Using Stable Isotopes to Assess Groundwater Recharge and Solute Transport in a Density-Driven Flow-Dominated Lake–Aquifer System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Physical–Chemical and Isotopic Analyses
2.4. Methods for Evaporation Modelling
3. Results
3.1. Groundwater-Level Evolution
3.2. Physical–Chemical Results
3.3. Evaporation Modelling
4. Discussion
4.1. Source of Precipitation
4.2. Surface and Groundwater Interaction in the Vicinity of the Lake
4.3. Feasibility of the Hydrochemical Conceptual Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Yechieli, Y.; Wood, W.W. Hydrogeologic processes in saline systems: Playas, sabkhas, and saline lakes. Earth-Sci. Rev. 2002, 58, 343–365. [Google Scholar] [CrossRef]
- Macumber, P.G. Interaction between Groundwater and Surface Systems in Northern Victoria; Department of Conservation and Environment: Melbourne, VIC, Australia, 1991.
- Herczeg, A.L.; Barnes, C.J.; Macumber, P.G.; Olley, J.M. A stable isotope investigation of groundwater-surface water interactions at Lake Tyrrell, Victoria, Australia. Chem. Geol. 1992, 96, 19–32. [Google Scholar] [CrossRef]
- Wooding, R.A.; Tyler, S.W.; White, I.; Anderson, P.A. Convection in groundwater below an evaporating Salt Lake: 2. Evolution of fingers or plumes. Water Resour. Res. 1997, 33, 1219–1228. [Google Scholar] [CrossRef]
- Dutkiewicz, A.; Herczeg, A.L.; Dighton, J.C. Past changes to isotopic and solute balances in a continental playa: Clues from stable isotopes of lacustrine carbonates. Chem. Geol. 2000, 165, 309–329. [Google Scholar] [CrossRef]
- Cartwright, I.; Hall, S.; Tweed, S.; Leblanc, M. Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in southeast Australia. Hydrogeol. J. 2009, 17, 1991–2004. [Google Scholar] [CrossRef]
- Levy, Y.; Burg, A.; Yechieli, Y.; Gvirtzman, H. Displacement of springs and changes in groundwater flow regime due to the extreme drop in adjacent lake levels: The Dead Sea rift. J. Hydrol. 2020, 587, 124928. [Google Scholar] [CrossRef]
- Torgersen, T.; De Deckker, P.; Chivas, A.; Bowler, J. Salt Lakes: A discussion of processes influencing palaeoenvironmental interpretation and recommendations for future study. Palaeogeogr. Palaeoclim. Palaeoecol. 1986, 54, 7–19. [Google Scholar] [CrossRef]
- Duffy, C.J.; Al-Hassan, S. Groundwater circulation in a closed desert basin: Topographic scaling and climatic forcing. Water Resour. Res. 1988, 24, 1675–1688. [Google Scholar] [CrossRef]
- Nicolás, V.; Jirsa, F.; Gómez-Alday, J.J. Saline lakes as barriers against pollution: A multidisciplinary overview. Limnetica 2022, 41. [Google Scholar] [CrossRef]
- Gómez-Alday, J.; Carrey, R.; Valiente, N.; Otero, N.; Soler, A.; Ayora, C.; Sanz, D.; Muñoz-Martín, A.; Castaño, S.; Recio, C.; et al. Denitrification in a hypersaline lake–aquifer system (Pétrola Basin, Central Spain): The role of recent organic matter and Cretaceous organic rich sediments. Sci. Total Environ. 2014, 497–498, 594–606. [Google Scholar] [CrossRef]
- Valiente, N.; Carrey, R.; Otero, N.; Soler, A.; Sanz, D.; Muñoz-Martín, A.; Jirsa, F.; Wanek, W.; Gómez-Alday, J. A multi-isotopic approach to investigate the influence of land use on nitrate removal in a highly saline lake-aquifer system. Sci. Total Environ. 2018, 631–632, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Massmann, G.; Simmons, C.; Love, A.; Ward, J.; James-Smith, J. On variable density surface water–groundwater interaction: A theoretical analysis of mixed convection in a stably-stratified fresh surface water—Saline groundwater discharge zone. J. Hydrol. 2006, 329, 390–402. [Google Scholar] [CrossRef]
