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Abstract: Water quality pollution has been a serious problem in the Taihu Basin plains, which is a
highly urbanized area in China. This study aims to detect the interannual and seasonal changes
and spatial patterns of water quality in this region. Based on cluster analysis, Moran’s I, and
standard deviational ellipses, the site clusters, spatial heterogeneity of water quality characteristics
and identified polluted regions were clarified. Results showed that (1) water quality improved since
2002, and nutrient concentrations were lower in summer and autumn than in winter and spring.
(2) The monitoring sites were divided into six clusters according to the water quality during the
period from 2010 to 2014. Water quality worsened from Cluster 1 to Cluster 4. Cluster 1 sites were
mostly distributed beside the Yangtze River and Taihu Lake. Cluster 4 sites were mainly located
along the southeast border near Shanghai, while the remaining sites were separately distributed in
the main cities. (3) A polluted region of both total nitrogen (TN) and total phosphorus (TP) was
present in the southeastern part of the study area near the border from 2010 to 2014. In addition,
polluted regions were most likely to form near the junctions of main cities. (4) Anthropogenic factors
had greater impacts on water quality than natural factors. More attention should be given to water
quality protection around impervious surface areas due to the greatest considerable effect.

Keywords: river water quality; plain area of the Lower Yangtze River; the Taihu Basin; temporal
change; spatial characteristics

1. Introduction

As the most developed region in China, the urbanization of the Taihu Basin, which is
located in the lower reach of the Yangtze River, has continued at a rapid pace. Influenced
by anthropogenic activities (e.g., urbanization), water quality has deteriorated and flood
events have occurred frequently in this area [1–3]. Cyanobacteria pollution has long been
a severe problem in the Taihu Lake. The algae bloom in 2007 resulted in a shortage
of drinking water for over two million people and attracted considerable attention from
society. Algal pollution is mainly caused by high concentrations of nitrogen and phosphorus
that originate from excessive loadings from point and nonpoint sources. The release of
wastewater was still uncontrolled in the plains area of the Taihu Basin [4]. Eutrophication in
the Taihu Basin has threatened the sustainable development of the region. Although water
purification projects have not achieved remarkable effects, water quality has improved
in recent years [5]. The reasons for these improvements are complex, and the problem of
lower water quality caused by pollution is difficult to solve.

Many studies have been conducted on the aquatic environment and other environmen-
tal problems in the Taihu Basin and other basins [6–10]. Researchers have detected changes
in water quality [11,12] and pollution characteristics [13] as well as their influencing fac-
tors [14–17]. In this area, pollution can be found in all parts of the water cycle, such as
rainwater, soil water, surface water, and groundwater. A similar previous study conducted
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in the Taihu Basin showed that in the rainwater, the concentration of total nitrogen (TN)
was 1.73 mg/L and that the concentration of total phosphorus (TP) was 0.05 mg/L [18].

Several statistical methods have been used to analyze the characteristics of water qual-
ity or identify the influencing factors of pollution, including factor/principal component
analysis (FA/PCA) [13,19,20], cluster analysis (CA) [11,21], discriminant analysis (DA)
and redundancy analysis (RDA) [22]. Xia et al. identified NO3-N, TN and TP as the key
pollutant indexes in the Three Gorges Reservoir [21]. Moreover, parameters contributing
to river water quality variation may differ among different seasons [19]. Zeinalzadeh
and Rezaei found that reduced river flows, increased pollution and agricultural drainage
water depletion were important influencing factors affecting considerable changes in water
quality downstream of the Shahr Chai River [20]. Şener et al. considered that anthro-
pogenic pollutants increased the values of nutrients and trace metals in the Aksu River [23].
Similarly, Wu et al. recognized that anthropogenic factors and land use were most likely
responsible for the spatial variations in water quality in the Taihu Basin [24]. Impervious
surfaces expansion and secondary industries contribute to an increase in population, which
has a great impact on water quality [25]. Machine Learning methods, such as artificial
neural networks, have also been used in water quality modeling [26]. However, few studies
have detected the spatial characteristics of polluted region changes. Nitrogen and phos-
phorus are the main limiting nutrient elements of algal growth in the study area. The TN
concentration was far beyond the value specified in the Class V national standard of surface
water. P drives phytoplankton assemblages under an N-rich environment in the rivers
that flow into Taihu Lake [22]. High concentrations of TP and TN are more likely to cause
cyanobacterial outbreaks [5], and regions with the highest TN and TP pollution should be
identified and treated based on their specific characteristics.

