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Abstract: Access to freshwater for rural populations is increasingly difficult worldwide. Even in
coastal regions with abundantly available seawater, this is not suitable to meet the population’s basic
needs. Desalination with solar stills represents a simple, inexpensive, and accessible alternative to
obtaining freshwater. This research shows the results obtained with a mathematical model of a single
slope solar still proposed by Dunkle, compared with experimental data. Field experiments were
carried out in the coastal zone of the Gulf of Mexico to validate the mathematical model. Different
operating parameters of the solar still and their performance depending on climatic variations of the
study site were studied. The average yield of distilled water was 1.57 L/m2 d.

Keywords: solar still; desalination; mathematical model; solar radiation; Veracruz-Mexico

1. Introduction

Population growth, industrialization, and the fast growth of the agricultural sector
have led to intensive water use and the contamination of water resources, resulting in
less and less available water [1]. In addition, because of climate change, the planet is
currently undergoing a significant freshwater shortage that affects almost 20% of the world’s
population [2,3]. Moreover, demand for freshwater is expected to increase to 6.9 trillion m3

by 2030, representing an increase of more than 53% compared to the current level [4]. This
change will undoubtedly aggravate the scarcity issue the planet has today. This scenario
is very noticeable in populations settled in remote and rural areas, mainly in developing
countries [5], as well as in coastal populations where seawater has very high salinities that
range from 35,000 to 40,000 ppm, making it unsuitable for direct consumption [1].

As a solution to abstract freshwater, the desalination of seawater, brackish water, or
groundwater is recommended [6]. A strategy proposed by the General Assembly of the
United Nations to achieve the sixth goal of the Millennium Development Goals (SDG) [7]
has to do with international cooperation and the creation of technological infrastructure in
developing countries for water desalination.

Desalination has been known throughout history, both as a concept and technology.
Generally, in the past, and specifically, during the times of ancient China (475–221 BC) [8]
and Aristotle (384–322 BC) [9], the possibility of desalination through evaporation and
subsequent condensation was already known, and the technique was widely used by
sailors. Before the Industrial Revolution, desalination was used mainly on transoceanic
ships that needed to be supplied with freshwater. Nonetheless, it was only after WWII that
major research was carried out in the US to improve desalination technologies [10].

Water desalination processes can be generally classified into phase change or thermal
processes, and processes without phase change or using membranes [11–14]. The thermoso-
lar water desalination method within the thermal desalination techniques is essentially
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divided into the following two main categories: (a) direct systems and (b) indirect systems.
The key difference between these desalination methods is that in the direct system, solar
radiation is absorbed and converted into heat during the evaporation process of the saltwa-
ter inside the device, while in the indirect system, separate dual systems are used, i.e., a
matrix for solar collection comprising of thermal and/or photovoltaic (PV) collectors, and
a discrete conventional distillation plant to eliminate latent heat condensation loss [15].

Solar stills are direct system thermal devices, i.e., they absorb solar radiation and
transform it into heat to evaporate saltwater, and then condense it inside the same device.
They generally consist of an insulated black container where saltwater is available at a
shallow depth. The basin is covered with a hermetically sealed glass lid to reduce steam
leakage. Saltwater absorbs solar radiation, heats up, and then evaporates. When air
saturated with vapor comes into contact with the fresh inner surface of the clear glass cover,
some of the vapor molecules condense. This condensed water slides downward, where
it is collected in a channel along the underside of the glass cover before moving through
a plastic tube outside the tank. The maximum efficiency of a conventional solar still is
generally around 50% in the case of total isolation. Less insulation causes an efficiency
reduction of approximately 14.5% [16].

Many factors can affect solar still productivity, such as temperature differences between
glass and saltwater basins, basin area, glass cover inclination, device orientation, materials
used in manufacture, and local climatic conditions [1,16]. In essence, the productivity of
a conventional solar still depends mainly on the climatic conditions of the site where the
device is installed, the operating parameters, and the design parameters [16–18].

Although solar stills are simple structures, various researchers have gone to great
lengths to model the heat and mass transfer phenomena that occur inside. Thermal
modeling is very important, since based on theoretical results, the thermal behavior of the
solar still can be researched, and a parametric study can be carried out to optimize the
system without the need to manufacture it [6].

The first mathematical model proposed for a solar still was the one reported by Dunkle
in 1961 [19], where he introduced heat and mass transfer equations for a conventional
desalinator based on thermal circuit diagrams. Despite its constraints, this model is the most
popular, and it is still used by most researchers in the solar distillation field. Other popular
models are those proposed by Chen et al. (1984) and by Clark et al. (1990) to evaluate the
heat transfer coefficient [20]. Nonetheless, Kumar and Tiwari’s works (1996) allowed them
to formulate a more realistic mathematical model of these heat transfer coefficients for a
higher range of water temperatures, based on a linear regression analysis [21]. Likewise,
Adhikari et al. (1990) suggested a mathematical expression to estimate the production
of distilled water per hour in the solar still as a function of the vapor pressures and
temperatures of the water and glass cover [22].

The main objective of this research study is to verify the performance of a solar still
under the climatic conditions from the coast of the Gulf of Mexico, in addition to finding out
the design’s influence and operation parameters in freshwater abstraction. Similarly, the
effectiveness of a mathematical model and the associated kinetic coefficients are verified,
which allows for the simulation of real field conditions.

