Patterns of Past and Future Droughts in Permanent Lowland Rivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
- Estimating past changes in meteorological and hydrological drought indices (SPI, RDI and SDI) using statistical analysis methods (Section 3.1 and Section 3.2).
- Preparation of data (T, P and Q) for future drought index calculations (in the 21st century) in three Lithuanian river basins according to the selected climate models and scenarios:
- (a)
- preparation of daily air temperature and precipitation series based on the database (Section 3.3);
- (b)
- projection of the daily discharges of three selected rivers according to the selected climate models and scenarios using the HBV hydrological model (Section 3.3).
- Projection of meteorological and hydrological drought indices (SPI, RDI and SDI) and their analysis in the three selected river catchments in the 21st century.
2.2.1. Calculation of Drought Indices
2.2.2. Selection and Preparation of Models
2.2.3. Discharge Projections in the Selected River Catchments Using HBV Hydrological Model
3. Results
3.1. Variation of Precipitation and Runoff in the River Catchments in the Past
3.2. Analysis of the Dry Periods Using the Drought Indices
3.3. Distribution of Index Values According to Drought Condition Classes
3.4. Relations between Meteorological and Hydrological Droughts
3.5. Analysis of the Hydrological Drought Duration
3.6. Distribution of Droughts by Summer Months and Their Number
3.7. Analysis of Trends in Future Droughts
3.7.1. Analysis of Future Meteorological Droughts
3.7.2. Analysis of Future Hydrological Droughts
3.7.3. Comparison of Rivers, According to Meteorological and Hydrological Drought Indices in Future
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | River-WGS | Parameters | SPI-1 | SPI-3 | SPI-6 | SPI-9 | SPI-12 |
---|---|---|---|---|---|---|---|
South-eastern hydrological region | |||||||
1. | Merkys-Puvočiai | Number of dry months | 111/720 | 116//718 | 116/715 | 122/712 | 131/709 |
Index minimum value (month) | −3.99 | −3.83 | −3.05 | −2.95 | −2.84 | ||
2. | Ūla-Zervynos | Number of dry months | 110/720 | 116/718 | 118/715 | 121/712 | 131/709 |
Index minimum value (month) | −4.04 | −3.83 | −3.06 | −2.94 | −2.84 | ||
3. | Verknė-Verbyliškės | Number of dry months | 109/720 | 112/718 | 124/715 | 122/712 | 130/709 |
Index minimum value (month) | −4.00 | −3.73 | −2.99 | −3.10 | −2.61 | ||
4. | Strėva-Semeliškės | Number of dry months | 110/720 | 116/718 | 118/715 | 121/712 | 131/709 |
Index minimum value (month) | −4.04 | −3.83 | −3.06 | −2.94 | −2.84 | ||
5. | Žeimena-Pabradė | Number of dry months | 112/720 | 113/718 | 121/715 | 121/712 | 125/709 |
Index minimum value (month) | −4.16 | −3.24 | −3.07 | −2.74 | −2.58 | ||
6. | Šventoji-Anykščiai | Number of dry months | 115/720 | 114/718 | 120/715 | 119/712 | 126/709 |
Index minimum value (month) | −4.14 | −3.28 | −3.06 | −2.78 | −2.63 | ||
7. | Šventoji-Ukmergė | Number of dry months | 113/720 | 121/718 | 113/715 | 125/712 | 128/709 |
Index minimum value (month) | −3.75 | −3.56 | −3.33 | −3.31 | −3.03 | ||
Central hydrological region | |||||||
8. | Nevėžis-Panevėžys | Number of dry months | 113/720 | 123/718 | 109/715 | 124/712 | 118/709 |
Index minimum value (month) | −3.80 | −2.89 | −3.31 | −3.50 | −3.24 | ||
9. | Šušvė-Šiaulėnai | Number of dry months | 106/720 | 112/718 | 115/715 | 123/712 | 127/709 |
Index minimum value (month) | −4.24 | −3.06 | −3.09 | −2.62 | −2.73 | ||
10. | Nemunėlis-Tabokinė | Number of dry months | 113/720 | 120/718 | 122/715 | 116/712 | 130/709 |
Index minimum value (month) | −4.37 | −2.96 | −3.00 | −2.78 | −2.54 | ||
11. | Mūša-Ustukiai | Number of dry months | 105/720 | 114/718 | 119/715 | 124/712 | 129/709 |
Index minimum value (month) | −3.61 | −3.14 | −3.07 | −2.54 | −2.69 | ||
12. | Venta-Papilė | Number of dry months | 107/720 | 106/718 | 103/715 | 123/712 | 124/709 |
Index minimum value (month) | −4.40 | −3.24 | −3.27 | −2.73 | −2.66 | ||
13. | Venta-Leckava | Number of dry months | 108/720 | 99/718 | 112/715 | 118/712 | 127/709 |
Index minimum value (month) | −4.73 | −3.51 | −3.39 | −2.77 | −2.66 | ||
Western hydrological region | |||||||
14. | Jūra-Tauragė | Number of dry months | 114/720 | 115/718 | 121/715 | 123/712 | 115/709 |
Index minimum value (month) | −4.54 | −3.15 | −3.27 | −2.84 | −3.30 | ||
15. | Akmena-Paakmenis | Number of dry months | 114/720 | 115/718 | 121/715 | 123/712 | 115/709 |
Index minimum value (month) | −4.54 | −3.15 | −3.27 | −2.84 | −3.30 | ||
16. | Minija-Kartena | Number of dry months | 102/720 | 104/718 | 117/715 | 118/712 | 126/709 |
Index minimum value (month) | −5.29 | −3.46 | −3.38 | −2.71 | −2.63 | ||
17. | Bartuva-Skuodas | Number of dry months | 109/720 | 106/718 | 113/715 | 121/712 | 126/709 |
Index minimum value (month) | −3.31 | −3.45 | −3.38 | −2.81 | −2.53 |
No | River-WGS | Parameters | RDI-1 | RDI-3 | RDI-6 | RDI-9 | RDI-12 |
---|---|---|---|---|---|---|---|
South-eastern hydrological region | |||||||
1. | Merkys-Puvočiai | Number of dry months | 77/561 | 94/667 | 123/715 | 118/712 | 118/709 |
Index minimum value (month) | −3.67 | −2.63 | −2.87 | −2.73 | −3.07 | ||
2. | Ūla-Zervynos | Number of dry months | 71/545 | 91/656 | 121/715 | 122/712 | 122/709 |