This study aims to analyze the temporal variations in water quality in rivers in the
plain area of the Taihu Basin. Additionally, water quality spatial pattern variations based
on Moran’s I (the index is described in what follows), CA, and standard deviational ellipses
are illustrated. Finally, the major factors affecting water quality among artificial and natural
factors are explored. The results could improve the scientific understanding of river water
quality and help improve and protect the aquatic environment by identifying polluted
regions for the prevention and control of cyanobacteria.

2. Materials and Methods
2.1. Study Area

The Taihu Basin is located in the southern part of Jiangsu Province, the northern part
of Zhejiang Province and Shanghai. Specifically, it is in the middle of the Yangtze River
Delta Region and contains hilly and plain areas (Figure 1). The area of the Taihu Basin is
approximately 36,900 km2, and it contains a complex river network with a river density
of approximately 3.24 km/km2 [27]. The study area includes the Wuchengxiyu Water
Conservancy Area (WCXY) and the Yangchengdianmao Water Conservancy Area (YCDM),
which are typical plain areas in the Taihu Basin. It is adjacent to Shanghai in the southeast
and is located between Taihu Lake and the Yangtze River which exchange water between
them. This region has an average rainfall of 1078.72 mm, and approximately 62% of the
precipitation is concentrated in summer and autumn; this average is based on monitoring
data collected from 2002 to 2014 (Table 1). The amount of precipitation increases from April
to August and reaches the highest value in August. Both temperature and precipitation
are high in summer because this area is under the control of the East Asia Summer Mon-
soon, which contributes to more rain and higher temperatures during the summer season.
The water level is high from June to October and shows delays relative to the timing of
precipitation. The highest water level appears in August, although the water level is also
high in July. Natural conditions, such as precipitation and temperature, may significantly
affect water quality. Because of the natural conditions of the area, anthropogenic factors in
the Taihu Basin greatly affect water quality in the corresponding season. The East Asian
Summer Monsoon and flat terrain of the Taihu Plain make it a highly suitable area for
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agricultural activities such as rice planting. Additionally, the study area is highly urbanized
and the population is increasing yearly. Industrial production and population activities
result in a large amount of pollution. In this region, controlling nonpoint pollution sources
is more difficult than controlling point sources such as industrial point sources [28].
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Table 1. Precipitation and air temperature from 2002 to 2014.

Year Spring Summer Autumn Winter

Precipitation (mm) 1078.72 240.96 483.47 183.59 170.70
Air temperature (◦C) 16.90 15.88 27.56 18.85 5.31

2.2. Water Quality and Influencing Factors

Water samples were monitored from 2002 to 2014 by the local hydrographic offices
of Jiangsu Province located in this area to support water management decisions [29]. The
monitoring sites were distributed along the main rivers. The number of sites increased
annually as more attention was given to water quality in the plain area of the Taihu Basin.
The numbers of sites were 16, 20, 23, 34, 32, 35, 48, 67, 118, 122, 123, 121, and 120 from 2002
to 2014. Some sites were monitored monthly, while some sites were monitored every two
months. Water temperature data were also monitored every month at some key sites.

Biochemical indexes (e.g., dissolved oxygen (DO), percent saturation of oxygen, potas-
sium permanganate index (CODMn)) and nutrients (e.g., TP, ammonia nitrogen (NH4

+-N),
and TN) were selected to describe the water quality characteristics in this area.