- Bentley, L.R.; Hayashi, M.; Zimmerman, E.P.; Holmden, C.; Kelley, L.I. Geologically controlled bi-directional exchange of groundwater with a hypersaline lake in the Canadian prairies. Hydrogeol. J. 2016, 24, 877–892. [Google Scholar] [CrossRef]
- Pham, S.V.; Leavitt, P.R.; McGowan, S.; Wissel, B.; Wassenaar, L. Spatial and temporal variability of prairie lake hydrology as revealed using stable isotopes of hydrogen and oxygen. Limnol. Oceanogr. 2009, 54, 101–118. [Google Scholar] [CrossRef]
- Cendón, D.I.; Larsen, J.; Jones, B.; Nanson, G.C.; Rickleman, D.; Hankin, S.I.; Pueyo, J.J.; Maroulis, J. Freshwater recharge into a shallow saline groundwater system, Cooper Creek floodplain, Queensland, Australia. J. Hydrol. 2010, 392, 150–163. [Google Scholar] [CrossRef]
- Valiente, N.; Carrey, R.; Otero, N.; Gutiérrez-Villanueva, M.A.; Soler, A.; Sanz, D.; Castaño, S.; Gómez-Alday, J.J. Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): A combined isotopic and microbiological approach. Chem. Geol. 2017, 473, 74–89. [Google Scholar] [CrossRef]
- Jódar, J.; Rubio, F.; Custodio, E.; Martos-Rosillo, S.; Pey, J.; Herrera, C.; Turu, V.; Pérez-Bielsa, C.; Ibarra, P.; Lambán, L. Hydrogeochemical, isotopic and geophysical characterization of saline lake systems in semiarid regions: The Salada de Chiprana Lake, Northeastern Spain. Sci. Total Environ. 2020, 728, 138848. [Google Scholar] [CrossRef]
- Martino, P.; Montes del Olmo, C.; Alonso, M. Sobre La Conservación y Gestión de Las Lagunas Salados En España. In Proceedings of the I: Ponencias y Comunicaciones. II: Conclusiones y Participantes/Jornadas Sobre la Conservación de la Naturaleza en España, Oviedo, Spain, 27 November 1986; pp. 235–238. [Google Scholar]
- Sanz, D.; Valiente, N.; Dountcheva, I.; Muñoz-Martín, A.; Cassiraga, E.; Gómez-Alday, J.J. Geometry of the modelled freshwater/salt-water interface under variable-density-driven flow (Pétrola Lake, SE Spain). Hydrogeol. J. 2022, 30, 975–988. [Google Scholar] [CrossRef]
- Ordóñez, S.; García del Cura, M.A.; Marfil, S. Sedimentación actual: La laguna de Pétrola (Albacete). Estud. Geológicos 1973, 29, 367–377. [Google Scholar]
- Donate, J.A.L.; Ibáñez, J.G.M.; Cano, J.A.L.; Núñez, J.C.M. Estudio Descriptivo Del Sector Endorreico-Salino de Pétrola, Corral Rubio y La Higuera (Albacete). In Proceedings of the Jornadas Sobre el Medio Natural Albacetense, Instituto de Estudios Albacetenses “Don Juan Manuel”, Albacete, Spain, 28 November 2001; pp. 357–370. [Google Scholar]
- APHA WEF AWWA. Standard Methods for the Examination of Water and Wastewater; APHA WEF AWWA: Washington, DC, USA, 2005. [Google Scholar]
- Santoyo, E.; García, R.; Abella, R.; Aparicio, A.; Verma, S. Capillary electrophoresis for measuring major and trace anions in thermal water and condensed-steam samples from hydrothermal springs and fumaroles. J. Chromatogr. A 2001, 920, 325–332. [Google Scholar] [CrossRef]
- Calmbach, L. AquaChem Computer Code, Version 3.7. 42; Waterloo Hydrogeologic, Inc.: Waterloo, ON, Canada, 1997.