Index minimum value (month) | −3.92 | −3.84 | −2.92 | −2.78 | −3.01 | ||
3. | Verknė-Verbyliškės | Number of dry months | 77/545 | 95/656 | 118/715 | 116/712 | 118/709 |
Index minimum value (month) | −3.88 | −3.61 | −2.83 | −2.90 | −2.79 | ||
4. | Strėva-Semeliškės | Number of dry months | 71/545 | 91/656 | 121/715 | 122/712 | 122/709 |
Index minimum value (month) | −3.92 | −3.84 | −2.92 | −2.78 | −3.01 | ||
5. | Žeimena-Pabradė | Number of dry months | 78/523 | 98/637 | 124/715 | 117/712 | 126/709 |
Index minimum value (month) | −3.85 | −3.37 | −3.14 | −2.84 | −2.51 | ||
6. | Šventoji-Anykščiai | Number of dry months | 72/527 | 94/640 | 122/715 | 117/712 | 124/709 |
Index minimum value (month) | −3.74 | −3.41 | −3.10 | −2.85 | −2.51 | ||
7. | Šventoji-Ukmergė | Number of dry months | 80/537 | 100/648 | 109/715 | 113/712 | 119/709 |
Index minimum value (month) | −3.13 | −3.69 | −2.88 | −3.29 | −2.85 | ||
Central hydrological region | |||||||
8. | Nevėžis-Panevėžys | Number of dry months | 72/543 | 94/653 | 104/715 | 121/712 | 116/709 |
Index minimum value (month) | −3.29 | −2.56 | −2.96 | −3.43 | −3.01 | ||
9. | Šušvė-Šiaulėnai | Number of dry months | 65/545 | 98/653 | 121/715 | 120/712 | 120/709 |
Index minimum value (month) | −4.18 | −3.03 | −2.91 | −2.58 | −2.80 | ||
10. | Nemunėlis-Tabokinė | Number of dry months | 79/529 | 100/642 | 115/715 | 115/712 | 118/709 |
Index minimum value (month) | −3.60 | −3.02 | −3.04 | −2.82 | −2.68 | ||
11. | Mūša-Ustukiai | Number of dry months | 67/546 | 103/655 | 118/715 | 134/712 | 129/709 |
Index minimum value (month) | −3.61 | −3.07 | −2.72 | −2.66 | −2.75 | ||
12. | Venta-Papilė | Number of dry months | 67/545 | 94/653 | 108/715 | 119/712 | 116/709 |
Index minimum value (month) | −4.34 | −3.16 | −3.02 | −2.77 | −2.86 | ||
13. | Venta-Leckava | Number of dry months | 76/546 | 92/654 | 111/715 | 114/712 | 115/709 |
Index minimum value (month) | −4.63 | −3.21 | −3.36 | −3.00 | −2.82 | ||
Western hydrological region | |||||||
14. | Jūra-Tauragė | Number of dry months | 82/532 | 98/646 | 121/715 | 116/712 | 115/709 |
Index minimum value (month) | −4.37 | −3.04 | −3.20 | −2.77 | −3.07 | ||
15. | Akmena-Paakmenis | Number of dry months | 82/532 | 98/646 | 121/715 | 116/712 | 115/709 |
Index minimum value (month) | −4.37 | −3.04 | −3.20 | −2.77 | −3.07 | ||
16. | Minija-Kartena | Number of dry months | 74/561 | 81/666 | 111/715 | 114/712 | 120/709 |
Index minimum value (month) | −5.16 | −3.13 | −3.30 | −2.86 | −2.91 | ||
17. | Bartuva-Skuodas | Number of dry months | 77/565 | 81/669 | 104/715 | 112/712 | 116/709 |
Index minimum value (month) | −3.30 | −3.11 | −3.29 | −2.89 | −2.83 |
No | River-WGS | Parameters | SDI-1 | SDI-3 | SDI-6 | SDI-9 | SDI-12 |
---|---|---|---|---|---|---|---|
South-eastern hydrological region | |||||||
1. | Merkys-Puvočiai | Number of dry months | 112/720 | 112/718 | 121/715 | 124/712 | 124/709 |
Index minimum value (month) | −2.34 | −2.76 | −2.87 | −3.01 | −2.69 | ||
2. | Ūla-Zervynos | Number of dry months | 108/720 | 112/718 | 114/715 | 118/712 | 120/709 |
Index minimum value (month) | −2.29 | −2.57 | −2.71 | −2.79 | −2.84 | ||
3. | Verknė-Verbyliškės | Number of dry months | 84/720 | 89/718 | 89/715 | 104/712 | 99/709 |
Index minimum value (month) | −2.05 | −2.24 | −2.14 | −1.99 | −2.03 | ||
4. | Strėva-Semeliškės | Number of dry months | 111/719 | 109/717 | 125/714 | 136/711 | 126/708 |
Index minimum value (month) | −2.60 | −2.43 | −2.03 | −2.06 | −2.11 | ||
5. | Žeimena-Pabradė | Number of dry months | 103/720 | 108/718 | 117/715 | 117/712 | 128/709 |
Index minimum value (month) | −2.28 | −2.24 | −2.41 | −2.28 | −2.24 | ||
6. | Šventoji-Anykščiai | Number of dry months | 94/715 | 98/709 | 113/700 | 122/691 | 114/682 |
Index minimum value (month) | −2.08 | −2.26 | −2.27 | −2.10 | −2.39 | ||
7. | Šventoji-Ukmergė | Number of dry months | 106/716 | 105/710 | 111/701 | 125/692 | 125/683 |
Index minimum value (month) | −2.06 | −2.56 | −2.56 | −2.53 | −2.46 | ||
Central hydrological region | |||||||
8. | Nevėžis-Panevėžys | Number of dry months | 125/720 | 118/718 | 109/715 | 111/712 | 110/709 |
Index minimum value (month) | −2.59 | −2.78 | −3.11 | −3.16 | −3.05 | ||
9. | Šušvė-Šiaulėnai | Number of dry months | 110/720 | 110/718 | 121/715 | 134/712 | 143/709 |
Index minimum value (month) | −2.54 | −2.69 | −2.72 | −2.80 | −2.74 | ||
10. | Nemunėlis-Tabokinė | Number of dry months | 112/720 | 115/718 | 116/715 | 121/712 | 124/709 |
Index minimum value (month) | −2.43 | −2.25 | −2.18 | −2.34 | −2.45 | ||
11. | Mūša-Ustukiai | Number of dry months | 107/720 | 112/718 | 124/715 | 130/712 | 130/709 |
Index minimum value (month) | −2.17 | −2.44 | −2.44 | −2.33 | −2.72 | ||
12. | Venta-Papilė | Number of dry months | 99/720 | 110/718 | 119/715 | 125/712 | 127/709 |
Index minimum value (month) | −2.21 | −2.64 | −2.48 | −2.47 | −2.51 | ||
13. | Venta-Leckava | Number of dry months | 109/720 | 119/718 | 118/718 | 114/712 | 107/709 |
Index minimum value (month) | −2.32 | −2.86 | −2.74 | −2.60 | −2.43 | ||
Western hydrological region | |||||||
14. | Jūra-Tauragė | Number of dry months | 101/720 | 119/718 | 129/715 | 122/712 | 121/709 |
Index minimum value (month) | −2.21 | −2.76 | −3.05 | −3.05 | −2.91 | ||
