Report. 2016. Available online: https://www.ijc.org/sites/default/files/Plan2014_CompendiumReport.pdf (accessed on 11 October 2021).
- Catford, J.A.; Daehler, C.C.; Murphy, H.T.; Sheppard, A.W.; Hardesty, B.D.; Westcott, D.A.; Rejmánek, M.; Bellingham, P.J.; Pergl, J.; Horvitz, C.C.; et al. The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 231–241. [Google Scholar] [CrossRef]
- Brahmstedt, E.S.; Zhou, H.; Eggleston, E.M.; Holsen, T.M.; Twiss, M.R. Assessment of mercury mobilization potential in Upper St. Lawrence River riparian wetlands under new water level regulation management. J. Great Lakes Res. 2019, 45, 735–741. [Google Scholar] [CrossRef]
- Olson, C.I.; Fakhraei, H.; Driscoll, C.T. Mercury emissions, atmospheric concentrations, and wet deposition across the conterminous United States: Changes over 20 years of monitoring. Environ. Sci. Technol. Lett. 2020, 7, 376–381. [Google Scholar] [CrossRef]
- Chen, C.Y.; Driscoll, C.T.; Eagles-Smith, C.A.; Eckley, C.S.; Gay, D.A.; Hsu-Kim, H.; Keane, S.E.; Kirk, J.L.; Mason, R.P.; Obrist, D.; et al. A critical time for mercury science to inform global policy. Environ. Sci. Technol. 2018, 52, 9556–9561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, C.T.; Han, Y.-J.; Chen, C.Y.; Evers, D.C.; Lambert, K.F.; Holsen, T.M.; Kamman, N.C.; Munson, R.K. Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience 2007, 57, 17–28. [Google Scholar] [CrossRef]
- Lai, S.-O.; Holsen, T.M.; Hopke, P.; Liu, P. Wet deposition of mercury at a New York state rural site: Concentrations, fluxes, and source areas. Atmospheric Environ. 2007, 41, 4337–4348. [Google Scholar] [CrossRef]
- Ye, Z.; Mao, H.; Driscoll, C.T. Controlling factors of mercury wet deposition and precipitation concentrations in Upstate New York. In Proceedings of AGU Fall Meeting, New Orleans, USA. 2017. Available online: http://adsabs.harvard.edu/abs/2017AGUFM.B24A..01Y (accessed on 31 December 2021).
- Butler, T.; Likens, G.; Cohen, M.; Vermeylen, F. Final Report Mercury in the Environment and Patterns of Mercury Deposition from the NADP/MDN Mercury Deposition Network. 2007. Available online: https://www.arl.noaa.gov/documents/reports/MDN_report.pdf (accessed on 11 October 2021).
- Ridal, J.J.; Yanch, L.E.; Fowlie, A.R.; Razavi, N.R.; Delongchamp, T.M.; Choy, E.S.; Fathi, M.; Hodson, P.V.; Campbell, L.M.; Blais, J.M.; et al. Potential causes of enhanced transfer of mercury to St. Lawrence River Biota: Implications for sediment management strategies at Cornwall, Ontario, Canada. Hydrobiologia 2010, 647, 81–98. [Google Scholar] [CrossRef]
- Hodson, P.V.; Norris, K.; Berquist, M.; Campbell, L.M.; Ridal, J.J. Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments. Sci. Total Environ. 2014, 494–495, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Kainz, M.J.; Bravo, A.G.; Åkerblom, S.; Sonesten, L.; Bishop, K. The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Sci. Total Environ. 2019, 646, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Louis, V.L.S.; Rudd, J.W.M.; Kelly, C.A.; Beaty, K.G.; Bloom, N.S.; Flett, R.J. Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can. J. Fish. Aquat. Sci. 1994, 51, 1065–1076. [Google Scholar] [CrossRef]
- Watras, C.J.; Morrison, K.A.; Host, J.S.; Bloom, N.S. Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes. Limnol. Oceanogr. 1995, 40, 556–565. [Google Scholar] [CrossRef] [Green Version]
- Evers, D.C.; Han, Y.-J.; Driscoll, C.T.; Kamman, N.C.; Goodale, M.W.; Lambert, K.F.; Holsen, T.M.; Chen, C.Y.; Clair, T.A.; Butler, T. Biological Mercury hotspots in the northeastern United States and southeastern Canada. BioScience 2007, 57, 29–43. [Google Scholar] [CrossRef]
- Selvendiran, P.; Driscoll, C.T.; Bushey, J.T.; Montesdeoca, M.R. Wetland influence on mercury fate and transport in a temperate forested watershed. Environ. Pollut. 2008, 154, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, C.T.; Holsapple, J.; Schofield, C.L.; Munson, R. The chemistry and transport of mercury in a small wetland in the Adirondack region of New York, USA. Biodegradation 1998, 40, 137–146. [Google Scholar] [CrossRef]