Main Hydrological Characteristics of Mexico

Mexico is located between meridians 118◦22′00” and 86◦42′36” of West longitude and
between 14◦32′27” and 32◦43′06” North latitude. The country has a rugged topographic
relief with a continental extension of 1,959,248 Km2. It has a great variety of climates. The
northwest and center of the country, which covers two-thirds of the territory, are considered
arid or semi-arid areas, with an annual rainfall of less than 500 mm. In contrast, the
southeast is humid, with average rainfall sometimes exceeding 2000 mm per year. During
the 1981–2010 period, the country’s average rainfall was 740 mm per year. According
to the precipitation estimation from 1981 to 2010, Mexico receives about 1,449,471 m3 of
water in precipitation form. With the latest hydrological calculations available for 2017, it is
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estimated that 72.15% of water evapotranspires and returns to the atmosphere, 24.77% runs
through rivers and streams, and the remaining 6.38% infiltrates and recharges the aquifers.
Nonetheless, renewable water per capita nationwide is expected to decline from 3692 m3

per capita year to 3250 m3 by 2030, due to population growth. Although Mexico experiences
a low degree of pressure on available water resources (19.5%) at the national level, there are
areas of the country with a high degree of stress on the water, such as the one located in the
Valley of Mexico, which experiences stress of around 141.4%. Similarly, there are densely
populated regions in the Mexican state of Veracruz with high levels of social marginality
which exert heavy pressure on water resources [23]. In addition, if only the demographic
effects are considered, according to the Falkenmark water stress criterion, by 2030 most
of the Mexican territory will be in water stress conditions (1000 to 1700 m3/inhabit/year),
scarcity (500 to 1000 m3/inhabit/year), or absolute scarcity (<500 m3/inhabit/year) [24].

2. Materials and Methods
2.1. Study Area Description

To obtain experimental data, field trials were conducted in La Guadalupe, Tecolutla-
Veracruz, Mexico. The site coordinates are 20◦22′26” N and 97◦4′55” W. The rainy season is
hot, oppressive, and mostly cloudy in Tecolutla. The dry season is hot, muggy, and with
strong winds and partially overcast skies. Figure 1 shows the average pattern of radiation,
temperature, relative humidity, and cloudiness throughout the year in Tecolutla (data
obtained from the “General Heriberto Jara” climatological station located in the Veracruz
International Airport).
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Figure 1. Average annual climatic behavior in Tecolutla, Mexico. (a) Solar radiation, (b) Relative
humidity, (c) Ambient temperature, and (d) Cloudiness. The figures show the monthly average
behavior of each parameter and indicate their respective values per month. (The figure includes
standard error bars).
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The most radiant time of the year in Tecolutla is between mid-March and June, with a
daily average of solar energy per m2 in excess of 6.3 kWh, whereas May is the brightest
month of the year, with 6.82 kWh on average. The darkest month is December, with
4.15 kWh on average. Tecolutla has an extreme seasonal variation in humidity. The hottest
period encompasses 9.6 months between late February and early December, in which the
comfort level is sweltering, oppressive, or extremely humid at least 48% of the time. During
the year, the temperature ranges from 18 to 32 ◦C, and is rarely below 14 ◦C or above
34 ◦C. The probability of rainy days in Tecolutla varies remarkably throughout the year.
The season with the highest rainfall encompasses 4.4 months between June and October,
with a more than 45% probability that it will rain on any given day. The month with the
rainiest days in Tecolutla is September, with an average of 20.8 days with at least 1 mm of
precipitation. The dry season lasts 7.6 months between October and June. The month with
the fewest rainy days in Tecolutla is March, with an average of 5.4 days with at least 1 mm
of precipitation. September is the month with the most rain-only days, with an average of
20.8 days.

Climatic factors such as the solar radiation intensity, wind speed, ambient temperature,
relative humidity, and cloudiness directly influence the solar distillation productivity [16]
and, considering that the region of Tecolutla in Mexico receives high solar radiation and
presents conditions of relative humidity, ambient temperature, and cloudiness favorable to
evaporation-condensation processes, these condition allow for the implementation and use
of solar stills as a brackish water desalination system.

2.2. Field Trials and Statistical Data Management

Bearing in mind that cloudiness is a factor that directly affects the amount of solar
radiation on the Earth’s surface, it consequently reduces the performance of any solar
distillation system [18,25]. Thus, we decided to carry out the monitoring in August.
Tecolutla has high solar radiation, a high average temperature, and a low percentage
of cloudiness during this month, as compared to other months. The monitoring of the
solar prototype was performed between 23 and 28 August 2021. It is important to note that
Hurricane Grace crossed the study area on 21 August that year. Therefore, we considered
the influence of this storm in our analysis of the results. Field trials were carried out between
8:00 a.m. and 6:00 p.m. on each monitoring day, depending on the sunrise and sunset. With
the obtained data, a statistical analysis of its variance was performed through ANOVA,
using the trial version of the Statgraphics Centurion XVI software. The significance level
was established for a p-value < 0.05 for all cases.

The base area (0.054 m2) of the solar still prototype worked as a basin for the brackish
seawater. The material with which the solar still was built was a glass covered by a black
plastic film to conserve heat more efficiently inside the prototype. The solar still has a glass
cover inclined at 40◦, where the evaporated water is condensed in the heating container and
then stored in a freshwater compartment inside the solar still. For the test, 1 L of seawater
was placed in the heating tray through a lid located in the upper part of the still, and the
distilled water was extracted through a hole located in the front part of the prototype. The
system was sealed with silicone to prevent heat exchange from outside, as well as the entry
of dust, polluting particles, or external water vapor. General dimensions of the solar still
are shown in Figure 2.