The impervious surface and paddy land rates were obtained by interpretation from
Landsat 7 TM images. Population raster data for 2014 were obtained from WorldPop
(https://www.worldpop.org, accessed on 11 July 2021). Precipitation data were obtained
by the interpolation from monitoring data by the kriging method. All monitoring sites
corresponded to the influencing factors within a 1000 m buffer radius. Deng [30] and Yang
et al. [31] adapted this radius for use in this region, and research by Yang indicated a more
significant correlation when the spatial scale was increased from 100 m to 1000 m. Factors
in 500–2000 m buffers were obtained.

The Mann–Kendall (MK) test [32] was adopted for the trend analysis of the water
quality from 2002 to 2014. Spearman’s rank correlation was adopted to determine the
relationships between water quality and the factors.

2.3. Cluster Analysis (CA)

To distinguish sites by the indicators’ concentrations measured at different sites from
2010 to 2014, hierarchical clustering was adopted to analyze the monitored sites. The
average linkage clustering method and the measured Euclidean distance were used. The

https://www.worldpop.org
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ranges of various indicators concentration values differed. To eliminate the effects of this
difference, all values were first standardized. Clustering analysis was conducted using IBM
SPSS Statistics 22 for Windows.

2.4. Moran’s I

To determine the spatial heterogeneity of water quality in this area, Moran’s I was
adopted to reflect the clustering characteristics.

I =
n

∑n
i=1 ∑n

j=1 wi,j

∑n
i=1 ∑n

j=1 wi,j(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 (1)

where n is the number of geographic units; xi and xj are the spatial locations of i and j,
respectively; and wij is the spatial weight between units i and j which was all set as 1.

Moran’s I values range from −1 to 1, with positive values indicating the spatial
clustering characteristics of the geographic units, and negative values indicating the spatial
dispersal characteristics of the units. A value of 0 indicates the lack of spatial clustering
and spatial dispersal characteristics. The obtained pattern did not appear to be significantly
different from that expected at random. Moran’s I values were calculated in ArcMap 10.3.
The spatial patterns were determined using the z-score and p-value. When the z-score was
higher than 1.65 and the p-value was lower than 0.10, a clustered pattern was more likely.
When the z-score was lower than −1.65 and the p-value was lower than 0.10, a dispersed
pattern was more likely. In other situations, a random pattern was observed.

2.5. Distribution of Polluted Regions (Standard Deviational Ellipse)

The pollution evaluation for this area was based on the number of polluted sites. For
example, water quality was divided into 5 levels according to the National Standard of
Surface Water of China (GB3838-2002) (Table 2). Sites with mean TP concentrations lower
than that of the Class IV water standard (0.3 mg/L) were assumed to be unpolluted or
sub-polluted. In contrast, sites with a mean TP concentrations higher than that of the
Class IV standard were assumed to be relatively polluted. TN is the most serious type of
pollution in this area, and its concentrations in most sites were much higher than the Class
V standard. Therefore, we used the tripled Class V concentration standard (6.0 mg/L) to
identify relatively polluted sites.

Table 2. National Standard of Surface Water of China (GB3838-2002).

Class Class I Class II Class III Class IV Class V

DO (mg/L) 7.5 6.0 5.0 3.0 2.0
CODMn (mg/L) 2.0 4.0 6.0 10.0 15.0

TN (mg/L) 0.2 0.5 1.0 1.5 2.0
NH4

+-N (mg/L) 0.15 0.5 1.0 1.5 2.0
TP (mg/L) 0.02 0.1 0.2 0.3 0.4

Polluted sites were identified, and then, the spatial distributions and directions of
these sites were calculated to reflect the spatial patterns of polluted regions. Thiessen
polygons were calculated to separate regions around the monitoring sites. For areas with
fewer than three neighboring polluted polygons, the monitoring sites corresponding to
these polygons were used to identify polluted regions. The polluted region gravity centers
were defined as the mean X and Y values of the sites belonging to each region. The spatial
distribution directions were calculated using a standard deviational ellipse tool.
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Standard deviational ellipses can reflect the spatial characteristics of pollution distri-
butions, including the locations of polluted regions and their main directions. The standard
deviational ellipses were calculated as follows:

SDEx =

√
∑n

i=1
(
xi − X

)2

n
(2)

SDEy =

√
∑n

i=1
(
yi −Y

)2

n
(3)

where (SDEx, SDEy) are the coordinates of the center of the standard deviational ellipse,
and (xi, yi) are the coordinates of point i. (X, Y) represents the average center of all points.
n represents the number of points.

