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Abstract: Precipitation is an important parameter in water resource management, urban flood
warning systems, and hydrological analyses. Precipitation forecasting can provide a decision-making
basis for relevant organizations, such as those in the agricultural sector and water conservancy
departments. In this paper, a modified grey self-memory model (MGSM) was constructed by
combining a self-memory function and grey theory. To verify the precision of the model in cases in
which measured data are not available in the forecasting stage, a self-test method based on the scale
effect in the precipitation forecasting stage was proposed. Ultimately, the model was verified based
on three precipitation scales—the annual scale, the crop growth period, and the monthly scale—in
the crop growth period from 1961 to 2018 in the Songnen Plain area, Heilongjiang Province. The
results showed that the MGSM yielded higher fitting accuracy than the original GM(1,1) and grey
self-memory models. Furthermore, the precipitation in the study area was predicted with the MSGM
at the three different scales above from 2019 to 2023. The accuracy of forecasting meets the relevant
requirements, and the model can be used to forecast precipitation trends at different time scales in
the future. The results provide a reference for formulating scientific and rational agricultural water
use strategies and guiding agricultural production practices.

Keywords: precipitation forecast; modified grey self-memory model; precision self-test method; time
scale effect; forecasting stage

1. Introduction

In recent years, under the influence of climate change and human activities, variations
in precipitation have displayed many chaotic and irregular characteristics at various spa-
tiotemporal scales [1]. Natural disasters, such as floods or droughts in some areas, have
also occurred, often resulting in lost production, social and economic losses, and injuries or
casualties [2]. The amount of precipitation in a certain period of time is affected by many
factors, and there are obvious differences at different times and in different seasons and
regions. Agriculture is highly dependent on precipitation, especially in arid and semiarid
regions, where normal precipitation can increase the total crop yield by 3–14% [3,4]. There-
fore, research on precipitation trends during the crop growth period is crucial for balanced
agricultural, social, and economic development [5]. However, due to the complexity of
precipitation formation mechanisms [6], the spatiotemporal distribution of precipitation at
the regional scale is becoming increasingly heterogeneous, and the differences at different
time scales are also increasing [7,8]. As the prediction scale increases, the uncertainty of
influential factors also increases, as does the difficulty of forecasting [9]. Therefore, it is
important to study precipitation variability and accurately predict future trends to mitigate
flood disasters, rationally establish irrigation systems, and improve the utilization efficiency
of agricultural water resources.

Numerous studies have concentrated on precipitation forecasting theories and tech-
niques and flood disaster, and different forecasting methods have been proposed. Based
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on the seasonal oscillations in northern summer precipitation in India, Wang et al. [10]
proposed a simple summer monsoon precipitation forecasting model based on the dynamic
characteristics of precipitation, and the results showed that the model provides excellent
high real-time forecasting capabilities. Ali et al. [11] constructed a new multistep, hybrid
artificial intelligence-based model by adopting the nondominated sorting genetic algorithm
(NSGA), the singular value decomposition (SVD) algorithm, and the random forest model
to forecast the precipitation in four regions in Pakistan, and this approach achieved high
prediction accuracy. Aksoy and Dahamsheh [12] proposed a generalized regression artifi-
cial neural network model based on the Markov chain algorithm (MC-ANNS) and radial
basis function for monthly precipitation prediction in arid regions; then, Jordan was used
as an example to verify the feasibility of the model. Du et al. [13] proposed a new method
based on deep learning for precipitation prediction problems in the era of big data, and the
results showed that compared with other prediction methods, deep belief networks can
be effectively used in the weather forecasting field. Sun et al. [14] used singular spectrum
analysis (SSA) to decompose the time series of monthly precipitation and explored the
corresponding periodic information in South Korea. Then, precipitation was predicted
with an artificial neural network (ANN) and the results showed that the combined SSA-
ANN model could effectively reconstruct and forecast monthly precipitation; in particular,
the accuracy of precipitation peak prediction was improved. Strazzo et al. [15] solved
the problem of insufficient forecasting accuracy for hybrid statistical dynamic systems
by applying Bayesian postprocessing technology and obtained seasonal forecasts of air
temperature and precipitation in North America. The results showed that the model was
reliable and suitable for seasonal precipitation and air temperature forecasting in North
America. Mateeul et al. [16] proposed a new method based on RS and GIS to assess flood
damages and evaluated the damage in Sindh Province, Pakistan, which was very essential
and valuable for immediate response and rehabilitation. Akhtar et al. [17] assessed the
damages during the 2012 floods in Pakistan based on the normalized difference water
index (NDWI) and the water index (WI), and the results showed that the method had better
evaluation accuracy. With the expansion of the research on precipitation prediction, the
grey system theory proposed by Professor Julong Deng has been increasingly applied in
water resource prediction [18–20], thus providing a relatively new conceptual approach for
studying the related trends. However, the original grey forecasting model GM(1,1) was
only suitable for smooth and stationary time series of data. If a time series highly fluctuated,
the forecasting accuracy of the model notably declined, thus limiting the applicability of
the model. Overall, research on precipitation forecasting is expanding, and the practicality
of the research results is gradually improving. However, due to differences in regional geo-
logical and climatic conditions, the existing precipitation forecasting models and theories
are not always appropriate, especially for assessing the accuracy of precipitation forecasts;
moreover, mature theories are lacking. Therefore, the establishment of suitable precipitation
forecasting models based on regional characteristics can provide important theoretical and
practical value for improving the accuracy of regional precipitation forecasts.