Additionally, a basin with an area like the still basin worked as a control. A smart
weather station, Ambient Weather brand, WS-2902C model, was used, with the capacity
to measure solar radiation, relative humidity, ambient air temperature, wind direction,
and speed in the field. A laser beam temperature meter and K-type thermocouples were
used for the digital multimeter to measure the temperature both inside and outside the
prototype and the control. Figure 3 shows the equipment used in the field monitoring.



Water 2022, 14, 1567 5 of 20

Water 2022, 14, x FOR PEER REVIEW 5 of 21 
 

 

as well as the entry of dust, polluting particles, or external water vapor. General 

dimensions of the solar still are shown in Figure 2. 

  
(a) (b) 

Figure 2. Solar still used in the field trials: (a) side view and (b) front view. The solar still is 0.50 m 

long and 0.30 m high and wide, respectively. The walls of the solar still were built in glass with a 

thickness of 5 mm and the water basin was in metal (area = 0.054 m2). It was covered with black 

adhesive paper to improve the absorptivity of solar radiation and increase the internal heat of the 

solar still. 

Additionally, a basin with an area like the still basin worked as a control. A smart 

weather station, Ambient Weather brand, WS-2902C model, was used, with the capacity 

to measure solar radiation, relative humidity, ambient air temperature, wind direction, 

and speed in the field. A laser beam temperature meter and K-type thermocouples were 

used for the digital multimeter to measure the temperature both inside and outside the 

prototype and the control. Figure 3 shows the equipment used in the field monitoring. 

 

Figure 3. Equipment used for in-field monitoring. The instruments used in the monitoring are 

shown, including the control basin, the weather station, laser thermometer, multimeters, and the 

thermocouples installed in the solar still. 

2.3. Proposed Mathematical Model for the Solar Still 

For the solar still used in the tests, the mathematical model proposed was based on 

the original model from Dunkle [19]. Dunkle’s model is important, since it clearly defines 

Figure 2. Solar still used in the field trials: (a) side view and (b) front view. The solar still is 0.50 m
long and 0.30 m high and wide, respectively. The walls of the solar still were built in glass with a
thickness of 5 mm and the water basin was in metal (area = 0.054 m2). It was covered with black
adhesive paper to improve the absorptivity of solar radiation and increase the internal heat of the
solar still.
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2.3. Proposed Mathematical Model for the Solar Still

For the solar still used in the tests, the mathematical model proposed was based on the
original model from Dunkle [19]. Dunkle’s model is important, since it clearly defines the
coefficients of heat transfer by convection and evaporation, based on physical parameters
that occur inside the solar still (the water and glass temperature). This model has also been
widely used by other authors such as Jamil et al. (2021) [25], as well as Duffie and Beckman
(2013) [26], and Antar et al. (2010) [27], who reported good simulation results.
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Figure 4 shows the geometry and energy transfer mechanisms considered in this
research study.
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To perform the energy balance in the solar still, we considered the following assump-
tions [20], namely:

1. There were no steam leaks from the solar still.
2. Water mass in the solar distillation basin was presumed to be constant.
3. Water mass loss by evaporation was negligible.
4. The temperature gradient along the depth of the body of water was negligible.
5. The heat and absorption capacities were negligible, and the heat and absorption

capacities for the cover glass and insulation material were also negligible.
6. The glass cover inclination concerning the horizontal was negligible.
7. The areas of the glass and water surfaces were similar to the surface of the container

holding the seawater.

Figure 4 shows the energy balance from the solar still (see also Equation (1)).

Q. = Q.
rt −Q.

wg −Q.
ga (1)

In Equation (1) Q. is the net heat of the system, Q.
rt is the incident thermal radiation that

reaches the water body, Q.
wg is the total energy loss (heat by convection, evaporation, and

radiation) from the water to the glass cover, and Q.
ga is the energy loss (heat by convection

and radiation) from the glass cover to the environment. Figure 5 shows a more detailed
breakdown of the different elements that intervene in the general balance of the water mass,
described in Equation (1).
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In Figure 5, the incident thermal radiation (Q.
rt) is a function of the global radia-

tion in the study area I(t) in W/m2, water absorptivity (αw, dimensionless), and glass
transmissivity (τ, dimensionless), as indicated in the following Equation (2):

Q.
rt = αwτ I(t), (2)

Contrastingly, the total energy loss from the water to the glass cover is as follows:

Q.
wg = QC

wg + Qr
wg + Qe

wg, (3)
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where QC
wg is the heat transfer from the water to the glass cover by convection, Qr

wg is the
heat transfer from the water to the glass cover by radiation, and Qe

wg is the heat transfer
by evaporation, all in units of W/m2. Equations (4)–(6) show each of these heat transfers
as follows:

QC
wg = hc

(
Tw − Tg

)
. (4)

Here, hc is the convection heat transfer coefficient (W/m2 ◦C), and Tw and Tg are the
water and the glass temperatures measured in ◦C, respectively.

Qr
wg = εe f f σ

[
(Tw + 273)4 −

(
Tg + 273

)4
]
. (5)

In Equation (5), εe f f is the effective emissivity from the water surface to the glass cover,
and σ is the Stefan–Boltzmann constant, equivalent to 5.67 × 10−8 W/m2 K4 [28].

