Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Sampling and Testing
3. Results and Discussion
3.1. Hydrochemical Characteristics
3.2. Microbial Species Abundance and Diversity
3.3. Microbial Species Composition
3.4. The Impact of Environmental Factors on Microbial Communities
3.5. Arsenic Functional Genes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Q.; Liu, H.; Zhu, P.; Xu, W.; Su, X. Evaluation of the influence of river bank infiltration on groundwater in an inland alluvial fan using spectral analysis and environmental tracers. Hydrogeol. J. 2021, 29, 1117–1128. [Google Scholar] [CrossRef]
- Groeschke, M.; Frommen, T.; Taute, T.; Schneider, M. The impact of sewage-contaminated river water on groundwater ammonium and arsenic concentrations at a riverbank filtration site in central Delhi, India. Hydrogeol. J. 2017, 25, 2185–2197. [Google Scholar] [CrossRef]
- Bai, J.; Su, X.; Wang, J.; Lyu, H.; Gao, R.; Lu, S. Multi-isotope constraints on biogeochemical processes during bank filtration: A case study of the Liao River, Northeast China. Appl. Geochem. 2020, 122, 104762. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhai, Y.; Teng, Y.; Wang, G.; Du, Q.; Wang, J.; Yang, G. Water supply safety of riverbank filtration wells under the impact of surface water-groundwater interaction: Evidence from long-term field pumping tests. Sci. Total Environ. 2020, 711, 135141. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhai, Y.; Du, Q.; Teng, Y.; Wang, J.; Yang, G. The impact of well drawdowns on the mixing process of river water and groundwater and water quality in a riverside well field, Northeast China. Hydrol. Process. 2019, 33, 945–961. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, J.; Zhu, Y.; Du, Q.; Teng, Y.; Zhai, Y. Design and Optimization of a Fully-Penetrating Riverbank Filtration Well Scheme at a Fully-Penetrating River Based on Analytical Methods. Water 2019, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Teng, Y.; Zhai, Y.; Hu, L.; Zhao, X.; Zhang, M. Suitability for developing riverside groundwater sources along Songhua River, Northeast China. Hum. Ecol. Risk Assess. 2018, 24, 2088–2100. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Ji, Y.; Wang, Y.; Su, Z.; Elumalai, V. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Expos. Health 2020, 12, 355–368. [Google Scholar] [CrossRef]
- Abdul, K.S.M.; Jayasinghe, S.S.; Chandana, E.P.; Jayasumana, C.; De Silva, P.M.C. Arsenic and human health effects: A review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef]
- Smith, A.H.; Lopipero, P.A.; Bates, M.N.; Steinmaus, C.M. Arsenic epidemiology and drinking water standards. Science 2002, 296, 2145–2146. [Google Scholar] [CrossRef]
- Lu, S.; Su, X.; Feng, X.; Sun, C. Study on the formation and influencing factors of arsenic in nearshore zone during river water infiltration. Earth Sci. Front. 2021. (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Su, X.; Lu, S.; Yuan, W.; Woo, N.C.; Dai, Z.; Dong, W.; Du, S.; Zhang, X. Redox zonation for different groundwater flow paths during bank filtration: A case study at Liao River, Shenyang, northeastern China. Hydrogeol. J. 2018, 26, 1573–1589. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Environ. Manag. 2015, 162, 306–325. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef]
- Wallis, I.; Prommer, H.; Berg, M.; Siade, A.J.; Sun, J.; Kipfer, R. The river–groundwater interface as a hotspot for arsenic release. Nat. Geosci. 2020, 13, 288–295. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Wu, J.; Wei, M.; Ren, X.; Wang, D. Poor groundwater quality and high potential health risks in the Datong Basin, northern China: Research from published data. Environ. Geochem. Health 2021, 43, 791–812. [Google Scholar] [CrossRef]
