Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Methods
3. Results and Discussion
3.1. Spatial and Temporal Distribution of Total Phosphorus Concentrations
3.2. Relationship between Pt Concentrations and Environmental Settings
3.3. Relationship of Pt Concentration and Stream Discharge and Fluxes of Pt
3.4. Management Recommendations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Wang, Z. Water-Land Resource Carrying Capacity in China: Changing Trends, Main Driving Forces, and Implications. J. Clean. Prod. 2022, 331, 130003. [Google Scholar] [CrossRef]
- Muhati, G.L.; Olago, D.; Olaka, L. Participatory Scenario Development Process in Addressing Potential Impacts of Anthropogenic Activities on the Ecosystem Services of Mt. Marsabit Forest, Kenya. Glob. Ecol. Conserv. 2018, 14, e00402. [Google Scholar] [CrossRef]
- Sullivan, P.L.; Billings, S.A.; Hirmas, D.; Li, L.; Zhang, X.; Ziegler, S.; Murenbeeld, K.; Ajami, H.; Guthrie, A.; Singha, K.; et al. Embracing the Dynamic Nature of Soil Structure: A Paradigm Illuminating the Role of Life in Critical Zones of the Anthropocene. Earth-Sci. Rev. 2022, 225, 103873. [Google Scholar] [CrossRef]
- Rather, Z.A.; Ahmad, R.; Dar, T.-U.-H.; Khuroo, A.A. Ensemble Modelling Enables Identification of Suitable Sites for Habitat Restoration of Threatened Biodiversity under Climate Change: A Case Study of Himalayan Trillium. Ecol. Eng. 2022, 176, 106534. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, G.; Casazza, M.; Dumontet, S.; Yang, Z. Ecosystem Restoration Programs Challenges under Climate and Land Use Change. Sci. Total Environ. 2022, 807, 150527. [Google Scholar] [CrossRef] [PubMed]
- Van den Heuvel, L.; Blicharska, M.; Masia, S.; Sušnik, J.; Teutschbein, C. Ecosystem Services in the Swedish Water-Energy-Food-Land-Climate Nexus: Anthropogenic Pressures and Physical Interactions. Ecosyst. Serv. 2020, 44, 101141. [Google Scholar] [CrossRef]
- Alamdari, N.; Claggett, P.; Sample, D.J.; Easton, Z.M.; Nayeb Yazdi, M. Evaluating the Joint Effects of Climate and Land Use Change on Runoff and Pollutant Loading in a Rapidly Developing Watershed. J. Clean. Prod. 2022, 330, 129953. [Google Scholar] [CrossRef]
- Djodjic, F.; Bieroza, M.; Bergström, L. Land Use, Geology and Soil Properties Control Nutrient Concentrations in Headwater Streams. Sci. Total Environ. 2021, 772, 145108. [Google Scholar] [CrossRef]
- Cocozza, C.; Brilli, F.; Pignattelli, S.; Pollastri, S.; Brunetti, C.; Gonnelli, C.; Tognetti, R.; Centritto, M.; Loreto, F. The Excess of Phosphorus in Soil Reduces Physiological Performances over Time but Enhances Prompt Recovery of Salt-Stressed Arundo Donax Plants. Plant Physiol. Biochem. 2020, 151, 556–565. [Google Scholar] [CrossRef]
- Barceló, D.; Sabater, S. Water Quality and Assessment under Scarcity: Prospects and Challenges in Mediterranean Watersheds. J. Hydrol. 2010, 383, 1–4. [Google Scholar] [CrossRef]