Qe
wg = hec

(
Tw − Tg

)
(6)

where hec is the heat transfer coefficient by evaporation between the water and the glass
cover (W/m2 ◦C) [28,29].

Conversely, considering that the net heat (Q.) is equal to the change in the internal
energy of the system (U) as a time function, it is possible to propose an energy balance from
a batch system in a non-isothermal state, particularly as follows:

Q. =
dU
dt

=
d(mwu)

dt
= mw

du
dt

+ u
dmw

dt
= mwCw

dTw

dt
(7)

In Equation (7), the term dmw
dt is null, since the change in water mass (mw) is a function

of time, i.e., the evaporation rate is low and negligible according to the assumptions made
for the model. Equalizing Equations (1) and (7), and if Q.

ga is neglected, since it does not
directly intervene in the water condensation process, we have the following:

Q. = Q.
rt −Q.

wg = mwCw
dTw

dt
, (8)

Here, Cw represents the water-specific heat and Tw represents the water temperature.
If Equation (2) is replaced in Equation (8), and the result is left as a function of the incident
thermal radiation, we can rewrite the differential equation. So, it follows that:

αwτ I(t) = mwCw
dTw

dt
+ Q.

wg (9)

To this extent, the energy and mass balance of water can be described as the energy
absorbed from solar radiation = the energy stored + the energy lost to the glass inner surface
by convection, evaporation, and radiation [20]. Equation (9) represents the differential
equation of the energy balance on the water in the basin (and on the basin itself), per unit
area of the basin [26].

To estimate the heat transfer coefficient by natural convection hc, radiation hr, and
evaporation hec between the water mass and the inner surface of the glass cover, the
following equations proposed by Dunkle can be used [20,26–31]:

hc = 0.884 ×
[(

Tw − Tg
)
+

(
Pw − Pg

)
(Tw + 273.15)

268.9× 103 − Pw

] 1
3

, (10)

hr =
εe f f σ

[
(Tw + 273)4 −

(
Tg + 273

)4
]

(
Tw − Tg

) , (11)
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hec =
hc
(
16.28× 10−3)(Pw − Pg

)(
Tw − Tg

) . (12)

The saturation vapor pressures at water temperature (Pw) and the temperature of
the inner surface of the glass cover, in units of N/m2, are evaluated using the following
expressions [20,32]:

Pw = exp
[

25.317−
(

5144
Tw + 273

)]
, (13)

Pg = exp
[

25.317−
(

5144
Tg + 273

)]
. (14)

Finally, the hourly distillate per unit basin area (Mw), daily distillate per unit basin
area (M′w), and efficiency of the solar still η are given by the following relations [29]:

Mw = hec
(
Tw − Tg

)
× 3600

Lev
, (15)

M′w = ∑24
i=1 Mw, (16)

η =
M′w × Lev

Ab ×∑ I(t) × ∆t
. (17)

where Lev is the latent heat of vaporization of water (J/kg), Ab is the basin liner surface
area of still (m2), and ∆t is the fraction of the day when the monitoring was performed.

2.4. Statistical Indicators for the Performance Evaluation of the Mathematical Model

The performance and statistical fit of the model were measured through the following
five standard statistical metrics: absolute error (AE), percent relative error (PRE), correlation
coefficient (R), determination coefficient (R2), and mean absolute percent error (MAPE).
Equations (18)–(22) define these performance measures [20,33–35] as follows:

AE = |yi − qi|. (18)

PRE =
AE
yi
× 100. (19)

R =
∑n

i=1
(
yi − y−i

)(
qi − q−i

)√
∑n

i=1
(
yi − y−i

)2
∑
(
qi − q−i

)2
. (20)

R2 =

 ∑n
i=1
(
yi − y−i

)(
qi − q−i

)√
∑n

i=1
(
yi − y−i

)2
∑
(
qi − q−i

)2

2

(21)

MAPE =
1
N ∑n

i=1

∣∣∣∣yi − qi
yi

∣∣∣∣× 100. (22)

where yi is the experimental value measured, and qi corresponds to the predictive value of
the model in the time interval “i”. The values y−i and q−i are the averages of the measured
and predicted values, respectively. N corresponds to the data number of “i”.

The first two statistical indicators (Equations (18) and (19)) were used to measure the
error between the experimental and predictive data of the model for each time interval, and
the other three (Equations (20)–(22)), were used to evaluate the general fit of the predictive
mathematical model with the experimental data found in the monitoring sessions. When R
is greater than 0.8, the predictive and experimental values are highly correlated. Similarly,
an R2 close to 1 indicates that the model values fit very well and are close to the values
found experimentally [33,36]. An R2 of 0.65 to 0.75 indicates outstanding performance,
while an R2 of less than 0.50 indicates poor performance [34,37].
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On the other hand, MAPE indicates how large the model’s predictive errors are com-
pared to the experimental values. Furthermore, it is the best indicator to classify the statisti-
cal model based on its performance. Using MAPE, the predictive performance of a model
can be considered as follows: excellent (0% ≤MAPE ≤ 10%), good (10% < MAPE ≤ 20%),
fair (20% ≤MAPE< 50%), or inaccurate (50% ≤MAPE) [33,34].

3. Results and Discussion
3.1. Seawater in the Control Basin

To verify the seawater evaporation potential under the climatic conditions of the test
site, a control basin with the same volume of water as that of the distiller was used, i.e., 1 L
of seawater. Figure 6 shows temperature behavior in the seawater and the control basin
walls, respectively.