- Guo, H.; Liu, Z.; Ding, S.; Hao, C.; Xiu, W.; Hou, W. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environ. Pollut. 2015, 203, 50–59. [Google Scholar] [CrossRef]
- Lu, S.; Feng, X.; Su, X. Geochemical characteristics of arsenic in groundwater during riverbank filtration: A case study of Liao River, Northeast China. Water Supply 2020, 20, 3288–3300. [Google Scholar] [CrossRef]
- Xu, N.; Gong, J.; Tao, X.; Liu, L. Hydrogeochemical Processes and Potential Exposure Risk of Arsenic-Rich Groundwater from Huaihe River Plain, China. Water 2022, 14, 693. [Google Scholar] [CrossRef]
- Zhi, C.; Cao, W.; Wang, Z.; Li, Z. High-Arsenic Groundwater in Paleochannels of the Lower Yellow River, China: Distribution and Genesis Mechanisms. Water 2021, 13, 338. [Google Scholar] [CrossRef]
- Cao, W.; Guo, H.; Zhang, Y.; Ma, R.; Li, Y.; Dong, Q.; Li, Y.; Zhao, R. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China. Sci. Total Environ. 2018, 613–614, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, W.; Wang, W.; Dong, Q. Distribution of groundwater arsenic and hydraulic gradient along the shallow groundwater flow-path in Hetao Plain, Northern China. J. Geochem. Explor. 2013, 135, 31–39. [Google Scholar] [CrossRef]
- Tufano, K.J.; Fendorf, S. Confounding Impacts of Iron Reduction on Arsenic Retention. Environ. Sci. Technol. 2008, 42, 4777–4783. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, X.; Si, Y.; Wang, R. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria. Chem. Eng. J. 2016, 295, 29–38. [Google Scholar] [CrossRef]
- Carlin, D.J.; Naujokas, M.F.; Bradham, K.D.; Cowden, J.; Heacock, M.; Henry, H.F.; Lee, J.S.; Thomas, D.J.; Thompson, C.; Tokar, E.J.; et al. Arsenic and Environmental Health: State of the Science and Future Research Opportunities. Environ. Health Perspect. 2016, 124, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Xiu, W.; Lloyd, J.; Guo, H.; Dai, W.; Nixon, S.; Bassil, N.M.; Ren, C.; Zhang, C.; Ke, T.; Polya, D. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. Environ. Int. 2020, 136, 105489. [Google Scholar] [CrossRef]
- Wang, L.; Yin, Z.; Jing, C. Metagenomic insights into microbial arsenic metabolism in shallow groundwater of Datong basin, China. Chemosphere 2020, 245, 125603. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Deng, Y.; Wang, Y.; Jiang, H.; O’Loughlin, E.J.; Flynn, T.M.; Gan, Y.; Ma, T. Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. J. Hazard. Mater. 2019, 367, 109–119. [Google Scholar] [CrossRef]
- Wang, P.; Sun, G.; Jia, Y.; Meharg, A.A.; Zhu, Y. A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. J. Environ. Sci. 2014, 26, 371–381. [Google Scholar] [CrossRef]
- Ye, J.; Rensing, C.; Rosen, B.P.; Zhu, Y. Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 2012, 17, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Hamamura, N.; Itai, T.; Liu, Y.; Reysenbach, A.; Damdinsuren, N.; Inskeep, W.P. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Env. Microbiol. Rep. 2014, 6, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Burton, E.D.; Johnston, S.G.; Kocar, B.D. Arsenic mobility during flooding of contaminated soil: The effect of microbial sulfate reduction. Environ. Sci. Technol. 2014, 48, 13660–13667. [Google Scholar] [CrossRef] [PubMed]