- Araguas, L.A.; Danesi, P.; Froehlich, K.; Rozanski, K. Global monitoring of the isotopic composition of precipitation. J. Radioanal. Nucl. Chem. Artic. 1996, 205, 189–200. [Google Scholar] [CrossRef]
- Jouzel, J.; Froehlich, K.; Schotterer, U. Deuterium and oxygen-18 in present-day precipitation: Data and modelling. Hydrol. Sci. J. 1997, 42, 747–763. [Google Scholar] [CrossRef]
- Gonfiantini, R. Environmental Isotopes in Lake Studies. Handb. Environ. Isot. Geochem. Terr. Environ. 1986, 2, 113–168. [Google Scholar]
- Gammons, C.H.; Poulson, S.R.; Pellicori, D.A.; Reed, P.J.; Roesler, A.J.; Petrescu, E.M. The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA. J. Hydrol. 2006, 328, 319–330. [Google Scholar] [CrossRef]
- Majoube, M. Fractionnement En Oxygène 18 et En Deutérium Entre l’eau et Sa Vapeur. J. Chim. Phys. 1971, 68, 1423–1436. [Google Scholar] [CrossRef]
- Horita, J.; Wesolowski, D.J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 1994, 58, 3425–3437. [Google Scholar] [CrossRef]
- Jacob, H.; Sonntag, C. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus B Chem. Phys. Meteorol. 1991, 43, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Bethke, C. The Geochemists Workbench, v. 6.0; University of Illinois: Champaign, IL, USA, 2006.
- Vandenschrick, G.; van Wesemael, B.; Frot, E.; Pulido-Bosch, A.; Molina, L.; Stiévenard, M.; Souchez, R. Using stable isotope analysis (δD–δ18O) to characterise the regional hydrology of the Sierra de Gador, south east Spain. J. Hydrol. 2002, 265, 43–55. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Uemura, R.; Matsui, Y.; Yoshimura, K.; Motoyama, H.; Yoshida, N. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J. Geophys. Res. Earth Surf. 2008, 113, D19114. [Google Scholar] [CrossRef] [Green Version]
- Julian, J.C.-S.; Araguas, L.; Rozanski, K.; Benavente, J.; Cardenal, J.; Hidalgo, M.C.; García-López, S.; Martinez-Garrido, J.C.; Moral, F.; Olías, M. Sources of precipitation over South-Eastern Spain and groundwater recharge. An isotopic study. Tellus B Chem. Phys. Meteorol. 1992, 44, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Ciric, D.; Nieto, R.; Losada, L.; Drumond, A.; Gimeno, L. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation. Water 2018, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Hatvani, I.G.; Erdélyi, D.; Vreča, P.; Kern, Z. Analysis of the Spatial Distribution of Stable Oxygen and Hydrogen Isotopes in Precipitation across the Iberian Peninsula. Water 2020, 12, 481. [Google Scholar] [CrossRef] [Green Version]