To solve the above problems, the Songnen Plain in Heilongjiang Province is selected as
the research area and a scale effect-based precision self-check method for precipitation fore-
casting is proposed to improve the grey self-memory precipitation forecasting model, which
is the innovation of this paper. By forecasting precipitation at three time scales (annual,
growth period, and monthly scales) and comparing the relationships between precipitation
at different scales, the prediction accuracy of models can be verified, even in cases where
observed data are lacking for precipitation forecasting periods. The results can provide
important theoretical support for the efficient utilization of regional rainwater resources.

2. Methods
2.1. Study Area

The Songnen Plain is the largest of the three major plains in northeast China; it is
located between the Daxing’an Mountains, Xiaoxing’an Mountains, Changbai Mountains,
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and Songliao watershed. The plain was mainly formed by the accumulation of alluvial
sediment from the Songhua River and Nen River. This area straddles three administra-
tive regions: the Inner Mongolia Autonomous Region, Heilongjiang Province, and Jilin
Province [21]. The Songnen Plain in Heilongjiang Province is selected as the research
area, and it is located in western Heilongjiang Province, with geographic coordinates of
122.41◦–128.53◦ E and 44.07◦–50.51◦ N. Thus, the plain is adjacent to the Xiaoxing’an Moun-
tains and Zhangguangcai Mountains in the east and Wuchang city and Harbin city in the
south. The boundary between Heilongjiang Province and the Inner Mongolia Autonomous
Region is located to the west, and Nenjiang County and Heihe city are to the north. The
plain covers a total area of 15.95 × 104 km2 (Figure 1) [22] and is part of the Songhua
River system, with large air temperature differences throughout the year. The lowest air
temperature can reach below −30 ◦C in winter, the highest air temperature can reach above
35 ◦C in summer, the annual average temperature is 2–6 ◦C, and the frost-free period is be-
tween 100 and 160 days. Water surface evaporation and precipitation average 600–950 mm
and 380–520 mm each year, respectively. Affected by the semiarid monsoon climate and
the temperate continental monsoon climate, the overall precipitation across the region is
relatively limited, especially in the western semiarid region, where annual precipitation has
totaled less than 300 mm in recent years. To cope with drought, groundwater in parts of
the Songnen Plain has been severely overexploited, and groundwater funnels have formed,
affecting regional ecological and water security to a certain extent.
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2.2. Data Sources

Daily precipitation data collected at 35 national meteorological stations (Figure 1,
Table 1) on the Songnen Plain were used as the basic data for precipitation forecasting. The
data were obtained from the National Meteorological Information Center (http://data.
cma.cn/, (accessed on 8 January 2022)). The length of the time series at different stations
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varied, and some of the data from certain stations were missing. Therefore, to unify the
data sequence length, the starting and ending times of the time sequence were selected as
January 1961 and December 2018, respectively. The missing data for some stations were
filled through interpolation with the correlation coefficient method using the data from
adjacent stations [23]. Finally, precipitation data were obtained at different time scales in
the study region.