Water 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

model can be considered as follows: excellent (0% ≤ MAPE ≤ 10%), good (10% < MAPE ≤ 

20%), fair (20% ≤ MAPE< 50%), or inaccurate (50% ≤ MAPE) [33,34]. 

3. Results and Discussion 

3.1. Seawater in the Control Basin 

To verify the seawater evaporation potential under the climatic conditions of the test 

site, a control basin with the same volume of water as that of the distiller was used, i.e., 1 

L of seawater. Figure 6 shows temperature behavior in the seawater and the control basin 

walls, respectively. 

 

(a) 

 

(b) 

Figure 6. Temperature behavior in the control: (a) Water temperature and (b) Temperature of the 

control walls. The colors in the lines indicate the temperature of each monitored day. 

After verifying the general fulfillment of the independence hypothesis, normality, 

and data homogeneity, an ANOVA was performed [38] to compare whether the mean 

temperatures of the seawater and the control exposed to solar radiation showed 

statistically significant differences between the different days monitored. p-values of 0.23 

and 0.20 were found for the water temperature and walls inside the control, respectively. 

Considering that both values are greater than 0.05, it is possible to affirm thFigurasat there 

10

15

20

25

30

35

40

45

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0:

00

1
0:

30

1
1:

00

1
1:

30

1
2:

00

1
2:

30

1
3:

00

1
3:

30

1
4:

00

1
4:

30

1
5:

00

1
5:

30

1
6:

00

1
7:

00

1
7:

30

1
8:

00

Te
m

p
er

at
u

re
 (
ºC

)

Hour

23/08/21

24/08/21

25/08/21

26/08/21

27/08/21

28/08/21

10

15

20

25

30

35

40

45

50

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0:

00

1
0:

30

1
1:

00

1
1:

30

1
2:

00

1
2:

30

1
3:

00

1
3:

30

1
4:

00

1
4:

30

1
5:

00

1
5:

30

1
6:

00

1
7:

00

1
7:

30

1
8:

00

Te
m

p
e

ra
tu

re
 (
ºC

)

Hour

23/08/21

24/08/21

25/08/21

26/08/21

27/08/21

28/08/21

Figure 6. Temperature behavior in the control: (a) Water temperature and (b) Temperature of the
control walls. The colors in the lines indicate the temperature of each monitored day.
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After verifying the general fulfillment of the independence hypothesis, normality,
and data homogeneity, an ANOVA was performed [38] to compare whether the mean
temperatures of the seawater and the control exposed to solar radiation showed statistically
significant differences between the different days monitored. p-values of 0.23 and 0.20 were
found for the water temperature and walls inside the control, respectively. Considering that
both values are greater than 0.05, it is possible to affirm thFigurasat there is no statistically
significant difference between the mean temperatures of both seawater and the control,
with a 95% confidence level [39], i.e., the behavior of these temperatures was very similar
throughout the days monitored. The water temperature remained between 24.8 ◦C and
41.9 ◦C, while the control temperature was between 25.4 ◦C and 45.4 ◦C, with the highest
temperatures occurring between 1:00 p.m. and 3:00 p.m.

The aforementioned results follow the climatic conditions expected in the month and
at the site where the monitoring was carried out. The average rate of seawater evaporation
in the control was 4.94 L/m2-d. This value is higher than the reported rate of evaporation
in tropical countries such as Indonesia, which is about 3.50 L/m2-d [40]. This evaporation
rate favors the solar still performance, characterized by low efficiencies (around 36%) [41].
Therefore, the higher the average evaporation rate of seawater under natural conditions,
the higher the rate of distillation efficiency in the solar still.

3.2. Solar Radiation during Test Days

Solar radiation during the first days was affected by Hurricane Grace, which hit the
region two days before the experiments started. Figure 7 shows solar radiation in the study
area during the monitoring days.
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Figure 7. Solar radiation in the study area during test days. The central value of the box-and-whisker
plot is the median of the data, the “+” represents the mean, and the lower and upper borders
correspond to the first and third quartiles, respectively. Finally, the ends of the whiskers correspond
to the minimum and maximum values of the analyzed data.

To verify if there are statistically significant differences in solar radiation among the
days monitored, an ANOVA was used, previously checking the conditions of the data
normality, independence, and homogeneity. A p-value equal to 0.009, less than 0.05, was
found for the ANOVA, i.e., there is at least one statistically significant difference between
the means of radiation between one or several days during the test, with a 95% confidence
level. To determine which means are significantly different from others, the multiple
range test was applied [39]. Table 1 shows the results obtained from Duncan’s multiple
range test, used to find significant differences between the means of solar radiation on the
days monitored.
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Table 1. Results of Duncan’s multiple range test for mean solar radiation during the monitoring days.

Contrast Significance Difference +/−Limits

23–24 August 2021 −89.8619 164.141
23–25 August 2021 * −257.883 150.519
23–26 August 2021 * −159.46 141.719
23–27 August 2021 −7.23524 141.719
23–28 August 2021 −90.4552 141.719
24–25 August 2021 * −168.021 173.216
24–26 August 2021 * −69.5983 165.627
24–27 August 2021 82.6267 165.627
24–28 August 2021 −0.593333 165.627
25–26 August 2021 98.4225 152.138
25–27 August 2021 * 250.647 152.138
25–28 August 2021 * 167.428 152.138
26–27 August 2021 152.225 143.437
26–28 August 2021 69.005 143.437
27–28 August 2021 −83.22 143.437

* Indicates a significant difference.