- Araguas-Araguas, L.; Diaz Teijeiro, M. Isotope Composition of Precipitation and Water Vapour in the Iberian Peninsula: First Results of the Spanish Network of Isotopes in Precipitation. Int. At. Energy Agency Tech. Rep. 2005, 1453, 173–190. [Google Scholar]
- Habeck-Fardy, A.; Nanson, G.C. Environmental character and history of the Lake Eyre Basin, one seventh of the Australian continent. Earth-Sci. Rev. 2014, 132, 39–66. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.D.P.; Carol, E.; Eymard, I.; Bilmes, A.; Ariztegui, D. Hydrochemistry, isotope studies and salt formation in saline lakes of arid regions: Extra-Andean Patagonia, Argentina. Sci. Total Environ. 2022, 816, 151529. [Google Scholar] [CrossRef]
- Krause, S.; Lewandowski, J.; Grimm, N.B.; Hannah, D.M.; Pinay, G.; McDonald, K.; Martí, E.; Argerich, A.; Pfister, L.; Klaus, J.; et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 2017, 53, 6359–6376. [Google Scholar] [CrossRef] [Green Version]
- Lau, M.P.; Niederdorfer, R.; Sepulveda-Jauregui, A.; Hupfer, M. Synthesizing redox biogeochemistry at aquatic interfaces. Limnologica 2018, 68, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Badve, R.; Kumaran, K.; Rajshekhar, C. Eutrophication of Lonar Lake, Maharashtra. Curr. Sci. 1993, 65, 347–351. [Google Scholar]
- Zimmermann, S.; Bauer, P.; Held, R.; Kinzelbach, W.; Walther, J. Salt transport on islands in the Okavango Delta: Numerical investigations. Adv. Water Resour. 2006, 29, 11–29. [Google Scholar] [CrossRef]
- Liu, Y.; Kuang, X.; Jiao, J.J.; Li, J. Numerical study of variable-density flow and transport in unsaturated–saturated porous media. J. Contam. Hydrol. 2015, 182, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Post, V.E.; Houben, G.J. Density-driven vertical transport of saltwater through the freshwater lens on the island of Baltrum (Germany) following the 1962 storm flood. J. Hydrol. 2017, 551, 689–702. [Google Scholar] [CrossRef]
- Guo, W.; Langevin, C.D. User’s Guide to SEAWAT; A Computer Program for Simulation of Three-Dimensional Variable-Density Ground-Water Flow; U.S. Geological Survey: Tallahassee, FL, USA, 2002.
- Langevin, C.D.; Thorne, D.T., Jr.; Dausman, A.M.; Sukop, M.C.; Guo, W. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport; Techniques and Methods; U.S. Geological Survey: Tallahassee, FL, USA, 2008.