Table 1. Information on the meteorological sites on Songnen Plain in Heilongjiang Province.

Serial
Number

Station
Number

Station
Name Longitude Latitude Starting Date

(year month)
Ending Date
(year month)

Date(s) of the
Missing

1 50557 Nenjiang 125.23 49.17 1951 01 2018 12
2 50646 Nehe 124.85 48.48 1961 01 2018 12
3 50655 Dedu 126.18 48.5 1966 08 2018 12 1961 01–1966 07
4 50656 Beian 126.51 48.28 1958 09 2018 12
5 50658 Keshan 125.88 48.05 1951 01 2018 12
6 50659 Kedong 126.25 48.03 1959 01 2018 12 1995 04–1998 12
7 50739 Longjiang 123.18 47.33 1958 01 2018 12
8 50741 Gannan 123.5 47.93 1954 11 2018 12
9 50742 Fuyu 124.48 47.8 1956 10 2018 12
10 50745 Qiqihaer 123.92 47.38 1951 01 2018 12
11 50749 Lindian 124.83 47.18 1956 12 2018 12
12 50750 Yian 125.3 47.9 1956 12 2018 12
13 50755 Baiquan 126.1 47.6 1956 12 2018 12
14 50756 Hailun 126.97 47.43 1952 07 2018 12
15 50758 Mingshui 125.9 47.16 1953 01 2018 12
16 50767 Suiling 127.1 47.23 1961 01 2018 12 1995 04–1998 12
17 50842 Dumeng 124.43 46.87 1959 01 2018 12
18 50844 Tailai 123.42 46.4 1958 01 2018 12
19 50851 Qingang 126.1 46.68 1956 12 2018 12
20 50852 Wangkui 126.48 46.87 1956 12 2018 12
21 50853 Suihua 126.96 46.61 1952 07 2018 12
22 50854 Anda 125.32 46.38 1952 07 2018 12
23 50858 Zhaodong 125.97 46.07 1959 01 2018 12
24 50859 Lanxi 126.27 46.25 1956 11 2018 12 1995 04–1998 12
25 50861 Qingan 127.48 46.88 1956 12 2018 12
26 50867 Bayan 127.35 46.08 1960 01 2018 12
27 50950 Zhaozhou 125.25 45.7 1961 01 2018 12
28 50953 Haerbin 126.77 45.75 1951 01 2018 12
29 50954 Zhaoyuan 125.08 45.5 1959 01 2018 12
30 50955 Shuangcheng 126.3 45.38 1956 12 2018 12
31 50956 Hulan 126.6 46 1955 01 2018 12 1961 01–2004 12
32 50958 Acheng 126.95 45.52 1959 05 2018 12
33 50960 Bixnian 127.45 45.78 1958 01 2018 12
34 50962 Mulan 128.03 45.95 1956 12 2018 12
35 54080 Wuchang 127.15 44.9 1957 12 2018 12

The main crops grown in the Songnen Plain area in Heilongjiang Province are rice,
corn, and soybeans. The growth periods of these three crops vary from May to September.
Therefore, for convenience, the growth period was set from 1 May to 31 September in
this paper.