The computational formula of the rotation angle θ is as follows:

tan θ =
A + B

C
(4)

A =

(
n

∑
i=1

x̃2
i −

n

∑
i=1

ỹ2
i

)
(5)

B =

√√√√( n

∑
i=1

x̃2
i −

n

∑
i=1

ỹ2
i

)2

+ 4

(
n

∑
i=1

x̃i ỹi

)2

(6)

C = 2
n

∑
i=1

x̃i ỹi (7)

where x̃i and ỹi are the differences values between the average values and point i.

σx =
√

2

√
∑n

i=1(x̃i cos θ − ỹi sin θ)2

n
(8)

σy =
√

2

√
∑n

i=1(x̃i sin θ − ỹi cos θ)2

n
(9)

where σx and σy represent the long axis and short axis of the ellipse, respectively.
Standard ellipse analysis was conducted using the Directional Distribution Tool in

ArcMap 10.3.

3. Results

This study aimed to detect the interannual and seasonal changes and spatial patterns
of water quality in this region, especially focusing on clusters, the spatial heterogeneity
of water quality characteristics and the identification of polluted regions. The correlation
between influence factors and water quality indicators was also presented.

3.1. Interannual Variation

Boxplots of DO, percent saturation of oxygen and CODMn in different years are shown
in Figure 2. The changes in the other examined indicators are shown in Figure 3. Boxplots
based on 16 sites monitored from 2002 to 2014 were also plotted to provide a more reliable
comparison (Figures 2 and 3).



Water 2022, 14, 1654 6 of 18

Water 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

water quality characteristics and the identification of polluted regions. The correlation be-
tween influence factors and water quality indicators was also presented. 

3.1. Interannual Variation 
Boxplots of DO, percent saturation of oxygen and CODMn in different years are 

shown in Figure 2. The changes in the other examined indicators are shown in Figure 3. 
Boxplots based on 16 sites monitored from 2002 to 2014 were also plotted to provide a 
more reliable comparison (Figures 2 and 3). 

 

 

 

Figure 2. Variations in the mean values and boxplots of the annual average DO concentration, per-
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Figure 2. Variations in the mean values and boxplots of the annual average DO concentration, percent
saturation of oxygen and CODMn concentration from 2002 to 2014 based on different levels of the
GB3838-2002 standards (the lines of the Class V standard to the Class I standard gradually change
from black to 50% gray; the curves represent the mean values, the black ‘+’ symbols represent the
mean values of the data, the red lines represent the median values of the data, the edges of the boxes
are the 25th and 75th percentiles, the whiskers extend to the most extreme data points that were not
considered outliers by the algorithm, and the outliers are plotted individually as red ‘+’ symbols;
the boxplots in the left column are based on all sites, and the plots in the right column are based
on 16 sites). The trends of mean values are estimated using the MK test, as shown as the texts of
MK_slope and p_value in all sub figures.
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Figure 3. Variations in the mean values and boxplots of the annual average concentrations of TN,
NH4

+-N and TP from 2002 to 2014 based on different levels of the GB3838-2002 standards (lines of
the Class V standard to the Class I standard gradually change from black to 50% gray; the curves
represent the mean values, the black ‘+’ symbols represent the mean values of the data, the red lines
represent the median values of the data, the edges of the boxes are the 25th and 75th percentiles, the
whiskers extend to the most extreme data points that were not considered outliers by the algorithm,
and the outliers are plotted individually as red ‘+’ symbols; the boxplots in the left column are based
on all sites, and plots in the right column are based on 16 sites). The trends of mean values are
estimated using MK test, as shown as the texts of MK_slope and p_value in all sub figures.