Sample Point | Group | pH | EC | TDS | Eh | DO | T | ρ | Cl− | δ18OH2O | δ2HH2O |
---|---|---|---|---|---|---|---|---|---|---|---|
2535 | Zone 1 | 7.5 | 1174 | 0.50 | nd | 1.8 | nd | 1.00 | 1.65 | −6.5 | −48.9 |
2548 | Zone 1 | nd | nd | nd | nd | nd | nd | nd | nd | −6.6 | −50.4 |
2553 | Zone 1 | 7.3 | 689 | 0.20 | nd | 7.2 | nd | 1.00 | 1.52 | −7.6 | −51.6 |
2564 | Zone 1 | 7.8 ± 0.1 | 1492 ± 59 | 0.69 | 314 ± 129 | 5.6 ± 1.9 | 16.3 ± 3.5 | 1.00 ± 0.00 | 3.05 ± 0.23 | −6.9 ± 0.8 | −47.4 ± 2.2 |
2579 | Zone 1 | 7.4 ± 0.1 | 1048 ± 47 | 0.42 | 194 ± 4 | 2.3 ± 1.6 | 25.0 | 1.00 ± 0.00 | 1.59 ± 0.30 | −6.7 ± 0.9 | −52.3 ± 0.5 |
2581 | Zone 1 | 7.3 ± 0.1 | 1253 ± 15 | 0.54 | 328 ± 139 | 3.4 ± 1.1 | 18.0 ± 4.0 | 1.00 ± 0.00 | 1.19 ± 0.20 | −6.7 ± 0.6 | −45.7 ± 3.6 |
2582 | Zone 1 | 7.3 | 1755 | 0.84 | nd | 0.9 | nd | 1.00 | 2.64 | −6.8 | −49.5 |
2621 | Zone 1 | 7.4 | 1008 | 0.40 | nd | 2.3 | nd | 1.00 | 1.08 | −3.1 | −55.5 |
2645 | Zone 1 | nd | nd | nd | nd | nd | nd | nd | nd | −6.4 | −51.9 |
2554 | Zone 2 | 7.8 ± 0.2 | 1546 ± 226 | 0.72 | 346 ± 115 | 5.4 ± 1.8 | 14.9 ± 4.1 | 1.00 ± 0.00 | 2.75 ± 0.32 | −6.2 ± 0.5 | −46.5 ± 2.4 |
2571 | Zone 2 | 7.9 ± 0.2 | 1638 ± 227 | 0.77 | 277 ± 145 | 5.3 ± 2.4 | 14.0 ± 5.4 | 1.00 ± 0.00 | 4.16 ± 1.73 | −6.1 ± 1.3 | −46.4 ± 4.9 |
2575 | Zone 2 | 7.9 ± 0.3 | 1458 ± 218 | 0.67 | 91 ± 199 | 3.9 ± 3.6 | 16.7 ± 5.7 | 1.00 ± 0.00 | 5.40 ± 1.05 | −6.3 ± 1.1 | −46.5 ± 1.9 |
2599 | Zone 2 | 7.9 | 1753 | 0.84 | nd | 1.7 | nd | 1.00 | 6.00 | −5.8 | −48.2 |
2602 | Zone 2 | 8.2 ± 0.2 | 2426 ± 540 | 1.25 | 264 ± 113 | 6.7 ± 2.3 | 14.7 ± 4.1 | 1.00 ± 0.00 | 7.58 ± 0.97 | −5.6 ± 1.4 | −44.4 ± 9.2 |
2640 | Zone 2 | 8.3 ± 0.1 | 1858 ± 408 | 0.91 | 300 ± 126 | 7.8 ± 1.6 | 13.7 ± 5.2 | 1.00 ± 0.00 | 4.25 ± 1.78 | −6.0 ± 1.7 | −44.4 ± 9.4 |
2641 | Zone 2 | 8.0 ± 0.2 | 1349 ± 131 | 0.60 | 315 ± 94 | 7.1 ± 2.8 | 15.7 ± 4.5 | 1.00 ± 0.00 | 4.27 ± 0.63 | −6.1 ± 1.6 | −46.4 ± 9.1 |
2642 | Zone 2 | 8.1 ± 0.1 | 2241 ± 458 | 1.14 | 327 ± 98 | 6.8 ± 2.2 | 12.9 ± 6.0 | 1.00 ± 0.00 | 4.10 ± 0.73 | −5.8 ± 1.7 | −44.6 ± 9.2 |
2643 | Zone 3A | 9.0 ± 0.5 | 38,929 ± 21,056 | 23.15 ± 12.4 | 233 ± 160 | 8.9 ± 2.0 | 14.6 ± 6.5 | 1.03 ± 0.02 | 309 ± 156 | +2.9 ± 5.1 | +5.9 ± 25.9 |
2635 | Zone 3B | 8.5 ± 0.4 | 37,027 ± 28,935 | 22.01 ± 17.2 | 266 ± 108 | 6.8 ± 3.3 | 16.8 ± 6.9 | 1.05 ± 0.07 | 534 ± 891 | +1.6 ± 2.9 | −5.5 ± 16.0 |