- Furtado, A.P.F.V.; de Almeida Monte-Mor, R.C.; de Aguiar do Couto, E. Evaluation of Reduction of External Load of Total Phosphorus and Total Suspended Solids for Rehabilitation of Urban Lakes. J. Environ. Manag. 2021, 296, 113339. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Vogt, R.D.; Carstensen, J.; Lin, Y.; Feng, J.; Lu, X. Riverine Flux of Dissolved Phosphorus to the Coastal Sea May Be Overestimated, Especially in Estuaries of Gated Rivers: Implications of Phosphorus Adsorption/Desorption on Suspended Sediments. Chemosphere 2022, 287, 132206. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Yu, L.; Ye, X.; Yu, Z.; Wang, D.; Guan, Y.; Cui, B.; Liu, X. Dynamics of Phosphorus Fractions in Surface Soils of Different Flooding Wetlands before and after Flow-Sediment Regulation in the Yellow River Estuary, China. J. Hydrol. 2020, 580, 124256. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, M.; Zhang, L.; Li, J.; Nan, S.; Peng, T. Flux and Spatial Pattern of Phosphorus in the Shigatse Section of the Yarlung Zangbo River, China. Ecol. Indic. 2022, 135, 108552. [Google Scholar] [CrossRef]
- Castro Berman, M.; O’ Farrell, I.; Huber, P.; Marino, D.; Zagarese, H. A Large-Scale Geographical Coverage Survey Reveals a Pervasive Impact of Agricultural Practices on Plankton Primary Producers. Agric. Ecosyst. Environ. 2022, 325, 107740. [Google Scholar] [CrossRef]
- Schippers, P.; van de Weerd, H.; de Klein, J.; de Jong, B.; Scheffer, M. Impacts of Agricultural Phosphorus Use in Catchments on Shallow Lake Water Quality: About Buffers, Time Delays and Equilibria. Sci. Total Environ. 2006, 369, 280–294. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, B.; Zhou, M.; Hu, L.; Jiang, S.; Wang, Z. Nutrient Loss from Slope Cropland to Water in the Riparian Zone of the Three Gorges Reservoir: Process, Pathway, and Flux. Agric. Ecosyst. Environ. 2020, 302, 107108. [Google Scholar] [CrossRef]
- De Mello, K.; Valente, R.A.; Randhir, T.O.; dos Santos, A.C.A.; Vettorazzi, C.A. Effects of Land Use and Land Cover on Water Quality of Low-Order Streams in Southeastern Brazil: Watershed versus Riparian Zone. CATENA 2018, 167, 130–138. [Google Scholar] [CrossRef]
- Beckert, K.A.; Fisher, T.R.; O’Neil, J.M.; Jesien, R.V. Characterization and Comparison of Stream Nutrients, Land Use, and Loading Patterns in Maryland Coastal Bay Watersheds. Water Air Soil Pollut. 2011, 221, 255–273. [Google Scholar] [CrossRef]
- Hubbard, R.K.; Newton, G.L.; Hill, G.M. Water Quality and the Grazing Animal. J. Anim. Sci. 2004, 82 (Suppl. 13), E255–E263. [Google Scholar] [CrossRef]
- Uriarte, M.; Yackulic, C.B.; Lim, Y.; Arce-Nazario, J.A. Influence of Land Use on Water Quality in a Tropical Landscape: A Multi-Scale Analysis. Landsc. Ecol. 2011, 26, 1151–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Confesor, R.; Saleh, A.; King, K. Crop Growth, Hydrology, and Water Quality Dynamics in Agricultural Fields across the Western Lake Erie Basin: Multi-Site Verification of the Nutrient Tracking Tool (NTT). Sci. Total Environ. 2020, 726, 138485. [Google Scholar] [CrossRef] [PubMed]
- Van Staden, T.L.; Van Meter, K.J.; Basu, N.B.; Parsons, C.T.; Akbarzadeh, Z.; Van Cappellen, P. Agricultural Phosphorus Surplus Trajectories for Ontario, Canada (1961–2016), and Erosional Export Risk. Sci. Total Environ. 2021, 818, 151717. [Google Scholar] [CrossRef] [PubMed]
- Pantano, G.; Grosseli, G.M.; Mozeto, A.A.; Fadini, P.S. Sustainability in Phosphorus Use: A Question of Water and Food Security. Quím. Nova 2016, 39, 732–740. [Google Scholar] [CrossRef]
- Muga, H.E.; Mihelcic, J.R. Sustainability of Wastewater Treatment Technologies. J. Environ. Manag. 2008, 88, 437–447. [Google Scholar] [CrossRef]