15. | Akmena-Paakmenis | Number of dry months | 114/720 | 126/718 | 134/715 | 128/712 | 119/709 |
Index minimum value (month) | −2.30 | −2.68 | −2.61 | −2.65 | −2.81 | ||
16. | Minija-Kartena | Number of dry months | 114/720 | 125/718 | 127/715 | 119/712 | 123/709 |
Index minimum value (month) | −2.33 | −2.70 | −2.66 | −2.70 | −2.68 | ||
17. | Bartuva-Skuodas | Number of dry months | 109/708 | 117/704 | 119/698 | 117/692 | 113/686 |
Index minimum value (month) | −2.27 | −3.11 | −2.83 | −2.63 | −2.54 |
Appendix B
Venta (Leckava) | V | VI | VII | VII | IX | X |
---|---|---|---|---|---|---|
SPI_1m-SDI_1m | 0.438566 | 0.52179 | 0.522196 | 0.432577 | 0.511287 | 0.517274 |
SPI_3m-SDI_1m | 0.439635 | 0.677741 | 0.729274 | 0.733918 | 0.74253 | 0.739166 |
SPI_6m-SDI_1m | 0.113354 | 0.494797 | 0.601909 | 0.748575 | 0.757464 | 0.847492 |
SPI_9m-SDI_1m | 0.081331 | 0.405502 | 0.6076 | 0.578648 | 0.634412 | 0.770859 |
SPI_12m-SDI_1m | 0.081105 | 0.268421 | 0.460981 | 0.507884 | 0.516487 | 0.722681 |
SPI_1m-SDI_3m | 0.035133 | −0.0408 | 0.171667 | 0.155903 | 0.393833 | 0.286132 |
SPI_3m-SDI_3m | 0.46934 | 0.283162 | 0.48995 | 0.610626 | 0.724616 | 0.686152 |
SPI_6m-SDI_3m | 0.300222 | 0.00152 | 0.490719 | 0.718403 | 0.776125 | 0.826458 |
SPI_9m-SDI_3m | 0.304656 | −0.10348 | 0.410175 | 0.636726 | 0.671734 | 0.739972 |
SPI_12m-SDI_3m | 0.360282 | 0.01429 | 0.262677 | 0.551994 | 0.594173 | 0.69634 |
SPI_1m-SDI_6m | 0.032039 | 0.221978 | 0.026692 | 0.035433 | 0.372737 | 0.263181 |
SPI_3m-SDI_6m | 0.431848 | 0.315926 | 0.27886 | 0.170803 | 0.356854 | 0.579309 |
SPI_6m-SDI_6m | 0.699706 | 0.69863 | 0.57025 | 0.433641 | 0.501551 | 0.75319 |
SPI_9m-SDI_6m | 0.793667 | 0.694251 | 0.60626 | 0.390036 | 0.33608 | 0.711345 |
SPI_12m-SDI_6m | 0.828129 | 0.724013 | 0.560023 | 0.373205 | 0.22315 | 0.66654 |
SPI_1m-SDI_9m | −0.04632 | 0.145703 | 0.100638 | −0.05173 | 0.253752 | 0.216767 |
SPI_3m-SDI_9m | 0.232695 | 0.136184 | 0.251505 | 0.211968 | 0.270961 | 0.420208 |
SPI_6m-SDI_9m | 0.457959 | 0.429043 | 0.423859 | 0.457612 | 0.418885 | 0.565521 |
SPI_9m-SDI_9m | 0.758522 | 0.682662 | 0.661398 | 0.694014 | 0.674152 | 0.673338 |
SPI_12m-SDI_9m | 0.882964 | 0.856286 | 0.804855 | 0.748443 | 0.699335 | 0.718789 |
SPI_1m-SDI_12m | −0.04585 | 0.132035 | 0.103784 | −0.03116 | 0.147464 | 0.170617 |
SPI_3m-SDI_12m | 0.228471 | 0.109841 | 0.203879 | 0.186348 | 0.219857 | 0.304002 |
SPI_6m-SDI_12m | 0.438818 | 0.381528 | 0.339196 | 0.321838 | 0.279446 | 0.435852 |
SPI_9m-SDI_12m | 0.736912 | 0.624787 | 0.562608 | 0.500811 | 0.469398 | 0.509169 |
SPI_12m-SDI_12m | 0.883212 | 0.852088 | 0.783614 | 0.718392 | 0.682026 | 0.692041 |
Venta (Leckava) | V | VI | VII | VII | IX | X |
---|---|---|---|---|---|---|
SPI_1m-SDI_1m | 0.422751 | 0.538263 | 0.527077 | 0.453273 | 0.533017 | 0.455596 |
SPI_3m-SDI_1m | 0.582746 | 0.681573 | 0.75476 | 0.756971 | 0.776756 | 0.743278 |
SPI_6m-SDI_1m | 0.370211 | 0.606282 | 0.672286 | 0.8092 | 0.805992 | 0.881525 |
SPI_9m-SDI_1m | 0.285118 | 0.498874 | 0.69302 | 0.680835 | 0.73178 | 0.829062 |
SPI_12m-SDI_1m | 0.225049 | 0.349344 | 0.535786 | 0.618231 | 0.626306 | 0.795132 |
SPI_1m-SDI_3m | 0.011056 | −0.0291 | 0.180125 | 0.172375 | 0.402495 | 0.232847 |
SPI_3m-SDI_3m | 0.506038 | 0.429392 | 0.425472 | 0.126592 | −0.05476 | −0.09243 |
SPI_6m-SDI_3m | 0.44694 | 0.151508 | 0.598191 | 0.780142 | 0.820816 | 0.870169 |
SPI_9m-SDI_3m | 0.403485 | 0.036881 | 0.530402 | 0.737399 | 0.758702 | 0.81402 |
SPI_12m-SDI_3m | 0.477185 | 0.17955 | 0.363737 | 0.655712 | 0.69666 | 0.785597 |
SPI_1m-SDI_6m | 0.001228 | 0.224248 | 0.056605 | 0.05283 | 0.38707 | 0.229194 |
SPI_3m-SDI_6m | 0.297243 | 0.39832 | 0.462469 | 0.465396 | 0.313494 | 0.130515 |
SPI_6m-SDI_6m | 0.621902 | 0.677149 | 0.628834 | 0.497074 | 0.242101 | 0.270968 |
SPI_9m-SDI_6m | 0.703749 | 0.652796 | 0.667311 | 0.50781 | 0.471564 | 0.798675 |
SPI_12m-SDI_6m | 0.812572 | 0.713131 | 0.616483 | 0.490953 | 0.370681 | 0.768149 |
SPI_1m-SDI_9m | −0.08721 | 0.151522 | 0.10543 | −0.03842 | 0.246979 | 0.178806 |
SPI_3m-SDI_9m | 0.128766 | 0.15413 | 0.164223 | 0.288418 | 0.333946 | 0.30909 |
SPI_6m-SDI_9m | 0.398717 | 0.440392 | 0.497524 | 0.639634 | 0.652861 | 0.532271 |
SPI_9m-SDI_9m | 0.708252 | 0.737927 | 0.733605 | 0.706605 | 0.624919 | 0.488545 |
SPI_12m-SDI_9m | 0.900809 | 0.870797 | 0.828021 | 0.758949 | 0.723791 | 0.7894 |
SPI_1m-SDI_12m | −0.09215 | 0.137399 | 0.105944 | −0.01863 | 0.13692 | 0.141561 |
SPI_3m-SDI_12m | 0.128035 | 0.143992 | 0.132195 | 0.133378 | 0.126168 | 0.105677 |
SPI_6m-SDI_12m | 0.384629 | 0.403476 | 0.41951 | 0.429169 | 0.44735 | 0.463396 |
SPI_9m-SDI_12m | 0.69338 | 0.706672 | 0.707485 | 0.719752 | 0.713447 | 0.671286 |
SPI_12m-SDI_12m | 0.906566 | 0.907277 | 0.896123 | 0.888607 | 0.860717 | 0.781048 |
References
- Heim, R.R., Jr. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.J.; Svoboda, M.; Wall, N.A.; Widhalm, M. The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bull. Am. Meteorol. Soc. 2011, 92, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Revision of the Policy Instruments and Their Potential to Contribute to EU Droughts And Water Scarcity Policies. Available online: https://www.gwp.org/globalassets/global/gwp-cee_files/idmp-cee/revision_of_the_policy_instruments_of_drought_2020.pdf (accessed on 26 October 2021).