According to the results shown in Table 1, days 23, 24, and 25 have statistically signif-
icant differences from the rest of the days monitored, mainly due to the high cloudiness
that occurred on 23 August and the rainfall in the morning of the 24th and 25th of that
month. Consequently, it was decided to exclude days 24 and 25 from the ANOVA, since
data were only recorded in the afternoon hours, after the rain events. Nonetheless, day 23
was included in the new ANOVA, because radiation data were recorded throughout that
day. Correspondingly, 26–28 August were included. Table 2 shows the ANOVA results to
compare the means of the selected days.

Table 2. ANOVA between the means of solar radiation on 23, 26, 27, and 28 August.

Source Sum of Squares DF Mean Squares F-Value p-Value

Between Groups 346,691 3 115,564 1.96 0.127
Within Groups 4,539,740 77 58,957.6

Total (Corr.) 4,886,430 80

Because the p-value is greater than 0.05, there is no statistically significant difference
among the mean solar radiation of the analyzed days, with a 95% confidence level. With
this statistical certainty, an average solar radiation curve was constructed to include this
factor in the proposed simulation model for the solar still. Figure 8 shows the average
behavior of solar radiation during the monitored days.

3.3. Relative Humidity during Test Days

The relative humidity is the amount of water vapor in the air, expressed as a percentage
of the amount needed to achieve saturation at a given pressure and temperature [42]. It has
been shown that high levels of relative humidity in the environment favor the systemic
performance of solar stills [43–45]. Figure 9 shows the relative humidity recorded at the
monitoring site, during the test days.

When performing the ANOVA to verify differences between the means of relative
humidity (%RH) from the different selected days, it was found that the data p-value was
less than 0.05 (p-value = 0.0002), i.e., there is a statistically significant difference between the
mean %RH for at least one day compared to the other days, with a 95.0% confidence level.
Duncan’s multiple range test was applied to identify which day or which days showed
these differences. It was found that 23 August showed statistically significant differences in
%RH with the other selected days. Table 3 shows the results of Duncan’s multiple range
test for %RH of the days considered.
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Figure 8. Average solar intensity during field trials. The continuous line represents the average
experimental values of solar radiation, recorded every hour during the monitoring days. The dashed-
dotted line represents the third-degree polynomial trend line of the experimental values, including
the polynomial equation and its coefficient of determination R2.
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Figure 9. Relative humidity in the study area during the selected days of the test. The central value
of the box-and-whisker plot is the median of the data, while the “+” represents the mean. The lower
and upper borders correspond to the first and third quartiles, respectively. Finally, the ends of the
whiskers correspond to the minimum and maximum values of the analyzed data.

Table 3. Results of Duncan’s multiple range test for relative humidity means.

Contrast Significance Difference +/−Limits

23–26 August 2021 * 6.74762 3.75432
23–27 August 2021 * 7.19762 3.75432
23–28 August 2021 * 7.74762 3.75432
26–27 August 2021 0.45 3.79983
26–28 August 2021 1.00 3.79983
27–28 August 2021 0.55 3.79983

* Indicates a significant difference.
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Although on 23 August there was a higher %RH (between 73% and 94%) at the test
site, higher than the other selected days, the solar still desalination rate was the lowest
(0.56 L/m2-d), contrary to expectations. This poor performance of the solar still could be
due to the low solar radiation recorded that day, caused by the high cloud cover left after
Hurricane Grace crossed the test site. Solar still efficiency is influenced by cloud cover,
because it directly affects the amount of solar radiation absorbed by the solar still [46].

3.4. Temperatures in the Prototype and Ambiance

Temperatures were measured inside the solar still, at both seawater Tw and glass
surface Tg where the condensation of the freshwater occurs. Additionally, the temperature
in the external part of the glass Tog and the ambience Ta were recorded. Figure 10 shows a
schematic of the places where these temperatures were taken using K-type thermocouples
connected to a fluke-type data logger. Data were recorded every 30 min.
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Figure 10. Location of the temperatures measured for the solar still tests. The location of the
places where the temperature readings were taken using the thermocouples Tw and Tg and the laser
thermometer Tog and Ta are shown.

Figure 11 shows the behavior of average temperatures, both inside and outside the
prototype. For the selection of the days used to build this figure, an ANOVA, Duncan’s
multiple range tests, and the Kruskal–Wallis test were used to define on which days the
temperatures showed statistically significant differences. It was found that the temperatures
measured on 23 August showed significant differences with days 26, 27, and 28 from the
same month, because the p-value of the data from the ANOVAs was greater than 0.05.
In consequence, it was not considered. This is consistent with the behavior of relative
humidity and solar radiation, as previously discussed.

The ambience in the morning hours was 25 ◦C, and it increased from 10:30 a.m. to
values close to 30 ◦C. This temperature remained constant until the end of the day. By
contrast, the other temperatures (Tw, Tg, Tog) had an ascending behavior in the morning
hours, and a descending one at the end of the day, depending on the available solar
radiation (see Figure 11). The highest temperature recorded corresponds to the water
temperature, with values close to 45 ◦C, which reflects the heating capacity of the solar
still. The internal temperature of the glass was much lower than the other temperatures
reported, favoring the water vapor condensation inside the prototype.