- Neal, C.; Jarvie, H.P.; Withers, P.J.A.; Whitton, B.A.; Neal, M. The Strategic Significance of Wastewater Sources to Pollutant Phosphorus Levels in English Rivers and to Environmental Management for Rural, Agricultural and Urban Catchments. Sci. Total Environ. 2010, 408, 1485–1500. [Google Scholar] [CrossRef]
- Carey, R.O.; Migliaccio, K.W. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Neal, C.; Withers, P.J.A. Sewage-Effluent Phosphorus: A Greater Risk to River Eutrophication than Agricultural Phosphorus? Sci. Total Environ. 2006, 360, 246–253. [Google Scholar] [CrossRef]
- Koch, S.; Kahle, P.; Lennartz, B. Spatio-Temporal Analysis of Phosphorus Concentrations in a North-Eastern German Lowland Watershed. J. Hydrol. Reg. Stud. 2018, 15, 203–216. [Google Scholar] [CrossRef]
- Krasa, J.; Dostal, T.; Jachymova, B.; Bauer, M.; Devaty, J. Soil Erosion as a Source of Sediment and Phosphorus in Rivers and Reservoirs—Watershed Analyses Using WaTEM/SEDEM. Environ. Res. 2019, 171, 470–483. [Google Scholar] [CrossRef]
- Lopes, M.C.; Martins, A.L.M.; Simedo, M.B.L.; Filho, M.V.M.; Costa, R.C.A.; do Valle Júnior, R.F.; Rojas, N.E.T.; Sanches Fernandes, L.F.; Pacheco, F.A.L.; Pissarra, T.C.T. A Case Study of Factors Controlling Water Quality in Two Warm Monomictic Tropical Reservoirs Located in Contrasting Agricultural Watersheds. Sci. Total Environ. 2021, 762, 144511. [Google Scholar] [CrossRef] [PubMed]
- Beusen, A.H.W.; Doelman, J.C.; Van Beek, L.P.H.; Van Puijenbroek, P.J.T.M.; Mogollón, J.M.; Van Grinsven, H.J.M.; Stehfest, E.; Van Vuuren, D.P.; Bouwman, A.F. Exploring River Nitrogen and Phosphorus Loading and Export to Global Coastal Waters in the Shared Socio-Economic Pathways. Glob. Environ. Chang. 2022, 72, 102426. [Google Scholar] [CrossRef]
- Saran, L.M.; Pissarra, T.C.T.; Silveira, G.A.; Constancio, M.T.L.; de Melo, W.J.; Alves, L.M.C. Land Use Impact on Potentially Toxic Metals Concentration on Surface Water and Resistant Microorganisms in Watersheds. Ecotoxicol. Environ. Saf. 2018, 166, 366–374. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Chi, Q.; Tian, M. Spatial Variations in Soil Organic Carbon, Nitrogen, Phosphorus Contents and Controlling Factors across the “Three Rivers” Regions of Southwest China. Sci. Total Environ. 2021, 794, 148795. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, L.R.G.; Curi, N.; Silva, M.L.N.; Renó, N.B.; Machado, R.A.F. Adsorção de Fósforo Em Solos de Várzea Do Estado de Minas Gerais. Rev. Bras. Ciênc. Solo 2000, 24, 27–34. [Google Scholar] [CrossRef]
- Boström, B.; Persson, G.; Broberg, B. Bioavailability of Different Phosphorus Forms in Freshwater Systems. In Phosphorus in Freshwater Ecosystems; Springer: Dordrecht, The Netherlands, 1988; pp. 133–155. [Google Scholar]
- Broberg, O.; Persson, G. Particulate and Dissolved Phosphorus Forms in Freshwater: Composition and Analysis. Hydrobiologia 1988, 170, 61–90. [Google Scholar] [CrossRef]
- Dall’Orsoletta, D.J.; Gatiboni, L.C.; Mumbach, G.L.; Schmitt, D.E.; Boitt, G.; Smyth, T.J. Soil Slope and Texture as Factors of Phosphorus Exportation from Pasture Areas Receiving Pig Slurry. Sci. Total Environ. 2021, 761, 144004. [Google Scholar] [CrossRef]
- McLaren, T.I.; Smernik, R.J.; McLaughlin, M.J.; McBeath, T.M.; Kirby, J.K.; Simpson, R.J.; Guppy, C.N.; Doolette, A.L.; Richardson, A.E. Complex Forms of Soil Organic Phosphorus–A Major Component of Soil Phosphorus. Environ. Sci. Technol. 2015, 49, 13238–13245. [Google Scholar] [CrossRef]