- Waldron, M.C.; Colman, J.A.; Breault, R.F. Distribution, hydrologic transport, and cycling of total mercury and methyl mercury in a contaminated river-reservoir-wetland system (Sudbury River, eastern Massachusetts). Can. J. Fish Aquat. Sci. 2000, 57, 1080–1091. [Google Scholar] [CrossRef]
- Snodgrass, J.W.; Jagoe, C.H.; Bryan, A.L., Jr.; Brant, H.A.; Burger, J. Effects of trophic status and wetland morphology, hydro-period, and water chemistry on mercury concentrations in fish. Can. J. Fish Aquat. Sci. 2000, 57, 171–180. [Google Scholar] [CrossRef]
- Gilmour, C.C.; Henry, E.A.; Mitchell, R. Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol. 1992, 26, 2281–2287. [Google Scholar] [CrossRef]
- Fleming, E.J.; Mack, E.E.; Green, P.G.; Nelson, D.C. Mercury Methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl. Environ. Microbiol. 2006, 72, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Gilmour, C.C.; Bullock, A.L.; McBurney, A.; Podar, M.; Elias, D.A. Robust mercury methylation across diverse methanogenic Archaea. mBio 2018, 9, e02403-17. [Google Scholar] [CrossRef] [Green Version]
- Kolka, R.K.; Riggs, C.E.; Nater, E.A.; Wickman, T.R.; Witt, E.L.; Butcher, J.T. Temporal fluctuations in young-of-the-year yellow perch mercury bioaccumulation in lakes of northeastern Minnesota. Sci. Total Environ. 2019, 656, 475–481. [Google Scholar] [CrossRef]
- Lapointe, D.; Ridal, J.J. Mercury concentrations in sentinel fish exposed to contaminated sediments under a natural recovery strategy within the St. Lawrence River Area of Concern at Cornwall, Ontario, Canada. Arch. Environ. Contam. Toxicol. 2018, 76, 216–230. [Google Scholar] [CrossRef]
- Wiener, J.G.; Sandheinrich, M.B.; Bhavsar, S.P.; Bohr, J.R.; Evers, D.C.; Monson, B.A.; Schrank, C.S. Toxicological significance of mercury in yellow perch in the Laurentian Great Lakes region. Environ. Pollut. 2012, 161, 350–357. [Google Scholar] [CrossRef]
- Ray, W.J.; Corkum, L.D. Habitat and site affinity of the round goby. J. Great Lakes Res. 2001, 27, 329–334. [Google Scholar] [CrossRef]
- Fuller, P.; Benson, A.; Maynard, E.; Neilson, M.E.; Larson, J.; Fusaro, A.; Sturtevant, R. Neogobius melanostomus (Pallas, 1814): U.S. Geological Survey, Nonindigenous Aquatic Species Database: Gainesville, FL, USA. 2021. Available online: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=713 (accessed on 31 December 2021).
- Ball, E.E.; Smith, D.E.; Anderson, E.J.; Skufca, J.D.; Twiss, M.R. Water velocity modeling can delineate nearshore and main channel plankton environments in a large river. Hydrobiologia 2018, 815, 125–140. [Google Scholar] [CrossRef]
- Esri. ArcGIS Pro 2.8.2, Vizzuality; Half-Earth Project: Redlands, CA, USA, 2021. [Google Scholar]
- Kramar, D.; Goodale, W.M.; Kennedy, L.M.; Carstensen, L.W.; Kaur, T. Relating Land Cover Characteristics and Common Loon Mercury Levels Using Geographic Information Systems. Ecotoxicology 2005, 14, 253–262. [Google Scholar] [CrossRef]
- Castro, M.S.; Hilderbrand, R.H.; Thompson, J.; Heft, A.; Rivers, S.E. Relationship between wetlands and mercury in brook trout. Arch. Environ. Contam. Toxicol. 2006, 52, 97–103. [Google Scholar] [CrossRef]
- Eagles-Smith, C.A.; Ackerman, J.T. Mercury bioaccumulation in estuarine wetland fishes: Evaluating habitats and risk to coastal wildlife. Environ. Pollut. 2014, 193, 147–155. [Google Scholar] [CrossRef]
- Brasso, R.; Rittenhouse, K.A.; Winder, V.L. Do songbirds in wetlands show higher mercury bioaccumulation relative to conspecifics in non-wetland habitats? Ecotoxicology 2020, 29, 1183–1194. [Google Scholar] [CrossRef]
- Pothoven, S.A.; Nalepa, T.F.; Brandt, S.B. Age-0 and age-1 yellow perch diet in southeastern Lake Michigan. J. Great Lakes Res. 2000, 26, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.B.; Bunnell, D.; Knight, C.T. A potential new energy pathway in central Lake Erie: The round goby connection. J. Great Lakes Res. 2005, 31, 238–251. [Google Scholar] [CrossRef]