3.5. Removal of Physicochemical Parameters during the Tests

The removal of some physicochemical parameters from seawater after desalination
treatment with the prototype was evaluated. A Hanna instruments model HI98194 multi-
parametric meter was used to measure pH, salinity, dissolved oxygen, and total suspended
Solids. Additionally, a Thermo Orion AQ 3010 digital Turbidimeter was used to mea-
sure turbidity.
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Table 4 shows the physicochemical values of the water sample, before and after the
solar desalination process.

Table 4. Physicochemical parameters of the sea and distilled water.

Water Quality Parameter Seawater Distillate Sample Range *

pH 7.75 6.85 6.5–8.5
Dissolved oxygen (mg/L) 3.77 4.70 No guidance value set
Salinity (ppm) 2250 74.00 No guidance value set
Total Suspended Solids (mg/L) 1.62 0.0275 No guidance value set
Turbidity (NUT) 0.59 0.02 5.0
Fecal coliforms/E. coli
(NMP/100 mL) ** Absence Absence Absence

* According to the standards of the World Health Organization [47]. ** It was made from the ISO 4832 method.

For the most part, the removal of salinity, turbidity, and total suspended solids was
achieved in a high percentage (96.7%, 96.6%, and 98.3%, respectively), representing high
viability in terms of water quality and the use of the solar still. Consistently, and following
the drinking water quality standards from the World Health Organization, pH final values,
turbidity, and fecal coliforms allow the direct consumption of the effluent water from the
solar still after disinfection as a preventive sanitary measure, i.e., to avoid contamination
after the distillation process.

3.6. Mathematical Model

The mathematical model used to simulate the theoretical values Tw is shown in
Equation (9). Rewriting Equation (9) in terms of dTw

dt and substituting the values Q.
wg from

Equation (3), we obtain the following:

dTw

dt
=

(
1

mwCw

)(
αwτ I(t) −QC

wg −Qr
wg −Qe

wg

)
. (23)
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On the other hand, the following equations allow for the calculation of Tg, based on
the solar intensity, Tw, and other parameters [20,29]:

Tg =
α′g I(t) + ht

wg × Tw + Ut
ga × Ta

ht
wg + Ut

ga
, (24)

α′g =
(
1− Rg

)
αg, (25)

ht
wg = hc + hec + hr, (26)

ht
ga = 5.7 + 3.8v, (27)

Ut
ga =

(Kg
/

Lg

)
× ht

ga(Kg
/

Lg

)
+ ht

ga

. (28)

where αg is the thermal absorptivity of glass, α′g is a fraction of solar flux absorbed by glass
cover, Rg is the reflectivity of glass cover, ht

wg is the total heat transfer coefficient from basin
water to glass cover, ht

ga is the total heat transfer coefficient from glass cover to ambience, v
is the velocity in m/s, Ut

ga is the overall heat loss coefficient from glass cover inner surface
to the atmosphere, Kg is the thermal conductivity glass, and Lg is the thickness of glass.

The Excel computer software was used to solve this differential equation and the
others described in the Dunkle model by applying Euler’s method. The results of the
theoretical thermal model were then validated by comparing them with the experimental
results obtained in this research study [29], considering the statistical indicators to measure
the model fit.

Considering that Tw, Tg, hc, and hec values in the solar still vary as a function of time,
a numerical approach was used for their calculations, following the procedure described
by Mowla et al. [48], as follows:

1. The initial heat transfer coefficients were estimated using the initial values of Tw and
Tg, the specifications of the solar still, and other climatic parameters.

2. Knowing the heat transfer coefficients, the Tw for the following time interval was
estimated using Euler’s method to solve the derivative stated in Equation (23).

3. Using the new Tw value, Tg was calculated from Equation (24) and the heat transfer
coefficients were calculated again, and step 2 was repeated for the other time interval,
and so on.

4. During each time interval, Tw and Tg, heat transfer coefficients and climatic parameters
were assumed to be constant, so the water evaporation rate was estimated for each
time interval and, as a result, the total amount of freshwater production for that time
interval was estimated.

5. For each time interval, the water amount in the basin was considered as the initial
amount of water fed to the solar still minus the total amount of water evaporated up
to that moment.

The set of design parameters and initial data to simulate the model are shown in
Table 5.

Table 5. Physical input design parameters of the solar still prototype.

Parameters Symbol Value Units Reference

Initial basin water temperature Tw 26.50 ◦C -
Initial glass cover temperature Tg 26.00 ◦C -
Ambient temperature (average) Ta 29.17 ◦C -
Mass of water in the basin mw 1 Kg -
Basin liner surface area of still Ab 0.054 m2 -
Velocity of wind (average) v 3.0 m/s -
Thickness of glass Lg 0.005 m -



Water 2022, 14, 1567 16 of 20

Table 5. Cont.