- Spinoni, J.; Naumann, G.; Vogt, J. Pan-European seasonal trends and recent changes of drought frequency and severity. Glob. Planet. Chang. 2017, 148, 113–130. [Google Scholar] [CrossRef]
- Markonis, Y.; Kumar, R.; Hanel, M.; Rakovec, O.; Máca, P.; AghaKouchak, A. The rise of compound warm-season droughts in Europe. Sci. Adv. 2021, 7, eabb9668. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L.M.I., Huang, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Wilhite, D.A. Droughts as a natural hazard: Concepts and definitions. In Drought, a Global Assessment; Wilhite, D.A., Ed.; Routledge: London, UK, 2000; Volume 1, pp. 3–18. [Google Scholar]
- Asadieh, B.; Krakauer, N.Y. Global change in streamflow extremes under climate change over the 21st century. Hydrol. Earth Syst. Sci. 2017, 21, 5863–5874. [Google Scholar] [CrossRef] [Green Version]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef] [Green Version]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; WMO and GWP: Geneva, Switzerland, 2016; pp. 1–52. [Google Scholar]
- Mishra, A.K.; Singh, V.P. A review of drought concept. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Cancelliere, A. Managing drought risk in water supply systems in Europe: A review. Int. J. Water Resour. D 2013, 29, 272–289. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Eslamian, S.; Ostad-Ali-Askari, K.; Singh, V.P.; Dalezios, N.R.; Ghane, M.; Yihdego, Y.; Matouq, M. A review of drought indices. Int. J. Constr. Res. Civ. Eng. 2017, 3, 48–66. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorologic Drought; Research Paper No. 45; US Department of Commerce: Washington, WA, USA, 1965; pp. 1–58. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators; Bulletin No. 48; Bureau of Meteorology: Melbourne, Australia, 1967; pp. 1–84. [Google Scholar]
- Palmer, W.C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In Western Snow Conference; Colorado State University: Reno, NV, USA, 1982; pp. 164–175. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Tsakiris, G.; Vangelis, H.J.E.W. Establishing a drought index incorporating evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- González, J.; Valdés, J.B. New drought frequency index: Definition and comparative performance analysis. Water Resour. Res. 2006, 42, W11421. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought indices and indicators revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Rimkus, E.; Valiukas, D.; Kažys, J.; Gečaite, I.; Stonevičius, E. Dryness dynamics of the Baltic Sea region. Baltica 2012, 25, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, E.; Stonevičius, E.; Korneev, V.; Kažys, J.; Valiuškevičius, G.; Pakhomau, A. Dynamics of meteorological and hydrological droughts in the Neman river basin. Environ. Res. Lett. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Stonevičius, E.; Rimkus, E.; Kažys, J.; Bukantis, A.; Kriaučiūienė, J.; Akstinas, V.; Jakimavičius, D.; Povilaitis, A.; Ložys, L.; Kesminas, V.; et al. Recent aridity trends and future projections in the Nemunas river basin. Clim. Res. 2018, 75, 143–154. [Google Scholar] [CrossRef]
- Šarauskienė, D.; Akstinas, V.; Kriaučiūnienė, J.; Jakimavičius, D.; Bukantis, A.; Kažys, J.; Povilaitis, A.; Ložys, L.; Kesminas, V.; Virbickas, T.; et al. Projection of Lithuanian river runoff, temperature and their extremes under climate change. Hydrol. Res. 2018, 49, 344–362. [Google Scholar] [CrossRef]
- Valiukas, D. Droughts analysis in Lithuania using SPI and HTC indices. In Proceedings of the International Conference BALWOIS 2012, Ohrid, North Macedonia, 28 May–2 June 2012; pp. 1–9. [Google Scholar]
- Rimkus, E.; Stonevicius, E.; Kilpys, J.; Maciulyte, V.; Valiukas, D. Drought identification in the eastern Baltic region using NDVI. Earth Syst. Dynam. 2017, 8, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Rimkus, E.; Mačiulytė, V.; Stonevičius, E.; Valiukas, D. A revised agricultural drought index in Lithuania. Agric. Food Sci. 2020, 29, 359–371. [Google Scholar] [CrossRef]
- Kugytė, G.; Valiuškevičius, G. Identification of Hydrological Droughts in Lithuanian Rivers. Geogr. Ir. Edukac. 2021, 9, 87–99. [Google Scholar] [CrossRef]
- Kriaučiūnienė, J.; Meilutytė-Barauskienė, D.; Reihan, A.; Koltsova, T.; Lizuma, L.; Šarauskienė, D. Variability in temperature, precipitation and river discharge in the Baltic States. Boreal Environ. Res. 2012, 17, 150–162. [Google Scholar]
- Kriaučiūnienė, J.; Kovalenkovienė, M.; Meilutytė-Barauskienė, D. Changes of the Low Flow in Lithuanian Rivers. Environ. Res. Eng. Manag. 2007, 42, 5–12. [Google Scholar]
- Akstinas, V.; Jakimavičius, D.; Meilutytė-Lukauskienė, D.; Kriaučiūnienė, J.; Šarauskienė, D. Uncertainty of annual runoff projections in Lithuanian rivers under a future climate. Hydrol. Res. 2020, 51, 257–271. [Google Scholar] [CrossRef]
- Kwadijk, J.; Deursen, W.P.A. Development and Testing of a GIS Based Water Balance Model for the Rhine Drainage Basin; University of Utrecht: Utrecht, The Netherlands, 1999; pp. 22–29. [Google Scholar]
- Fiedler, F.R. Simple, practical method for determining station weights using Thiessen polygons and Isohyetal maps. J. Hydrol. Eng. 2003, 8, 219–221. [Google Scholar] [CrossRef]
- Ashraful, M.; Chowdhury, M.A.; Kabir, M.M.; Sayed, A.; Hossain, S. Estimation of rainfall patterns in Bangladesh using different computational methods (arithmetic average, Thiessen polygon and Isohyet). J. Biodivers. Environ. Sci. 2016, 8, 2222–3045. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Surendran, U.; Anagha, B.; Raja, P.; Kumar, V.; Rajan, K.; Jayakumar, M. Analysis of Drought from Humid, Semi-Arid and Arid Regions of India Using DrinC Model with Different Drought Indices. Water Resour. Manag. 2019, 33, 1521–1540. [Google Scholar] [CrossRef]
- Abrha, H.; Hagos, H. Future drought and aridity monitoring using multi-model approach under climate change in Hintalo Wejerat district, Ethiopia. Sustain. Water Resour. Manag. 2019, 5, 1963–1972. [Google Scholar] [CrossRef]
- World Meteorological Organization. Standardized Precipitation Index User Guide; WMO-No. 1090; World Meteorological Organization: Geneva, Switzerland, 2012; pp. 1–24. [Google Scholar]
- Standardized Precipitation Index (SPI). Available online: https://edo.jrc.ec.europa.eu/documents/factsheets/factsheet_spi.pdf (accessed on 26 October 2021).