- O’Day, P.A.; Vlassopoulos, D.; Root, R.; Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13703–13708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, P.; Jiang, D.; Li, B.; Dai, X.; Jiang, Z.; Wang, Y. Vertical distribution of bacterial communities in high arsenic sediments of Hetao Plain, Inner Mongolia. Ecotoxicology 2014, 23, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Lowers, H.A.; Breit, G.N.; Foster, A.L.; Whitney, J.; Yount, J.; Uddin, M.N.; Muneem, A.A. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh. Geochim. Cosmochim. Acta 2007, 71, 2699–2717. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, P.; Jiang, Z.; Liu, H.; Wei, D.; Wang, H.; Wang, Y. Diversity and abundance of arsenic methylating microorganisms in high arsenic groundwater from Hetao Plain of Inner Mongolia, China. Ecotoxicology 2018, 27, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jiang, Z.; Wang, Y.; Deng, Y.; Van Nostrand, J.D.; Yuan, T.; Liu, H.; Wei, D.; Zhou, J. Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Res. 2017, 123, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Li, P.; Wang, Y.; Liu, H.; Wei, D.; Yuan, C.; Wang, H. Arsenic mobilization in a high arsenic groundwater revealed by metagenomic and Geochip analyses. Sci. Rep. 2019, 9, 12972. [Google Scholar] [CrossRef]
- Liu, E.; Yang, Y.; Xie, Z.; Wang, J.; Chen, M. Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. Water 2022, 14, 942. [Google Scholar] [CrossRef]
- Lu, S.; Li, S.; Liu, Z.; Gao, X.; Zhang, L.; Sun, C. Hydrochemical evolution of pore water in riverbed sedimentation zone during riverbank infiltration. J. Water Supply Res. Technol. 2021, 70, 696–709. [Google Scholar] [CrossRef]
- Lu, S. Biogeochemical Process of Arsenic in Groundwater and Its Simulation Affected by Groundwater Exploitation in Riverside. Ph.D. Thesis, Jilin University, Changchun, China, 2018. (In Chinese). [Google Scholar]
- Chander, K.; Brookes, P.C.; Harding, S.A. Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loam. Soil Biol. Biochem. 1995, 27, 1409–1421. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Y.; Huang, H.; Mou, L.; Ru, J.; Zhao, J.; Xiao, S. Long-term and high-concentration heavy-metal contamination strongly influences the microbiome and functional genes in Yellow River sediments. Sci. Total Environ. 2018, 637–638, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zeng, X.-C.; He, Z.; Chen, X.; Guo-ji, E.; Han, Y.; Wang, Y. Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor. Water Res. 2016, 101, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Peng, X.; Deng, G.; Sheng, H.; Wang, Y.; Zhou, H.; Yee Tam, N.F. Illumina Sequencing of 16S rRNA Tag Revealed Spatial Variations of Bacterial Communities in a Mangrove Wetland. Microb. Ecol. 2013, 66, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Sheik, C.S.; Mitchell, T.W.; Rizvi, F.Z.; Rehman, Y.; Faisal, M.; Hasnain, S.; Mclnerney, M.J.; Krumholz, L.R. Exposure of Soil Microbial Communities to Chromium and Arsenic Alters Their Diversity and Structure. PLoS ONE 2012, 7, e40059. [Google Scholar] [CrossRef]
- Peng, Q.; Shaaban, M.; Wu, Y.; Hu, R.; Wang, B.; Wang, J. The diversity of iron reducing bacteria communities in subtropical paddy soils of China. Appl. Soil Ecol. 2016, 101, 20–27. [Google Scholar] [CrossRef]
- Champ, D.R.; Gulens, J.; Jackson, R.E. Oxidation–reduction sequences in ground water flow systems. Can. J. Earth Sci. 1979, 16, 12–23. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Jiang, Z.; Jiang, H.; Li, B.; Dong, H.; Wang, Y. Microbial Diversity in High Arsenic Groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiol. J. 2013, 30, 897–909. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, X.; Xu, M.; Sun, G. The Role of Enriched Microbial Consortium on Iron-Reducing Bioaugmentation in Sediments. Front. Microbiol. 2017, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Du, Y.; Hu, L.; Xu, J.; Long, Y.; Shen, D. Effects of sulfur-metabolizing bacterial community diversity on H2S emission behavior in landfills with different operation modes. Biodegradation 2016, 27, 237–246. [Google Scholar] [CrossRef]