- Turrión, M.-B.; López, O.; Lafuente, F.; Mulas, R.; Ruipérez, C.; Puyo, A. Soil Phosphorus Forms as Quality Indicators of Soils under Different Vegetation Covers. Sci. Total Environ. 2007, 378, 195–198. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, M.; Song, K.; Wei, Y.; Zhang, S. Spatiotemporal Analysis of Anthropogenic Phosphorus Fluxes in China. Sci. Total Environ. 2020, 721, 137588. [Google Scholar] [CrossRef]
- Pompermaier, A.; Varela, A.C.C.; Fortuna, M.; Mendonça-Soares, S.; Koakoski, G.; Aguirre, R.; Oliveira, T.A.; Sordi, E.; Moterle, D.F.; Pohl, A.R.; et al. Water and Suspended Sediment Runoff from Vineyard Watersheds Affecting the Behavior and Physiology of Zebrafish. Sci. Total Environ. 2021, 757, 143794. [Google Scholar] [CrossRef] [PubMed]
- Nedelciu, C.E.; Ragnarsdottir, K.V.; Schlyter, P.; Stjernquist, I. Global Phosphorus Supply Chain Dynamics: Assessing Regional Impact to 2050. Glob. Food Sec. 2020, 26, 100426. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, X.; Valero, E.; Santos, R.M.B.; Varandas, S.G.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. Anthropogenic Nutrients and Eutrophication in Multiple Land Use Watersheds: Best Management Practices and Policies for the Protection of Water Resources. Land Use Policy 2017, 69, 1–11. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Li, X.; Zhang, Y.; Qiao, Q.; Lu, Z.; Liu, J. Spatial Characteristics and Driving Forces of Anthropogenic Phosphorus Emissions in the Yangtze River Economic Belt, China. Resour. Conserv. Recycl. 2022, 176, 105937. [Google Scholar] [CrossRef]
- Stackpoole, S.M.; Stets, E.G.; Sprague, L.A. Variable Impacts of Contemporary versus Legacy Agricultural Phosphorus on US River Water Quality. Proc. Natl. Acad. Sci. USA 2019, 116, 20562–20567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Bai, L.; Qiao, Q.; Zhang, Y.; Li, X.; Zhao, R.; Liu, J. Anthropogenic Total Phosphorus Emissions to the Tuojiang River Basin, China. J. Clean. Prod. 2021, 294, 126325. [Google Scholar] [CrossRef]
- Kast, J.B.; Apostel, A.M.; Kalcic, M.M.; Muenich, R.L.; Dagnew, A.; Long, C.M.; Evenson, G.; Martin, J.F. Source Contribution to Phosphorus Loads from the Maumee River Watershed to Lake Erie. J. Environ. Manag. 2021, 279, 111803. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Kjaergaard, C.; Uusi-Kämppä, J.; Hansen, H.C.B.; Kronvang, B. Phosphorus Retention in Riparian Buffers: Review of Their Efficiency. J. Environ. Qual. 2009, 38, 1942–1955. [Google Scholar] [CrossRef]
- Chellaiah, D.; Yule, C.M. Riparian Buffers Mitigate Impacts of Oil Palm Plantations on Aquatic Macroinvertebrate Community Structure in Tropical Streams of Borneo. Ecol. Indic. 2018, 95, 53–62. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E.; et al. Wetland Buffer Zones for Nitrogen and Phosphorus Retention: Impacts of Soil Type, Hydrology and Vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef]
- Valera, C.; Pissarra, T.; Filho, M.; Valle Júnior, R.; Oliveira, C.; Moura, J.; Sanches Fernandes, L.; Pacheco, F. The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water 2019, 11, 549. [Google Scholar] [CrossRef] [Green Version]