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Pt. A/B/C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Asadi Zarch, M.A.; Malekinezhad, H.; Mobin, M.H.; Dastorani, M.T.; Kousari, M.R. Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resour. Manag. 2011, 25, 3485–3504. [Google Scholar] [CrossRef] [Green Version]
- Zarei, A.R.; Moghimi, M.M.; Mahmoudi, M.R. Analysis of Changes in Spatial Pattern of Drought Using RDI Index in south of Iran. Water Resour. Manag. 2016, 30, 3723–3743. [Google Scholar] [CrossRef]
- Surendran, U.; Kumar, V.; Ramasubramoniam, S.; Raja, P. Development of Drought Indices for Semi-Arid Region Using Drought Indices Calculator (DrinC)—A Case Study from Madurai District, a Semi-Arid Region in India. Water Resour. Manag. 2017, 31, 3593–3605. [Google Scholar] [CrossRef]
- Guttman, N.B. On the sensitivity of sample L moments to sample size. J. Climatol. 1994, 7, 1026–1029. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.J.; Wilhite, D.A.; Svoboda, M.D. The effect of the length of record on the standardized precipitation index calculation. Int. J. Climatol. 2005, 25, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Alwan, I.A.; Ziboon, A.R.T.; Khalaf, A.G. Utilization of reconnaissance drought index (RDI) for monitoring of meteorological drought over middle Euphrates region during the period from 1988 to 2017. IOP Conf. Ser. Mater. Sci. Eng. 2019, 518, 22035. [Google Scholar] [CrossRef]
- Abubakar, H.; Newete, S.; Scholes, M. Drought Characterization and Trend Detection Using the Reconnaissance Drought Index for Setsoto Municipality of the Free State Province of South Africa and the Impact on Maize Yield. Water 2020, 12, 2993. [Google Scholar] [CrossRef]
- Merabti, A.; Martins, D.S.; Meddi, M.; Pereira, L.S. Spatial and Time Variability of Drought Based on SPI and RDI with Various Time Scales. Water Resour. Manag. 2018, 32, 1087–1100. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach towards a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Kwarteng, F.; Shwetha, G.; Patil, R. Reconnaissance Drought Index as Potential Drought Monitoring Tool in a Deccan Plateau, Hot Semi-Arid Climatic Zone. Int. J. Agric. Sci. 2016, 8, 51. [Google Scholar]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Tabari, H.; Nikbakht, J.; Talaee, P.H. Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI). Water Resour. Manag. 2012, 27, 137–151. [Google Scholar] [CrossRef]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen–Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. Discuss. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, M.A.; Hundecha, Y.; Lawrence, D.; Madsen, H.; Willems, P.; Martinkova, M.; Vormoor, K.; Burger, G.; Hanel, M.; Kriaučiūnienė, J.; et al. Inter–comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- SMHI. Integrated Hydrological Modelling System, Manual; Version 5.8; Swedish Meteorological and Hydrological Institute: Norrköping, Sweden, 2005; p. 115. [Google Scholar]
- Jakimavičius, D.; Adžgauskas, G.; Šarauskienė, D.; Kriaučiūnienė, J. Climate Change Impact on Hydropower Resources in Gauged and Ungauged Lithuanian River Catchments. Water 2020, 12, 3265. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; Yaun, S.; Dominguez-Castro, F. A review of environmental droughts: Increased risk under global warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Luo, L.; Apps, D.; Arcand, S.; Xu, H.; Pan, M.; Hoerling, M. Contribution of temperature and precipitation anomalies to the California drought during 2012–2015. Geophys. Res. Lett. 2017, 44, 3184–3192. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal drought prediction: Advances, challenges, and future prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef] [Green Version]
- Karamuz, E.; Bogdanowicz, E.; Senbeta, T.B.; Napiórkowski, J.J.; Romanowicz, R.J. Is It a Drought or Only a Fluctuation in Precipitation Patterns?—Drought Reconnaissance in Poland. Water 2021, 13, 807. [Google Scholar] [CrossRef]
- Brunner, M.I.; Slater, L.; Tallaksen, L.M.; Clark, M. Challenges in modeling and predicting floods and droughts: A review. WIREs Water 2021, 8, 1520. [Google Scholar] [CrossRef]