- Chung, J.; Kim, Y.; Lee, D.; Shim, H.; Kim, J. Characteristics of Denitrifying Phosphate Accumulating Organisms in an Anaerobic-Intermittently Aerobic Process. Environ. Eng. Sci. 2006, 23, 981–993. [Google Scholar] [CrossRef]
- Ghosh, S.; Sar, P. Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res. 2013, 47, 6992–7005. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Jiang, D.; Li, B.; Dai, X.; Wang, Y.; Jiang, Z.; Wang, Y. Comparative survey of bacterial and archaeal communities in high arsenic shallow aquifers using 454 pyrosequencing and traditional methods. Ecotoxicology 2014, 23, 1878–1889. [Google Scholar] [CrossRef] [PubMed]
- Drewniak, L.; Matlakowska, R.; Rewerski, B.; Sklodowska, A. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 2010, 104, 437–442. [Google Scholar] [CrossRef]
- Drewniak, L.; Styczek, A.; Majder-Lopatka, M.; Sklodowska, A. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ. Pollut. 2008, 156, 1069–1074. [Google Scholar] [CrossRef]
- Oremland, R.S.; Stolz, J.F. The Ecology of Arsenic. Science 2003, 300, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Niggemyer, A.; Spring, S.; Stackebrandt, E.; Rosenzweig, R.F. Isolation and characterization of a novel As(V)-reducing bacterium: Implications for arsenic mobilization and the genus Desulfitobacterium. Appl. Environ. Microb. 2001, 67, 5568–5580. [Google Scholar] [CrossRef] [Green Version]
- Oremland, R.S.; Stolz, J.F. Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005, 13, 45–49. [Google Scholar] [CrossRef]
- Harrington, J.M.; Fendorf, S.E.; Rosenzweig, R.F. Biotic generation of arsenic(III) in metal(Ioid)-contaminated freshwater lake sediments. Environ. Sci. Technol. 1998, 32, 2425–2430. [Google Scholar] [CrossRef]
- Oremland, R.S.; Dowdle, P.R.; Hoeft, S.; Sharp, J.O.; Schaefer, J.K.; Miller, L.G.; Blum, J.S.; Smith, R.L.; Bloom, N.S.; Wallschlaeger, D. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochim. Cosmochim. Acta 2000, 64, 3073–3084. [Google Scholar] [CrossRef]
- Malasarn, D.; Saltikov, C.W.; Campbell, K.M.; Santini, J.M.; Hering, J.G.; Newman, D.K. arrA Is a Reliable Marker for As(V) Respiration. Science 2004, 306, 455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, D.E.; Caccavo, F.; Fendorf, S.; Rosenzweig, R.F. Arsenic Mobilization by the Dissimilatory Fe(III)-Reducing Bacterium Shewanella alga BrY. Environ. Sci. Technol. 1999, 33, 723–729. [Google Scholar] [CrossRef]
- Ahmann, D.; Krumholz, L.R.; Hemond, H.F.; Lovley, D.R.; Morel, F.M.M. Microbial Mobilization of Arsenic from Sediments of the Aberjona Watershed. Environ. Sci. Technol. 1997, 31, 2923–2930. [Google Scholar] [CrossRef]
- Zobrist, J.; Dowdle, P.R.; Davis, J.A.; Oremland, R.S. Mobilization of Arsenite by Dissimilatory Reduction of Adsorbed Arsenate. Environ. Sci. Technol. 2000, 34, 4747–4753. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, H.; Chen, Z.; Zhu, Y. Arsenic Uptake by Rice Is Influenced by Microbe-Mediated Arsenic Redox Changes in the Rhizosphere. Environ. Sci. Technol. 2014, 48, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, F.; Sun, G.; Su, J.; Yang, X.; Li, H.; Zhu, Y. Diversity and Abundance of Arsenic Biotransformation Genes in Paddy Soils from Southern China. Environ. Sci. Technol. 2015, 49, 4138–4146. [Google Scholar] [CrossRef]