- Shan, N.; Ruan, X.H.; Xu, J.; Pan, Z.R. Estimating the Optimal Width of Buffer Strip for Nonpoint Source Pollution Control in the Three Gorges Reservoir Area, China. Ecol. Model. 2014, 276, 51–63. [Google Scholar] [CrossRef]
- Vikman, A.; Sarkkola, S.; Koivusalo, H.; Sallantaus, T.; Laine, J.; Silvan, N.; Nousiainen, H.; Nieminen, M. Nitrogen Retention by Peatland Buffer Areas at Six Forested Catchments in Southern and Central Finland. Hydrobiologia 2010, 641, 171–183. [Google Scholar] [CrossRef]
- Pissarra, T.C.T.; Valera, C.A.; Costa, R.C.A.; Siqueira, H.E.; Filho, M.V.M.; do Valle Júnior, R.F.; Fernandes, L.F.S.; Pacheco, F.A.L. A Regression Model of Stream Water Quality Based on Interactions between Landscape Composition and Riparian Buffer Width in Small Catchments. Water 2019, 11, 1757. [Google Scholar] [CrossRef] [Green Version]
- Pacheco, F.A.L.; do Valle Junior, R.F.; de Melo Silva, M.M.A.P.; Pissarra, T.C.T.; Carvalho de Melo, M.; Valera, C.A.; Sanches Fernandes, L.F. Prognosis of Metal Concentrations in Sediments and Water of Paraopeba River Following the Collapse of B1 Tailings Dam in Brumadinho (Minas Gerais, Brazil). Sci. Total Environ. 2022, 809, 151157. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Arcadis. Plano de Reparação Socioambiental da Bacia do Rio Paraopeba: Rompimento das Barragens B1, B4 e B4-A Do Complexo Paraopeba II Da Mina Córrego do Feijão Capítulo I—Diagnóstico Pretérito—Volume I; Arcadis: Brumadinho, Brazil, 2021; Available online: http://feam.br/recuperacao-ambiental-da-bacia-do-rio-paraopeba/-plano-de-reparacao-socioambiental-da-bacia-do-rio-paraopeba (accessed on 24 April 2022).
- Spier, C.A.; Kumar, A.; Nunes, A.P.L. Mineralogy and Genesis of Rare Al-Phosphate Minerals in Weathered Itabirite and Iron Ore from the Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 2020, 118, 103359. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Vale. Plano de Monitoramento Emergencial: Qualidade das Águas Superficiais e SedimentoQualidade das Águas Superficiais e Sedimento. Versão 11F; Vale: Brumadinho, Brazil, 2020. [Google Scholar]
- Vale. Plano de Monitoriamento Emergencial: Qualidade das Águas Superficiais e Sedimento. Versão 11G; Vale: Brumadinho, Brazil, 2021. [Google Scholar]
- Dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; de Araujo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2018; ISBN 85-85864-19-2. [Google Scholar]
- IBGE. Manual Técnico da Vegetação Brasileira: Sistema FitogeográficoInventário das Formações Florestais e CampestresTécnicas e Manejo de Coleções BotânicasProcedimentos Para Mapeamentos, 2nd ed.; IBGE, Ed.; Instituto Brasileiro de Geografi a e Estatística—IBGE: Rio de Janeiro, Brazil, 2012; ISBN 978-85-240-4272-0. [Google Scholar]
- Arcadis. Caracteriçao Geológica dos Testemunhos Coletados No Rio Paraopeba—MG; Arcadis: Brumadinho, Brazil, 2020. [Google Scholar]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2017; ISBN 978-0875532875. [Google Scholar]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 978-0-470-74991-3. [Google Scholar]
- COBRAPE. Plano Diretor de Recursos Hídricos da Bacia Hidrográfica do Rio Paraopeba—SF3: Resumo Executivo; Companhia Brasileira de Projetos e Empreendimentos: São Paulo, Brazil, 2020. [Google Scholar]
- Pereira, A.C.; Papini, R.M. Processes for Phosphorus Removal from Iron Ore—A Review. Rem Rev. Esc. Minas 2015, 68, 331–335. [Google Scholar] [CrossRef]