- Gailiušis, B.; Jablonskis, J.; Kovalenkovienė, M. Lithuanian Rivers: Hydrography and Runoff. In Lithuanian Rivers: Hydrography and Runoff; Lithuanian Energy Institute: Kaunas, Lithuanian, 2001; p. 792. [Google Scholar]
- Šarauskienė, D.; Akstinas, V.; Nazarenko, S.; Kriaučiūnienė, J.; Jurgelėnaitė, A. Impact of physico-geographical factors and climate variability on flow intermittency in the rivers of water surplus zone. Hydrol. Processes 2020, 34, 4727–4739. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Chelcea, S. Spatio-temporal variability of dryness/wetness in the Danube River Basin. Hydrol. Process 2015, 29, 4483–4497. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Nagy, P.; Zeleňáková, M.; Hlavatá, H.; Abd-Elhamid, H.F. Identification of Extreme Weather Events Using Meteorological and Hydrological Indicators in the Laborec River Catchment, Slovakia. Water 2021, 13, 1413. [Google Scholar] [CrossRef]
- Minea, I.; Iosub, M.; Boicu, D. Multi-scale approach for different type of drought in temperate climatic conditions. Nat. Hazards 2021, 1–25. [Google Scholar] [CrossRef]
- Jamshidi, H.; Khalili, D.; Zadeh, M.R.; Hosseinipour, E.Z. Assessment and Comparison of SPI and RDI Meteorological Drought Indices in Selected Synoptic Stations of Iran. In World Environmental and Water Resources Congress; Environmental and Water Resources Institute of ASCE: Palm Springs, CA, USA, 22–26 May 2011. [Google Scholar] [CrossRef]
- Memon, A.V.; Shah, N.V. Assessment and Comparison of SPI and RDI Meteorological Drought Indices in Panchmahals District of Gujarat, India. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 1995–2004. [Google Scholar] [CrossRef]
- Khan, M.I.; Zhu, X.; Jiang, X.; Saddique, Q.; Saifullah, M.; Niaz, Y.; Sajid, M. Projection of Future Drought Characteristics under Multiple Drought Indices. Water 2021, 13, 1238. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Birsan, M.-V. Variability of the aridity in the South-Eastern Europe over 1961–2050. CATENA 2017, 151, 74–86. [Google Scholar] [CrossRef]
- Van Loon, A. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
No | River | WGS | A, km2 | Qaverage, m3/s | Qmax, m3·s−1 (Year) | Qmin, m3·s−1 (Year) |
---|---|---|---|---|---|---|
Southeastern hydrological region | ||||||
1. | Merkys | Puvočiai | 4300 | 31.6 | 43.3 (1994) | 20.9 (2020) |
2. | Ūla | Zervynos | 679 | 4.82 | 6.95 (1994) | 2.84 (2020) |
3. | Verknė | Verbyliškės | 694 | 5.00 | 8.33 (1994) | 3.27 (1969) |
4. | Strėva | Semeliškės | 234 | 1.64 | 2.43 (1994) | 1.16 (2003) |
5. | Žeimena | Pabradė | 2580 | 20.3 | 31.1 (1990) | 14.1 (2003) |
6. | Šventoji | Anykščiai | 3600 | 26.5 | 50.9 (2017) | 14.9 (1971) |
7. | Šventoji | Ukmergė | 5440 | 38.9 | 73.0 (2017) | 20.2 (1976) |
Central hydrological region | ||||||
8. | Nevėžis | Panevėžys | 1090 | 7.25 | 19.7 (1972) | 2.11 (2003) |
9. | Šušvė | Šiaulėnai | 162 | 1.18 | 2.11 (1980) | 0.43 (2020) |
10. | Nemunėlis | Tabokinė | 2690 | 19.5 | 37.1 (1962) | 9.19 (2006) |
11. | Mūša | Ustukiai | 2280 | 10.2 | 19.7 (1998) | 2.89 (1976) |
12. | Venta | Papilė | 1570 | 9.66 | 18.8 (1980) | 3.88 (1976) |
13. | Venta | Leckava | 4060 | 29.5 | 60.8 (1980) | 13.8 (1963) |
Western hydrological region | ||||||
14. | Jūra | Tauragė | 1690 | 21.9 | 37.7 (1974) | 10.6 (1964) |
15. | Akmena | Paakmenis | 314 | 4.26 | 6.87 (1998) | 1.96 (1964) |
16. | Minija | Kartena | 1230 | 16.5 | 26.3 (2007) | 7.47 (1969) |
17. | Bartuva | Skuodas | 612 | 7.50 | 13.6 (1981) | 3.17 (1969) |
River-WGS | Hydrological Characteristic | Geographical Characteristic | |||
---|---|---|---|---|---|
Average Discharge, m3 s−1 | Basin Area, km2 | Lakes, % | Wetland, % | Woods, % | |
Šventoji-Ukmergė | 38.9 | 5440 | 3.8 | 9.0 | 12.0 |
Minija-Kartena | 16.5 | 1230 | 1.4 | 8.0 | 20.0 |
Venta-Leckava | 29.5 | 4060 | 1.0 | 9.0 | 22.0 |
River-WGS | Calibration | Validation | ||||
---|---|---|---|---|---|---|
r | NSE | RE, % | r | NSE | RE, % | |
Šventoji-Ukmergė | 0.75 | 0.64 | 2.6 | 0.68 | 0.64 | 12.9 |
Minija-Kartena | 0.88 | 0.77 | 3.8 | 0.83 | 0.70 | −1.1 |
Venta-Leckava | 0.88 | 0.77 | −2.6 | 0.81 | 0.75 | 3.5 |
Index | Extremely Wet Index > 2.0 | Severely Wet 2.0 > Index > 1.5 | Moderately Wet 1.5 > Index > 1.0 | Normal 1.0 > Index > −1.0 | Moderately Dry −1.0 < Index < −1.5 | Severely Dry −1.5 > Index > −2.0 | Extremely Dry Index < −2.0 |