2.3. The Modified Grey Self-Memory Precipitation Forecasting Theory
2.3.1. The Modified Grey Self-Memory Model

Traditional grey forecasting models (e.g., GM(1,1)) are only suitable for smooth and
stable time series. If a time series highly fluctuates, the forecasting accuracy will be con-
siderably reduced. Due to the large fluctuations in precipitation at different scales, the
direct use of traditional grey forecasting models for precipitation forecasting has certain
limitations. Therefore, based on self-memory theory, the self-memory function was intro-
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duced to construct a grey self-memory model (GSM). The specific modelling steps were as
follows [24,25]:

(1) Assuming the rainfall time series is x(0) =
[

x(0)(1), x(0)(2), . . . , x(0)(n)
]
, the first-

order accumulation series is x(1) =
[

x(1)(1), x(1)(2), . . . , x(1)(n)
]
. According to grey

forecasting theory, the whitening equation in GM(1,1) is constructed as follows:

dx(1)

dt
+ ax(1) = b (1)

(2) The dynamic core of the self-memory model is constructed as follows:

F(x, t) = −ax(1) + b (2)

(3) Taking T =
[
t−p, t−p+1, . . . , t−1, t0, t

]
as a time series, t−p, t−p+1, . . . , t−1 represent

historical observation moments, t0 represents the initial forecasting moment, t rep-
resents a future forecasting moment, and p is the backtracking order. According to
self-memory theory, Equation (3) can be transformed into:

∫ t−p+1

t−p
β(τ)

∂x
∂τ

dτ +
∫ t−p+2

t−p+1
β(τ)

∂x
∂τ

dτ + . . . +
∫ t

t0

β(τ)
∂x
∂τ

dτ =
∫ t

t−p
β(τ)F(x, τ)dτ (3)

Using the mean value theorem, inner product, and integration by parts, Equation (4)
can be transformed into:

βtxt − β−px−p −
0

∑
i=−p

xm
i (βi+1 − βi)−

∫ t

t−p
β(τ)F(x, τ)dτ = 0 (4)

where βt ≡ β(t), x(1)t ≡ x(t), βi ≡ β(ti), xi ≡ x(ti), i = −p,−p + 1, . . . , 0,
xm

i ≡ x(tm), and ti < tm < ti+1.
(4) Let x−p ≡ xm

−p−1 and β−p−1 ≡ 0; then, the p-order self-memory equation can be
transformed into:

xt =
1
βt

0

∑
i=−p−1

xm
i (βi+1 − βi) +

1
βt

∫ t

t−p
β(τ)F(x, t)dτ (5)

where xm
i = 1

2 (xi+1 + xi) ≡ yi and ∆ti = ti+1 − ti = 1; consequently, the differential
form of Equation (6) can be obtained as:

xt =
−1

∑
i=−p−1

αiyi +
0

∑
i=−p

θiF(x, i) (6)

where αi =
(βi+1−βi)

βt
and θi =

βi
βt

. The traditional method typically uses the least-
squares method to solve the above equation; however, when the self-correlation of a
precipitation time series is high, serious rounding errors will occur when solving the
inverse matrix, causing the least-squares method to fail [26]. Existing studies have
shown that particle swarm optimization (PSO) has some advantages, such as simple
application, high precision, and fast convergence, in such cases [27,28]. Notably,
PSO has displayed unique superiority in solving nonlinear optimization problems.
Therefore, PSO was introduced to replace the traditional least-squares method for
determining the parameters in this paper. Then, a modified GSM (MGSM) based
on PSO was constructed [24,26]. The optimized objective function was constructed
as follows:

F =
n

∑
t=1

((|x̂t − xt|/xt)× 100%) (7)
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where αi and θi are defined above and x̂t is the fitting value obtained for xt series.
(5) According to grey forecasting theory, xt was reduced, and the reduced value of

precipitation was obtained as follows:

x̂(0)(t + 1) = x̂(1)(t + 1)− x(1)(t) (8)

where t = 1, 2, . . . , n− 1 and x̂(1)(1) = x(0)(1).

2.3.2. Evaluation of Model Accuracy

NSE, RMSE, and MARE were used to evaluate the fitting accuracy and reserved test
accuracy of the model [29].

NSE = 1− ∑N
t=1 (x̂t − xt)

2

∑N
t=1 (xt − x)2 (9)

RMSE =

√
1
N ∑N

t=1 (x̂t − xt)
2 (10)

MARE =
1
N ∑N

t=1

∣∣∣∣ x̂t − xt

xt

∣∣∣∣ (11)

where N is the series length, x̂t is the fitted value of precipitation, xt is the observed
precipitation value at time t, and x is the average value of precipitation. When NSE = 1,
RMSE = 0, and MARE = 0, the fitted value is exactly the same as the measured value. The
closer the NSE is to 1 and the closer the RMSE and MARE are to 0, the better the fit and
prediction accuracy of the model.