The results showed a well-established trend in water quality. Generally, the NH4
+-N,

TN, and CODMn concentrations showed significant decreasing trends, whereas the DO
concentration and percent saturation of oxygen showed significant increasing trends. When
considering only the 16 sites monitored in 2002–2014, the water quality was better and
the resulting trends were steeper than the trends corresponding to all sites. The trend
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of the NH4
+-N concentration showed a steady decrease, while the other three indicators

produced wavy curves. There were high outlier values for TN, CODMn, NH4
+-N, and TP

concentrations, which made the mean values larger than the median values. This result
indicated that some rivers were highly polluted and were in a worse state than the average
in this area in different years. Determining where these sites are located is critical for
pollution abatement.

The DO and CODMn indicators showed that the biochemical situation in this area was
relatively good. The DO concentration at most sites reached the Class V standard. Thus, aquatic
organisms can live in these environments without the risk of low DO, which improves water
quality. The mean DO concentration generally increased from 2002 to 2014. As the temperature
was stable from 2002 to 2014, the trend of percent saturation of oxygen was almost the same
as that of DO. Overall, the water quality improved considerably, and the growth environment
for aquatic plants and animals improved. The CODMn situation was the best among these
indicators examined in the study area. All sites achieved the Class V standard, except for one
site in 2004. Compared with the other indicators, organic pollution was less serious. Moreover,
the CODMn concentration decreased from 2002 to 2014. The mean concentrations were lower
than the Class IV standard before 2009 (6.16–7.14 mg/L), while they were lower than the Class
III standard at most sites after 2010 (5.27–6.10 mg/L). Thus, the CODMn situation improved by
one level, but the occurrence of abnormal values increased. Therefore, the CODMn pollution in
this area still requires attention.

The TN and NH4
+-N indicators showed similar trends, and their mean concentrations

showed decreasing trends from 2002 to 2014. Nitrogen pollution, especially TN pollution,
was serious, and the effect of governance was not obvious. The TN concentration seriously
exceeded the water standard. The mean TN concentrations were more than three times
higher than the Class V standard before 2006 (6.08–6.52 mg/L). After 2007, the mean TN
concentration was still more than double the Class V standard (4.32–5.01 mg/L). The mean
NH4

+-N concentrations showed an obvious inflection point in 2006. They ranged from
3.39 to 4.20 mg/L before 2006 and from 1.77 to 2.91 mg/L after 2007. Finally, the mean
values reached the Class V standard after 2010.

TP was the only indicator that did not show a significant trend when taking all sites into
consideration. However, there was a decreasing trend. The mean concentration values were
lower between 2010 and 2014 (0.23–0.27 mg/L) than between 2002 and 2009 (0.24–0.35 mg/L).
When only considering the 16 sites monitored in 2002–2014, a significant decreasing trend was
observed. However, the mean concentration increased from 2010 to 2014. From 2004 to 2014,
the sites in this area produced many outlier values. Many regions in the study area remained
seriously polluted. Overall, the level of TP pollution improved, but this led to an increased
frequency of outliers.

The values of all indicators were low and showed stability after approximately 2009.
Before approximately 2009, water quality was poor and quite variable. After this time,
the observed fluctuations were much smaller, and the concentrations of indicators other
than TP and DO were much lower than those in the previous period. NH4

+-N was the
indicator which improved the most when considering all sites, and the mean concentration
decreased from 3.31 mg/L before 2009 to 1.88 mg/L after 2010, which reached the Class
V standard. After the cyanobacterial pollution event in 2007, great efforts were made to
improve the aquatic environment in the study area.

3.2. Seasonal Variation

The variations in these five indicators in different seasons (2010–2014) are shown
in Figure 4. To quantify the differences in the mean concentrations of indicators, the
differences in the annual and seasonal mean concentrations are shown in Table 3. The
DO concentration trend was similar to the trends of the other indicators. The mean DO
concentration was highest in winter (7.73 mg/L) and lowest in summer (4.73 mg/L), and it
showed an obvious increasing trend in autumn and a decreasing trend in spring (Figure 4).
Temperature change was one of the factors that influenced this change. Therefore, the
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percent saturation of oxygen was also calculated to avoid the influence of temperature
(Figure 4). The mean value of percent saturation of oxygen was highest in spring, lower in
summer and lowest in autumn.
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Table 3. Mean concentrations and percent values in different seasons.