---|---|---|---|---|---|---|---|
Šventoji–Ukmergė | |||||||
SPI-1 | 1.39 | 3.33 | 9.45 | 70.14 | 7.64 | 3.61 | 4.44 |
SPI-3 | 1.11 | 5.85 | 9.75 | 66.44 | 9.61 | 4.04 | 3.20 |
SPI-6 | 1.82 | 5.17 | 9.23 | 67.97 | 9.37 | 4.20 | 2.24 |
SPI-9 | 1.69 | 5.34 | 8.71 | 66.71 | 10.81 | 4.77 | 1.97 |
SPI-12 | 2.40 | 4.65 | 8.60 | 66.29 | 11.43 | 5.08 | 1.55 |
RDI-1 | 2.79 | 2.61 | 8.38 | 71.32 | 8.38 | 3.73 | 2.79 |
RDI-3 | 2.47 | 5.56 | 7.25 | 69.29 | 10.03 | 3.24 | 2.16 |
RDI-6 | 2.10 | 6.29 | 8.39 | 67.97 | 8.81 | 4.62 | 1.82 |
RDI-9 | 2.11 | 5.34 | 9.55 | 67.13 | 9.27 | 4.63 | 1.97 |
RDI-12 | 1.83 | 4.8 | 10.72 | 65.87 | 9.59 | 5.22 | 1.97 |
SDI-1 | 4.19 | 3.49 | 7.54 | 69.97 | 10.90 | 3.77 | 0.14 |
SDI-3 | 3.66 | 3.66 | 9.02 | 68.87 | 9.44 | 4.79 | 0.56 |
SDI-6 | 2.42 | 4.28 | 9.70 | 67.76 | 9.42 | 5.28 | 1.14 |
SDI-9 | 1.73 | 5.78 | 8.81 | 65.61 | 11.13 | 5.35 | 1.59 |
SDI-12 | 1.32 | 6.00 | 10.1 | 64.28 | 10.98 | 4.83 | 2.49 |
Venta–Leckava | |||||||
SPI-1 | 1.11 | 4.03 | 9.03 | 70.83 | 7.22 | 4.31 | 3.41 |
SPI-3 | 1.67 | 4.46 | 8.63 | 71.45 | 6.13 | 4.60 | 3.06 |
SPI-6 | 1.82 | 5.31 | 9.23 | 67.97 | 9.09 | 3.92 | 2.66 |
SPI-9 | 1.97 | 4.35 | 10.25 | 66.85 | 8.57 | 5.48 | 2.53 |
SPI-12 | 1.13 | 4.94 | 11.14 | 64.88 | 9.87 | 5.92 | 2.12 |
RDI-1 | 1.65 | 3.30 | 9.16 | 71.98 | 7.87 | 3.84 | 2.20 |
RDI-3 | 2.60 | 3.06 | 9.48 | 70.80 | 7.49 | 4.43 | 2.14 |
RDI-6 | 2.38 | 3.50 | 10.91 | 67.69 | 8.81 | 4.75 | 1.96 |
RDI-9 | 1.55 | 4.49 | 10.67 | 67.28 | 7.44 | 6.04 | 2.53 |
RDI-12 | 1.83 | 3.25 | 11.28 | 67.42 | 7.62 | 7.19 | 1.41 |
SDI-1 | 3.47 | 3.75 | 9.31 | 68.33 | 11.11 | 3.61 | 0.42 |
SDI-3 | 2.65 | 4.87 | 8.64 | 67.27 | 11.42 | 4.04 | 1.11 |
SDI-6 | 2.52 | 4.19 | 8.39 | 68.39 | 10.21 | 4.06 | 2.24 |
SDI-9 | 1.68 | 4.92 | 7.86 | 69.52 | 8.57 | 5.34 | 2.11 |
SDI-12 | 1.83 | 4.09 | 9.45 | 69.53 | 6.35 | 6.77 | 1.97 |
Minija–Kartena | |||||||
SPI-1 | 0.97 | 3.89 | 9.44 | 71.53 | 6.53 | 3.61 | 4.03 |
SPI-3 | 1.67 | 4.32 | 8.50 | 71.03 | 6.96 | 4.04 | 3.48 |
SPI-6 | 1.82 | 5.03 | 9.93 | 66.85 | 9.37 | 4.34 | 2.66 |
SPI-9 | 1.54 | 5.06 | 10.53 | 66.29 | 8.57 | 5.06 | 2.95 |
SPI-12 | 1.27 | 5.50 | 10.16 | 65.30 | 9.59 | 6.35 | 1.83 |
RDI-1 | 1.78 | 4.10 | 9.09 | 71.84 | 7.67 | 2.85 | 2.67 |
RDI-3 | 2.55 | 3.00 | 8.56 | 73.73 | 6.31 | 3.90 | 1.95 |
RDI-6 | 2.38 | 3.91 | 10.35 | 67.83 | 9.51 | 3.64 | 2.38 |
RDI-9 | 1.69 | 4.35 | 11.10 | 66.85 | 8.99 | 4.49 | 2.53 |
RDI-12 | 2.26 | 2.40 | 13.12 | 65.30 | 9.45 | 5.78 | 1.69 |
SDI-1 | 3.33 | 4.03 | 8.89 | 67.92 | 10.97 | 3.89 | 0.97 |
SDI-3 | 2.23 | 3.90 | 10.58 | 65.88 | 11.56 | 3.48 | 2.37 |
SDI-6 | 1.12 | 4.19 | 10.91 | 66.01 | 9.79 | 4.90 | 3.08 |
SDI-9 | 0.28 | 4.36 | 11.80 | 66.85 | 7.02 | 6.18 | 3.51 |
SDI-12 | 0.99 | 3.53 | 11.14 | 66.99 | 7.19 | 6.63 | 3.53 |
Condition Classes | Šventoji–Ukmergė | Venta–Leckava | Minija–Kartena | ||||||
---|---|---|---|---|---|---|---|---|---|
Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | |
x > 2.0 | 2.40 | 1.15 | 1.25 | 1.13 | 0.10 | 1.67 | 1.27 | 0.10 | 1.56 |
1.5 < x ˂ 2.0 | 4.65 | 1.15 | 1.88 | 4.94 | 1.25 | 2.40 | 5.50 | 1.04 | 3.75 |
1.0 < x ˂ 1.5 | 8.60 | 4.69 | 6.67 | 11.14 | 3.02 | 7.50 | 10.16 | 3.44 | 6.67 |
−1.0 < x ˂ 1.0 | 66.29 | 33.54 | 32.08 | 64.88 | 35.94 | 31.14 | 65.30 | 35.42 | 31.04 |
−1.0 > x > −1.5 | 11.43 | 5.41 | 4.69 | 9.87 | 6.15 | 4.06 | 9.59 | 6.77 | 3.96 |
−1.5 > x > −2.0 | 5.08 | 3.12 | 2.08 | 5.92 | 2.60 | 1.77 | 6.35 | 2.19 | 2.50 |
x < −2.0 | 1.55 | 0.94 | 1.35 | 2.12 | 0.94 | 1.46 | 1.83 | 1.04 | 0.52 |
SUM | 100 | 50 | 50 | 100 | 50 | 50 | 100 | 50 | 50 |
Condition Classes | Šventoji–Ukmergė | Venta–Leckava | Minija–Kartena | ||||||
---|---|---|---|---|---|---|---|---|---|
Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | |
x > 2.0 | 2.40 | 0.31 | 1.98 | 1.13 | 0.00 | 2.71 | 1.27 | 0.00 | 3.23 |
1.5 < x ˂2.0 | 4.65 | 0.83 | 2.50 | 4.94 | 0.52 | 5.31 | 5.50 | 0.31 | 4.58 |
1.0 < x ˂ 1.5 | 8.60 | 1.46 | 9.38 | 11.14 | 1.88 | 6.88 | 10.16 | 2.29 | 7.39 |
−1.0 < x ˂ 1.0 | 66.29 | 35.1 | 31.77 | 64.88 | 35.10 | 32.60 | 65.30 | 34.90 | 31.88 |
−1.0 > x > −1.5 | 11.43 | 6.67 | 3.54 | 9.87 | 8.75 | 1.77 | 9.59 | 8.65 | 2.50 |
−1.5 > x > −2.0 | 5.08 | 3.65 | 0.73 | 5.92 | 2.29 | 0.42 | 6.35 | 2.81 | 0.42 |