GW-12 | Zone 3B | 7.0 ± 0.0 | 89,043 ± 6803 | 53.22 ± 3.9 | 22 ± 143 | 0.6 ± 1.4 | 18.2 ± 1.6 | 1.09 ± 0.01 | 1157 ± 193 | −2.7 ± 1.3 | −22.1 ± 4.4 |
GW-26 | Zone 3B | 6.9 ± 0.1 | 56,543 ± 11,375 | 33.72 ± 6.6 | 120 ± 173 | 0.2 ± 0.2 | 17.9 ± 2.6 | 1.05 ± 0.02 | 571 ± 202 | −4.7 ± 1.0 | −38.1 ± 1.8 |
GW-34 | Zone 3B | 7.0 ± 0.1 | 10,263 ± 7286 | 5.95 ± 4.2 | 90 ± 100 | 0.4 ± 0.2 | 18.7 ± 3.3 | 1.01 ± 0.00 | 94.0 ± 61.0 | −5.9 ± 1.5 | −45.4 ± 3.9 |
GW-38 | Zone 3B | 7.3 ± 0.5 | 2423 ± 574 | 1.24 ± 0.1 | 153 ± 95 | 1.0 ± 1.2 | 18.7 ± 3.1 | 1.00 ± 0.00 | 6.51 ± 2.06 | −7.1 ± 0.9 | −49.5 ± 1.8 |
2648 | Zone 3C | 8.6 ± 0.2 | 35,425 ± 15,464 | 21.05 ± 9.1 | 170 ± 179 | 8.2 ± 5.5 | 14.4 ± 5.9 | 1.04 ± 0.02 | 335 ± 199 | +3.5 ± 4.1 | +3.9 ± 17.5 |
2649 | Zone 3C | 8.7 ± 0.1 | 45,350 ± 18,031 | 27.00 ± 10.6 | −45 ± 258 | 4.5 ± 6.1 | 17.5 ± 6.2 | 1.05 ± 0.02 | 439 ± 205 | +1.6 ± 11.6 | −9.0 ± 53.7 |
2651 | Zone 3C | 8.8 ± 0.1 | 51,150 ± 29,628 | 30.48 ± 17.6 | 143 ± 11 | 6.7 ± 3.4 | 20.1 ± 12.0 | 1.05 ± 0.02 | 441 ± 172 | +4.6 ± 6.9 | +8.2 ± 31.2 |
2652 | Zone 3C | 8.7 ± 0.1 | 46,850 ± 21,567 | 27.90 ± 12.7 | 150 ± 15 | 5.3 ± 4.1 | 18.2 ± 4.5 | 1.07 ± 0.00 | 635 ± 48 | +4.1 ± 9.2 | +3.2 ± 42.9 |
Parameter | Value | Dimension |
---|---|---|
Kv (S1) | 1 | [m/day] |
Kv (S2) | 0.01–0.001 | [m/day] |
Kv (S3) | 1 | [m/day] |
Ss | 1 × 10−5 | [-] |
n | 0.3 | [-] |
αL | 0.1 | [m] |
αT | 0.01 | [m] |
Dm | 1 × 10−5 | [m2/s] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiente, N.; Dountcheva, I.; Sanz, D.; Gómez-Alday, J.J. Using Stable Isotopes to Assess Groundwater Recharge and Solute Transport in a Density-Driven Flow-Dominated Lake–Aquifer System. Water 2022, 14, 1628. https://doi.org/10.3390/w14101628
Valiente N, Dountcheva I, Sanz D, Gómez-Alday JJ. Using Stable Isotopes to Assess Groundwater Recharge and Solute Transport in a Density-Driven Flow-Dominated Lake–Aquifer System. Water. 2022; 14(10):1628. https://doi.org/10.3390/w14101628
Chicago/Turabian StyleValiente, Nicolas, Iordanka Dountcheva, David Sanz, and Juan José Gómez-Alday. 2022. "Using Stable Isotopes to Assess Groundwater Recharge and Solute Transport in a Density-Driven Flow-Dominated Lake–Aquifer System" Water 14, no. 10: 1628. https://doi.org/10.3390/w14101628
APA StyleValiente, N., Dountcheva, I., Sanz, D., & Gómez-Alday, J. J. (2022). Using Stable Isotopes to Assess Groundwater Recharge and Solute Transport in a Density-Driven Flow-Dominated Lake–Aquifer System. Water, 14(10), 1628. https://doi.org/10.3390/w14101628