Parameters Symbol Value Units Reference

Thermal absorptivity of water αw 0.30 Dimensionless [28,29]
Thermal absorptivity of glass αg 0.05 Dimensionless [28,29]
Fraction of solar flux absorbed
by a glass cover α′g 0.0475 Dimensionless [28,29]

Reflectivity of the glass cover Rg 0.05 Dimensionless [28,29]
Glass transmissivity τ 0.90 Dimensionless [28]
Heat capacity of water Cw 4180 J/Kg ◦C [29]
Stefan–Boltzmann constant σ 5.67× 10−8 W/m2 K4 [29]
Latent heat of vaporization
of water Lev 2,264,300 J/Kg [29]

Effective emissivity between the
water surface and the glass εe f f 0.90 Dimensionless [49]

Thermal conductivity
glass (average) Kg 0.780 W/m ◦C [50]

Time interval for Euler’s method
(Step size) ∆t 0.10 Hours [48]

Figure 12 shows the results for theoretical Tw, obtained by the model and the experi-
mental data found in the field.
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Table 6 shows the results of the statistical indicators used to evaluate the closeness of
fit of the Tw theoretical curve, found with the mathematical model, compared with the
experimental data of Tw.

Table 6. Results of the statistical indicators used to evaluate the general adjustment of the model.

Statistical Metrics Symbol Value Units

Correlation Coefficient R 0.967 Dimensionless
Determination Coefficient R2 0.935 Dimensionless
Mean Absolute Percent Error MAPE 8.646 Percent (%)

According to the statistical metrics shown in Table 6, the Tw theoretical model ade-
quately and accurately predicts the real values of water temperature. The estimated R of
0.967 indicates that the predictive and experimental values are highly correlated, and that
the R2 of 0.935 shows that the model values fit very well and are close to the Tw experi-
mental values. Contrastingly, MAPE of 8.646% suggests that the predictive performance
of the model can be considered excellent (0% ≤MAPE ≤ 10%). Nevertheless, when the
statistical metrics of absolute error (AE) and percent relative error (PRE) are applied to each
measure of time, there are two clearly defined intervals. The first interval comprises from
8:00 a.m. to 11:30 a.m., with a PRE of between 0.73% and 5.81%, indicating an excellent fit
of the model with the experimental data. A second time interval is between 11:30 a.m. and
5:30 p.m., with a PRE of between 8.52% and 18.81%, showing a good fit but not as good as
that of the previous intervals. Finally, between 5:30 p.m. and 6:00 p.m., a PRE of 3.26% was
found, which indicates good proximity between the model and the final experimental data
recorded. The time intervals where the bias of the model was greater may be due to the site
climatic conditions during the days in which the tests were carried out, especially due to
the influence of the high cloudiness and the occurrence of Hurricane Grace in the study
area during the days before the tests.

Figure 13 shows the hourly variation of the heat transfer coefficients according to the
results found in the simulation of the mathematical model.
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The technical literature for solar stills has reported values for the convective (hc)
and evaporative (hec) heat transfer coefficients in a range of 1.65 to 2.58 W/m2 ◦C and
8.00 to 35.00 W/m2 ◦C, respectively [51]. According to Figure 13, values estimated by
the mathematical model for hc are between 0.75 to 2.01 W/m2 ◦C, while for hec they are
between 2.37 to 16.63 W/m2 ◦C. Consequently, the values of hc and hec determined by the
theoretical model are below the values reported in the literature. The values of hc and
hec simulated by the model agree with the behavior of the theoretical Tw, since they were
calculated from Tw and Tg according to the equations proposed by Dunkle. That is to say,
the heat transfer coefficients are directly proportional to the water and glass temperatures,
meaning that the higher Tw and Tg, the higher values of hc and hec will be reported by the
mathematical model. These parameters directly affect the final productivity of distilled
water in the solar still.

Finally, the production rate of distilled water and the efficiency of the solar still, both
theoretical and experimental, are shown in Table 7.

Table 7. Theoretical and experimental rates and efficiencies of distilled water production in the
solar still.

Parameters Symbol Theoretical Experimental

Daily distillate per unit basin
area (Kg/m2-d) M′w 2.367 1.57

Solar still efficiency (%) η 30.22 20.04

The theoretical and experimental distillation rate, as well as the efficiency of the
distiller, showed marked differences. When comparing the M′w of the solar still in the
particular conditions of time and place where the tests were carried out, with the M′w
reported in other sites (2.0 < M′w < 5.0 Kg/m2 day) [52,53], the experimental rate found in
this study is below the expected performance, demonstrating the influence of the climatic
factors in the performance of the solar still. Primarily, these factors were the low solar
radiation and cloudiness present on the days when the tests were carried out.

4. Conclusions

The average values of solar radiation, relative humidity, cloud cover, and to a great
extent, the climatic conditions of the “La Guadalupe” sector on the coast of the Gulf of
Mexico are adequate for the operation of a single-slope solar still. However, the solar still
performance was affected by the climatic conditions present during the test days, mainly the
low solar radiation and the high variability of cloud cover throughout each monitored day.
The was due to the occurrence of Hurricane Grace, which hit the region where this study
was carried out two days before the start of the experiments. Nonetheless, and although
the correlations proposed in the Dunkle model are valid for operating temperatures around
50 ◦C, the values of the parameters simulated by this mathematical model show an excellent
fit and a very good approximation concerning the water temperature values (Tw) recorded
experimentally. As a direct consequence of the climatic factors mentioned, M′w and η
achieved in the solar still were also low, even below other production and performance
rates reported in other latitudes of the world, demonstrating the significance of the climate
factors on the performance of the solar still.

Effluent water from solar still is of excellent quality and could be used in places with
high water stress. Nonetheless, complementary physicochemical quality studies must be
carried out to identify its potential use as water for human consumption.

Finally, solar stills represent a viable alternative for the solution (on a small scale) of
the freshwater deficit in vulnerable populations located in coastal areas, especially those in
tropical and developing countries.
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