- De Novais, R.F.; Alvares, V.V.H.; De Barros, N.F.; Fontes, R.L.; Catarutti, R.B.; Neves, J.C.L. Fertilidade do Solo; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; ISBN 9788586504082. [Google Scholar]
Input Data | Format | Image Data 12.5 m Squared Pixels | Period |
---|---|---|---|
Digital Elevation Model (DEM) ASF: Alaska Satellite Facility https://search.asf.alaska.edu/, accessed on 26 November 2021 USGS: United States Geological Survey https://earthexplorer.usgs.gov/, accessed on 26 November 2021 | raster | Altitude (meters above sea level) Resampling from USGS | 2011 |
Land Use MapBiomas: Annual Mapping of Land Cover and Use Project in Brazil http://mapbiomas.org/, accessed on 5 December 2021 | raster | Resampling from Biomes Map vector image | 2019 |
Soil map FUV: Federal University of Viçosa https://www.dps.ufv.br/?page_id=742, accessed on 5 December 2021 | raster | Resampling from Soil Map vector image | 2010 |
Climate, accessed on 5 December 2021 CFSR: Climate Forecast System Reanalyzes https://cfs.ncep.noaa.gov/cfsr/, accessed on 12 December 2021 INMET: National Institute of Meteorology http://www.inmet.gov.br/portal/, accessed on 12 December 2021 | raster | Resampling from the raster image of the weather data | 2010 2021 |
River flow discharge—Minas Gerais Water Management Institute and Vale S.A. company http://www.igam.mg.gov.br/transparencia/dados-abertos, accessed on 12 December 2021 | raster | Resampling from the raster image of the flow data | 2019 2021 |
Phosphorus Concentration Vale S.A. company (Emergency Monitoring Plan) | Resampling from the raster image of the phosphorus data | 2019 2021 |
Parameter | Ptmin | Ptmax | Ptave |
---|---|---|---|
Ptmin | 1 | ||
Ptmax | 0.50 | 1 | |
Ptave | 0.70 | 0.91 | 1 |
Qrmin | −0.37 | −0.50 | −0.63 |
Qrmax | −0.69 | −0.47 | −0.71 |
Qrave | −0.61 | −0.57 | −0.78 |
Qdmin | −0.37 | −0.50 | −0.63 |
Qdmax | −0.69 | −0.47 | −0.71 |
Qdave | −0.61 | −0.57 | −0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pissarra, T.C.T.; Costa, R.C.A.; Valle Junior, R.F.d.; Silva, M.M.A.P.d.M.; Costa, A.M.d.; Sanches Fernandes, L.F.; Carvalho de Melo, M.; Valera, C.A.; Pacheco, F.A.L. Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho. Water 2022, 14, 1572. https://doi.org/10.3390/w14101572
Pissarra TCT, Costa RCA, Valle Junior RFd, Silva MMAPdM, Costa AMd, Sanches Fernandes LF, Carvalho de Melo M, Valera CA, Pacheco FAL. Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho. Water. 2022; 14(10):1572. https://doi.org/10.3390/w14101572
Chicago/Turabian StylePissarra, Teresa Cristina Tarlé, Renata Cristina Araújo Costa, Renato Farias do Valle Junior, Maytê Maria Abreu Pires de Melo Silva, Adriana Monteiro da Costa, Luís Filipe Sanches Fernandes, Marília Carvalho de Melo, Carlos Alberto Valera, and Fernando António Leal Pacheco. 2022. "Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho" Water 14, no. 10: 1572. https://doi.org/10.3390/w14101572
APA StylePissarra, T. C. T., Costa, R. C. A., Valle Junior, R. F. d., Silva, M. M. A. P. d. M., Costa, A. M. d., Sanches Fernandes, L. F., Carvalho de Melo, M., Valera, C. A., & Pacheco, F. A. L. (2022). Role of Mine Tailings in the Spatio-Temporal Distribution of Phosphorus in River Water: The Case of B1 Dam Break in Brumadinho. Water, 14(10), 1572. https://doi.org/10.3390/w14101572