x < −2.0 | 1.55 | 1.98 | 0.10 | 2.12 | 1.46 | 0.31 | 1.83 | 1.04 | 0.00 |
SUM | 100 | 50 | 50 | 100 | 50 | 50 | 100 | 50 | 50 |
Condition Classes | Šventoji–Ukmergė | Venta–Leckava | Minija–Kartena | ||||||
---|---|---|---|---|---|---|---|---|---|
Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | |
x > 2.0 | 1.83 | 1.25 | 0.42 | 1.83 | 0.41 | 1.67 | 2.26 | 0.42 | 1.77 |
1.5 < x ˂ 2.0 | 4.80 | 2.71 | 2.71 | 3.25 | 1.56 | 0.83 | 2.40 | 1.67 | 1.04 |
1.0 < x ˂ 1.5 | 10.72 | 5.00 | 4.58 | 11.28 | 5.21 | 6.35 | 13.12 | 5.21 | 6.56 |
−1.0 < x ˂ 1.0 | 65.87 | 34.16 | 33.13 | 67.42 | 36.04 | 31.98 | 62.30 | 35.62 | 31.56 |
−1.0 > x > −1.5 | 9.59 | 4.27 | 4.06 | 7.62 | 4.17 | 4.28 | 9.45 | 4.06 | 5.42 |
−1.5 > x > −2.0 | 5.22 | 2.40 | 2.81 | 7.19 | 1.88 | 2.92 | 5.78 | 1.98 | 2.50 |
x < −2.0 | 1.97 | 0.21 | 2.29 | 1.41 | 0.73 | 1.67 | 1.69 | 1.04 | 1.15 |
SUM | 100 | 50 | 50 | 100 | 50 | 50 | 100 | 50 | 50 |
Condition Classes | Šventoji–Ukmergė | Venta–Leckava | Minija–Kartena | ||||||
---|---|---|---|---|---|---|---|---|---|
Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | |
x > 2.0 | 1.83 | 1.35 | 2.29 | 1.83 | 0.63 | 1.25 | 2.26 | 0.52 | 1.77 |
1.5 < x ˂ 2.0 | 4.80 | 1.46 | 1.36 | 3.25 | 2.40 | 4.58 | 2.40 | 2.61 | 3.75 |
1.0 < x ˂ 1.5 | 10.72 | 4.89 | 3.33 | 11.28 | 4.58 | 4.37 | 13.12 | 4.58 | 5.00 |
−1.0 < x ˂ 1.0 | 65.87 | 35.42 | 35.1 | 67.42 | 33.85 | 31.88 | 62.30 | 33.54 | 31.46 |
−1.0 > x > −1.5 | 9.59 | 4.17 | 5.00 | 7.62 | 5.73 | 6.15 | 9.45 | 5.73 | 6.25 |
−1.5 > x > −2.0 | 5.22 | 1.67 | 2.29 | 7.19 | 1.46 | 1.15 | 5.78 | 1.98 | 1.56 |
x < −2.0 | 1.97 | 1.04 | 0.63 | 1.41 | 1.35 | 0.62 | 1.69 | 1.04 | 0.21 |
SUM | 100 | 50 | 50 | 100 | 50 | 50 | 100 | 50 | 50 |
Condition Classes | Šventoji–Ukmergė | Venta–Leckava | Minija–Kartena | ||||||
---|---|---|---|---|---|---|---|---|---|
Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | |
x > 2.0 | 1.32 | 0.94 | 0.21 | 1.83 | 0.00 | 0.63 | 0.99 | 0.00 | 1.35 |
1.5 < x ˂ 2.0 | 6.00 | 3.75 | 2.08 | 4.09 | 3.23 | 2.60 | 3.53 | 2.40 | 2.29 |
1.0 < x ˂ 1.5 | 10.10 | 7.08 | 3.75 | 9.45 | 5.21 | 3.54 | 11.14 | 5.31 | 4.69 |
−1.0 < x ˂ 1.0 | 64.28 | 31.46 | 34.27 | 69.53 | 34.58 | 31.88 | 66.99 | 34.27 | 31.04 |
−1.0 > x > −1.5 | 10.98 | 4.38 | 5.52 | 6.35 | 4.48 | 5.10 | 7.19 | 4.27 | 5.42 |
−1.5 > x > −2.0 | 4.83 | 1.56 | 2.61 | 6.77 | 2.29 | 4.27 | 6.63 | 2.71 | 4.06 |
x < −2.0 | 2.49 | 0.83 | 1.56 | 1.97 | 0.21 | 1.98 | 3.53 | 1.04 | 1.15 |
SUM | 100 | 50 | 50 | 100 | 50 | 50 | 100 | 50 | 50 |
Condition Classes | Šventoji–Ukmergė | Venta–Leckava | Minija–Kartena | ||||||
---|---|---|---|---|---|---|---|---|---|
Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | Historical Data (1961–2020) | Near Future (2021–2060) | Far Future (2061–2100) | |
x > 2.0 | 1.32 | 1.35 | 2.08 | 1.83 | 0.94 | 1.99 | 0.99 | 0.10 | 1.98 |
1.5 < x ˂ 2.0 | 6.00 | 2.08 | 0.83 | 4.09 | 2.81 | 3.23 | 3.53 | 2.08 | 6.04 |
1.0 < x ˂ 1.5 | 10.10 | 5.00 | 2.50 | 9.45 | 3.86 | 6.04 | 11.14 | 3.44 | 4.69 |
−1.0 < x ˂ 1.0 | 64.28 | 35.63 | 34.79 | 69.53 | 38.02 | 27.50 | 66.99 | 37.08 | 28.33 |
−1.0 > x > −1.5 | 10.98 | 5.21 | 5.94 | 6.35 | 3.85 | 6.98 | 7.19 | 5.73 | 6.46 |
−1.5 > x > −2.0 | 4.83 | 0.73 | 3.13 | 6.77 | 0.52 | 3.44 | 6.63 | 1.46 | 1.56 |
x < −2.0 | 2.49 | 0.00 | 0.73 | 1.97 | 0.00 | 0.83 | 3.53 | 0.11 | 0.94 |
SUM | 100 | 50 | 50 | 100 | 50 | 50 | 100 | 50 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazarenko, S.; Kriaučiūnienė, J.; Šarauskienė, D.; Jakimavičius, D. Patterns of Past and Future Droughts in Permanent Lowland Rivers. Water 2022, 14, 71. https://doi.org/10.3390/w14010071
Nazarenko S, Kriaučiūnienė J, Šarauskienė D, Jakimavičius D. Patterns of Past and Future Droughts in Permanent Lowland Rivers. Water. 2022; 14(1):71. https://doi.org/10.3390/w14010071
Chicago/Turabian StyleNazarenko, Serhii, Jūratė Kriaučiūnienė, Diana Šarauskienė, and Darius Jakimavičius. 2022. "Patterns of Past and Future Droughts in Permanent Lowland Rivers" Water 14, no. 1: 71. https://doi.org/10.3390/w14010071
APA StyleNazarenko, S., Kriaučiūnienė, J., Šarauskienė, D., & Jakimavičius, D. (2022). Patterns of Past and Future Droughts in Permanent Lowland Rivers. Water, 14(1), 71. https://doi.org/10.3390/w14010071