In the above model accuracy evaluation method, only the fitting stage and reserved
inspection stage are considered. Notably, after constructing a model, the actual forecasting
accuracy cannot generally be assessed because no measured data are available. Therefore,
based on precipitation relationships at different time scales, a self-test method was proposed
to assess the precipitation forecasting accuracy considering scale effects. The specific process
was as follows.

It was assumed that the precipitation series at the annual, crop growth period and
monthly (for months in the crop growth period) scales were Yp(t), SYQp(t), and Mi

p(t),
respectively, where t = 1, 2..., and 58 and i = 5, 6, 7, 8, and 9. Thus, the following relationship
was obtained:

SYQp = ∑9
i=5 Mi

p (12)

Yp = SYQp/ρ (13)

where ρ is the proportion of annual average growth period precipitation to total annual
average precipitation. In this paper, according to the precipitation series from the Songnen
Plain area obtained from 1961 to 2018, ρ = 0.8643 was calculated.

Assuming that the forecasts of precipitation series, the annual, crop growth period
and monthly scales, were Ŷp, ŜYQp, and M̂I

p, respectively, according to the relationships
among results at various time scales, the accuracy of precipitation forecasts can be assessed
with the following equations:

ŜYQ′p =
9

∑
i=5

M̂i
p ≈ ŜYQp (14)

Ŷ′p = ŜYQp/ρ ≈ Ŷp (15)

where ŜYQ′p is the sum of the forecasted values of monthly precipitation during the growth
period and Ŷ′p is the annual total precipitation calculated based on the relationship between
the forecasted growth period values and ρ.
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Ŷp, ŜYQp, and Ŷ′p, ŜYQ′p were considered as the measured and fitted values of annual
and crop growth period, respectively, and NSE, RMSE, and MARE were calculated. Finally,
an accuracy test was performed for the forecasting-stage precipitation results.

3. Results and Discussion
3.1. Construction of the Precipitation Forecasting Model

Based on the precipitation trends at various time scales in different parts of the Songnen
Plain area in Heilongjiang Province from 1961 to 2018, the differential equation (Equation
(1)) of GM(1,1) was constructed, and the parameters a and b were determined based on the
least-squares method and then substituted into Equation (3). Thus, the dynamic core of the
self-memory model was established. The backtracking order p was determined through
a self-correlation analysis of precipitation at different scales (the backtracking order for
the annual and overall crop growth period scales was 6, and the order values were 6, 4,
and 5 for June, May, and September, and July and August, respectively). The self-memory
parameter optimization model was constructed based on PSO and the obtained parameters
αI and θI in Equation (7). The model parameters are shown in Table 2.

Table 2. Parameters of the MGSM at different precipitation scales.

Parameters Annual Crop Growth
Period

Monthly

May June July August September

Dynamic core
parameters

a 0.00 0.00 −0.01 −0.01 0.00 0.00 0.01
b 471.38 418.65 29.77 65.53 148.47 113.51 59.43

Backtracking order p 6 6 4 6 5 5 4

Self-memory
model parameters

α−6 −0.50 −0.50 - −0.50 - - -
α−5 1.00 1.00 - 1.00 0.50 0.50 -
α−4 −1.50 −1.50 −0.67 −1.50 −1.17 −1.17 −0.67
α−3 2.00 2.00 1.33 2.00 1.67 1.67 1.33
α−2 −2.50 −2.50 −2.00 −2.50 −2.33 −2.33 −2.00
α−1 3.00 3.00 2.66 3.00 2.83 2.83 2.67
α0 −3.50 −3.50 −3.33 −3.50 −3.50 −3.50 −3.33
α1 2.00 2.00 2.00 2.00 2.00 2.00 2.00