- Salmassi, T.M.; Venkateswaren, K.; Satomi, M.; Newman, D.K.; Hering, J.G. Oxidation of Arsenite by Agrobacterium albertimagni, AOL15, sp. nov., Isolated from Hot Creek, California. Geomicrobiol. J. 2002, 19, 53–66. [Google Scholar] [CrossRef]
- Santini, J.M.; vanden Hoven, R.N. Molybdenum-Containing Arsenite Oxidase of the Chemolithoautotrophic Arsenite Oxidizer NT-26. J. Bacteriol. 2004, 186, 1614–1619. [Google Scholar] [CrossRef] [Green Version]
- Stolz, J.F.; Basu, P.; Oremland, R.S. Microbial Arsenic Metabolism: New Twists on an Old Poison. Microbe 2010, 5, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F. Respiratory arsenate reductase as a bidirectional enzyme. Biochem. Biophys. Res. Commun. 2009, 382, 298–302. [Google Scholar] [CrossRef]
- Zargar, K.; Hoeft, S.; Oremland, R.; Saltikov, C.W. Identification of a Novel Arsenite Oxidase Gene, arxA, in the Haloalkaliphilic, Arsenite-Oxidizing Bacterium Alkalilimnicola ehrlichii Strain MLHE-1. J. Bacteriol. 2010, 192, 3755–3762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargar, K.; Conrad, A.; Bernick, D.L.; Lowe, T.M.; Stolc, V.; Hoeft, S.; Oremland, R.S.; Stolz, J.; Saltikov, C.W. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 2012, 14, 1635–1645. [Google Scholar] [CrossRef] [PubMed]
Sample ID | W0 | W1 | W2 | W3 | W4 | W5 |
---|---|---|---|---|---|---|
Distance to the riverbank (m) | −6 | 1.5 | 4 | 6.5 | 12.5 | 17 |
T (°C) | 22.24 | 14.71 | 13.17 | 12.21 | 10.94 | 10.49 |
pH | 8.17 | 7.52 | 7.36 | 7.33 | 7.27 | 7.16 |
ORP (mV) | 35.02 | −11.54 | −69.88 | −94.45 | −118.79 | −135.23 |
DO (mg/L) | 9.34 | 7.56 | 2.07 | 2.11 | 1.93 | 1.90 |
DOC (mg/L) | 18.76 | 9.79 | 9.34 | 8.16 | 7.27 | 6.69 |
K+ (mg/L) | 6.32 | 5.17 | 3.39 | 3.41 | 3.75 | 8.31 |
Na+ (mg/L) | 31.27 | 49.66 | 43.87 | 39.85 | 32.37 | 30.00 |
Ca2+ (mg/L) | 50.46 | 91.96 | 87.42 | 101.46 | 116.97 | 129.05 |
Mg2+ (mg/L) | 20.90 | 28.17 | 27.18 | 32.64 | 40.43 | 109.35 |
Cl− (mg/L) | 41.80 | 56.56 | 57.26 | 60.11 | 69.78 | 27.57 |
HCO3− (mg/L) | 169.00 | 378.41 | 348.80 | 431.06 | 480.42 | 957.55 |
NO3− (mg/L) | 7.69 | 2.36 | 1.77 | 0.59 | 0.33 | 0.30 |
SO42− (mg/L) | 75.50 | 68.63 | 68.55 | 61.01 | 62.58 | 54.79 |
As (μg/L) | 2.21 | 37.04 | 40.69 | 46.95 | 48.80 | 51.34 |
Fe2+ (mg/L) | 0.11 | 13.35 | 17.02 | 19.93 | 21.89 | 25.93 |
Mn2+ (mg/L) | 0.14 | 2.00 | 5.42 | 6.14 | 7.56 | 7.42 |
Component | As | Fe2+ | Mn2+ | NO3− | SO42− |
---|---|---|---|---|---|
As | 1.000 | ||||
Fe2+ | 1.000 ** | 1.000 | |||
Mn2+ | 0.943 ** | 0.943 ** | 1.000 | ||
NO3− | −1.000 ** | −1.000 ** | −0.943 ** | 1.000 | |
SO42− | −0.943 ** | −0.943 ** | −0.829 * | 0.943 ** | 1.000 |
Gene Groups | W0 | W1 | W2 | W3 | W4 | W5 |
---|---|---|---|---|---|---|
arrA | 1081 | 1162 | 1016 | 1082 | 1024 | 905 |
aioA | 18 | - | - | - | - | - |
arxA | 351 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Yang, Y.; Yin, H.; Su, X.; Yu, K.; Sun, C. Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone. Water 2022, 14, 1548. https://doi.org/10.3390/w14101548
Lu S, Yang Y, Yin H, Su X, Yu K, Sun C. Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone. Water. 2022; 14(10):1548. https://doi.org/10.3390/w14101548
Chicago/Turabian StyleLu, Shuai, Yimeng Yang, Hanling Yin, Xiaosi Su, Kaining Yu, and Chao Sun. 2022. "Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone" Water 14, no. 10: 1548. https://doi.org/10.3390/w14101548
APA StyleLu, S., Yang, Y., Yin, H., Su, X., Yu, K., & Sun, C. (2022). Microbial Community Structure of Arsenic-Bearing Groundwater Environment in the Riverbank Filtration Zone. Water, 14(10), 1548. https://doi.org/10.3390/w14101548