- Brush, J.M.; Fisk, A.T.; Hussey, N.E.; Johnson, T.B. Spatial and seasonal variability in the diet of round goby (Neogobius mel-anostomus): Stable isotopes indicate that stomach contents overestimate the importance of dreissenids. Can. J. Fish. Aquat. Sci. 2012, 69, 573–586. [Google Scholar] [CrossRef]
- Keast, A. Diet overlaps and feeding relationships between the year classes in the yellow perch (Perca flavescens). Environ. Boil. Fishes 1977, 2, 53–70. [Google Scholar] [CrossRef]
- Francis, D.R.; Jude, D.J.; Barres, J.A. Mercury distribution in the biota of a Great Lakes estuary: Old Woman Creek, Ohio. J. Great Lakes Res. 1998, 24, 595–607. [Google Scholar] [CrossRef]
- Fowlie, A.R.; Hodson, P.V.; Hickey, M.B.C. Spatial and seasonal patterns of mercury concentrations in fish from the St. Lawrence River at Cornwall, Ontario: Implications for monitoring. J. Great Lakes Res. 2008, 34, 72–85. [Google Scholar] [CrossRef]
- Goulet, R.R.; Lalonde, J.D.; Chapleau, F.; Findlay, S.C.; Lean, D.R.S. Temporal trends and spatial variability of mercury in four fish species in the Ontario segment of the St. Lawrence River, Canada. Arch. Environ. Contam. Toxicol. 2007, 54, 716–729. [Google Scholar] [CrossRef]
- Neff, M.R.; Robinson, J.M.; Bhavsar, S.P. Assessment of fish mercury levels in the upper St. Lawrence River, Canada. J. Great Lakes Res. 2013, 39, 336–343. [Google Scholar] [CrossRef]
- Evers, D.C.; Sauer, A.K.; Burns, D.A.; Fisher, N.S.; Bertok, D.C.; Adams, E.M.; Burton, M.E.H.; Driscoll, C.T. A synthesis of patterns of environmental mercury inputs, exposure and effects in New York State. Ecotoxicology 2020, 29, 1565–1589. [Google Scholar] [CrossRef]
- Zhou, C.; Cohen, M.D.; Crimmins, B.A.; Zhou, H.; Johnson, T.A.; Hopke, P.K.; Holsen, T.M. Mercury temporal trends in top predator fish of the Laurentian Great Lakes from 2004 to 2015: Are concentrations still decreasing? Environ. Sci. Technol. 2017, 51, 7386–7394. [Google Scholar] [CrossRef]
- Jude, D.J.; Reider, R.H.; Smith, G.R. Establishment of Gobiidae in the Great Lakes Basin. Can. J. Fish. Aquat. Sci. 1992, 49, 416–421. [Google Scholar] [CrossRef]
- Marentette, J.R.; Gooderham, K.L.; McMaster, M.E.; Ng, T.; Parrott, J.L.; Wilson, J.Y.; Wood, C.M.; Balshine, S. Signatures of contamination in invasive round gobies (Neogobius melanostomus): A double strike for ecosystem health? Ecotoxicol. Environ. Saf. 2010, 73, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- US FDA (United States Food and Drug Administration). Technical Information on Development of FDA/EPA Advice about Eating Fish for Those Who Might Become or Are Pregnant or Breastfeeding and Children Ages 1–11 Years. 2021. Available online: https://www.fda.gov/food/metals-and-your-food/technical-information-development-fdaepa-advice-about-eating-fish-those-who-might-become-or-are (accessed on 8 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osgood, A.; Brahmstedt, E.S.; Windle, M.J.S.; Holsen, T.M.; Twiss, M.R. Proximity to Riparian Wetlands Increases Mercury Burden in Fish in the Upper St. Lawrence River. Water 2022, 14, 70. https://doi.org/10.3390/w14010070
Osgood A, Brahmstedt ES, Windle MJS, Holsen TM, Twiss MR. Proximity to Riparian Wetlands Increases Mercury Burden in Fish in the Upper St. Lawrence River. Water. 2022; 14(1):70. https://doi.org/10.3390/w14010070
Chicago/Turabian StyleOsgood, Autumn, Evie S. Brahmstedt, Matthew J.S. Windle, Thomas M. Holsen, and Michael R. Twiss. 2022. "Proximity to Riparian Wetlands Increases Mercury Burden in Fish in the Upper St. Lawrence River" Water 14, no. 1: 70. https://doi.org/10.3390/w14010070
APA StyleOsgood, A., Brahmstedt, E. S., Windle, M. J. S., Holsen, T. M., & Twiss, M. R. (2022). Proximity to Riparian Wetlands Increases Mercury Burden in Fish in the Upper St. Lawrence River. Water, 14(1), 70. https://doi.org/10.3390/w14010070