θ−6 202.59 700.25 - 36.25 - - -
θ−5 −202.59 −700.26 - −36.23 579.56 97.18 -
θ−4 202.59 700.26 47.16 36.27 −772.75 −129.59 −57.46
θ−3 −202.59 −700.26 −47.14 −36.26 579.56 97.19 57.45
θ−2 202.60 700.26 47.19 36.32 −772.75 −129.60 −57.49
θ−1 −202.60 −700.26 −47.19 −36.32 579.56 97.21 57.49
θ0 202.62 700.26 47.25 36.39 −772.76 −129.63 −57.54
θ1 −202.62 −700.27 −47.27 −36.41 579.57 97.24 57.55

According to the model parameters in Table 2, the various time scales of precipitation
in the Songnen Plain area from 1961 to 2018 were fitted (Figure 2). Then, the NSE, RMSE,
and MARE values of the forecasting model were calculated (Table 3).

The fitting results for precipitation at different scales from 1961 to 2018 are generally
satisfactory (Figure 2 and Table 3). The fitted curve fully reflects the trends observed in
the curve of measured values. Previous studies [30] have shown that when NSE > 0.5, the
accuracy of a forecast modelling generally meets the relevant application requirements.
The NSE values were all greater than 0.69 in this study, especially for growth-period
precipitation, for which the NSE reached 0.82. The MARE was between 0.28% and 9.36%,
and the RMSE was between 8.5 and 31.81 mm. The results suggest that the MGSM model
constructed in this paper provides high-accuracy results and can be used to predict future
precipitation values at various scales in the Songnen Plain area of Heilongjiang Province.
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Figure 2. The simulated and observed precipitation values at different scales in the study area. (Note:
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Table 3. Accuracy test of the MGSM at three time scales.

Parameter Annual Crop Growth
Period May June July August September

NSE 0.80 0.82 0.76 0.79 0.72 0.80 0.69
MARE 0.28 0.33 4.88 3.13 3.48 3.26 9.36
RMSE 31.81 28.20 8.50 13.07 21.37 18.27 11.46

3.2. Evaluation of the MGSM and Comparison with Other Grey System Models

To further verify the feasibility of the MGSM, the results of GM(1,1) and the GSM were
compared and analyzed with the results of the MGSM. A Taylor diagram (Figure 3) was
used to evaluate the simulation accuracy of different models for precipitation in different
periods. In the Taylor diagram, the correlation coefficient between measured and predicted
values is plotted, and the ratio of the standard deviation and the centralized RMSE is
shown [29]. The correlation coefficient represents the degree of similarity of the spatial
distributions of the measured and predicted values. The RMSE and the ratio of the standard
deviation represent the differences in accuracy and spatial uniformity among the results
of the various models, respectively. A mathematical relationship exists among the three
coefficients, and we plotted them on the same graph to intuitively compare the simulation
ability of the different models. The larger the correlation coefficient is, the closer the ratio of
the standard deviation of measured values to predicted values is to 1, and the smaller the
RMSE is, the better the simulation ability of the model. That is, the closer to the reference
point (REF) an estimate is, the better the simulation effect. The MGSM, the GSM, and
GM(1,1) were defined as method A, method B, and method C, respectively.
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Figure 3. Comparative analysis of the precision of different precipitation forecasting models at
different time scales. Figures show the results at different scales. (a) Year. (b) Crop growth period.
(c) May. (d) June. (e) July. (f) August. (g) September. A, B and C represent the methods of MGSM,
GSM, and GM(1,1) respectively. REF is the reference point.

The precipitation forecasting results (Figure 3) at the annual, crop growth period,
and monthly scales from May to September showed that the MGSM (method A) provides
results closest to the reference points, which suggests that method A performs best among
the considered methods. A comparative analysis showed that method A and method B
provide accurate precipitation forecasts from May to August and at the annual time scale.
However, in the September and the crop growth period time scale scenarios, the prediction
results of method B were poor, and the ratio of standard deviation and the centralized
RMSE were much larger than those of method A. The values forecasted with GM(1,1)
(method C) plotted far from the reference points in the annual, crop growth period and
monthly scenarios. The ratio of standard deviation and the centralized RMSE of method
C were far greater than those of method A, and the forecasting ability of the model was
poor. Thus, the results further verify that the MGSM yields high precipitation forecasting
accuracy in the study area.

3.3. Precipitation Forecasts

The precipitation at different scales from 2019 to 2023 was forecast using the MGSM
for precipitation forecasting. The specific forecasting results are shown in Table 4. The
trends of precipitation at different scales from 2019 to 2023 are shown in Figure 4.
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Table 4. Forecasting results and precision analysis of precipitation at different time scales from 2019
to 2023.

Years/Parameters Year
(mm)

Crop Growth
Period
(mm)

May
(mm)

June
(mm)

July
(mm)

August
(mm)

September
(mm) ŜYQ

′
p Ŷ

′
p

2019 578 465 38 73 180 119 67 477 538
2020 480 410 36 90 150 84 41 402 474
2021 495 415 43 115 121 102 47 427 480
2022 578 515 32 128 103 140 61 464 596
2023 580 484 30 102 147 161 73 514 560

2019–2023
Mean value 542 461 36 102 142 121 58 / /

1961–2018
Mean value 492 427 39 83 145 107 52 / /

NSE / / / / / / / 0.520 0.745
MARE / / / / / / / 4.758 3.527
RMSE / / / / / / / 28.01 22.68
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Figure 4. Forecasting results at different scales from 2019 to 2023. (a) Annual and crop growth period
scales; (b) Monthly scale during the crop growth period.

The NSE, RMSE and MARE of precipitation at different scales from 2019 to 2023 were
calculated by applying the accuracy self-test method for the precipitation forecasts listed
above (Table 4). The NSE of the crop growth period and annual precipitation estimates
exceeded 0.5, indicating that the model meets the accuracy requirements of precipitation
forecasting. Additionally, the MARE was within 5%, and the RMSE was within 30 mm,
suggesting that the MGSM established in this paper can predict precipitation at different
time scales with reliable accuracy and be used to predict future precipitation in the Songnen
Plain area, which is partially located in Heilongjiang Province.

Compared with the predicted values from 1961 to 2018, the annual average precipita-
tion forecasts increased from 2019 to 2023 (Table 4), indicating that the precipitation from
2019 to 2023 increased in general. The precipitation in the entire crop growth period and
in June, August, and September also displayed an increasing trend, and this trend was
significant in June and August (Figure 4). Therefore, local government managers should
brace for flood disasters in June and August and strengthen farmland drainage in particular.
Compared with the average precipitation in May and July from 1961 to 2018, the forecasted
precipitation in May and July showed little change, but the overall trend was declining and
the decreasing trend was significant in July. Therefore, managers should establish measures
to mitigate potential drought disasters in July and appropriately increase the irrigation
of crops.
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4. Conclusions

We proposed an MGSM for precipitation forecasting considering the time scale and
predicted precipitation (annual, crop growth period, and monthly from May to September
in the crop growth period scales) in the Songnen Plain area from 2019 to 2023. The main
conclusions are as follows:

(1) The MGSM model constructed in this paper yields higher fitting accuracy at different
scales than both the GM(1,1) model and the GSM. The NSE of the precipitation
forecasting results at various scales was greater than 0.69, the MARE was between
0.28% and 9.36%, and the RMSE was between 8.5 and 31.81 mm.

(2) Based on the time scale effects of precipitation, the accuracy of the precipitation
forecasting results from 2019 to 2023 was tested. The growth period and annual NSE
values both exceeded 0.5, and the average relative error was within 5%. The RMSE
was also within 30 mm, and the accuracy of estimates in the forecasting stage met
the relevant requirements. The proposed method can overcome the shortcomings of
traditional methods in which the forecasting accuracy cannot be assessed because of
the lack of available measurements.

Precipitation shows an increasing trend from 2019 to 2023. In the overall crop growth
period and in June, August, and September, precipitation increased, and the increasing
trend was significant in June and August. Precipitation declined overall in May and July,
and the decreasing trend was significant in July. It is suggested that managers should
implement farm drainage measures in June and August and avoid drought in July by
increasing crop irrigation.
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