Year Spring Summer Autumn Winter

DO (mg/L) 5.93 6.12 (+0.19) 4.73 (−1.20) 5.17 (−0.76) 7.73 (+1.80)
Percent saturation of oxygen (%) 61.84 66.73 (+4.89) 58.34 (−3.50) 58.14 (−3.70) 64.14 (+2.30)

CODMn (mg/L) 5.54 5.87 (+0.33) 5.56 (+0.02) 5.13 (−0.41) 5.60 (+0.06)
TN (mg/L) 4.45 5.17 (+0.72) 3.92 (−0.53) 3.55 (−0.90) 5.15 (+0.70)

NH4
+-N (mg/L) 1.90 2.41 (+0.51) 1.65 (−0.25) 1.33 (−0.57) 2.23 (+0.33)

TP (mg/L) 0.25 0.27 (+0.02) 0.26 (+0.01) 0.21 (−0.04) 0.25 (0.00)

Data inside parentheses are the differences between the mean values in different seasons and the mean values
over the whole year.

The CODMn concentration decreased from spring (5.87 mg/L) to autumn (5.13 mg/L)
and increased in winter (5.60 mg/L). The concentrations were generally higher in the non-
flood season than in the flood season. The concentrations of TN and NH4

+-N showed simi-
lar changes. The TN and NH4

+-N concentrations were higher in spring (5.17 and 2.41 mg/L)
and winter (5.15 and 2.23 mg/L) than in summer (3.92 and 1.65 mg/L), and they reached
a minimum in autumn (3.55 and 1.33 mg/L). The mean TP concentrations in spring
(0.27 mg/L) declined to relatively low levels in summer (0.26 mg/L). Finally, they declined
to the lowest annual level in autumn (0.21 mg/L) and increased again in winter (0.25 mg/L).
Outliers were relatively scarce in summer and autumn, and their values were lower. Thus,
TP pollution was more uniform in this area during these two seasons.

Generally, the water quality was better during the flood season (summer and autumn)
than during the nonflood season (winter and spring).

3.3. Spatial Characteristics
3.3.1. Clusters of Water Quality

According to the water quality during 2010–2014, the monitoring sites were divided
into six clusters. The site numbers and mean concentrations of the parameters are shown
in Table 4. Clusters 5 and 6 only contained one site each, and these were the most polluted
clusters in the study area. The water quality worsened from Cluster 1 to Cluster 4 according
to almost all parameters, except for TP between Cluster 3 and Cluster 4. However, when
assessing water quality using the worst parameter according to GB3838-2002, even the least
polluted Cluster 1 did not reach the Class V standard due to the high TN concentration.
Cluster 1 reached only the Class IV standard when TN was not considered.

Table 4. Site numbers and mean parameter concentrations of different clusters.

Cluster 1 2 3 4 5 6

Number of sites 71 33 4 13 1 1
DO (mg/L) 6.64 5 4.33 4.19 3.09 3.94

NH4
+-N (mg/L) 1.08 2.43 2.72 4.14 5.83 6.35

TP (mg/L) 0.17 0.29 0.53 0.47 0.73 0.37
TN (mg/L) 3.37 5.08 5.72 7.21 9.03 11.36

CODMn (mg/L) 4.80 6.31 6.93 7.12 9.97 9.06

Cluster 1 contained 71 sites, and they were distributed near the Yangtze River, Taihu
Lake, and the Wangyu River (Figure 5). The Wangyu River was the most important river
for the Water Diversion Project from the Yangtze River to Taihu Lake and divided the study
region into the YCDM and WCXY. The emission of pollutants into the Wangyu River and
rivers near the Yangtze River and Taihu Lake was limited by the government. The water
quality at sites in Cluster 1 was not classified as indicating polluted regions. Cluster 2
contained 33 sites. These sites were distributed in the middle of the WCXY and Taicang.
Some sites in this cluster were categorized as part of polluted regions due to the instability
of water quality among different years. Cluster 3 contained four sites. Three of these sites
were in the WCXY, and one site was located in the northern part of Suzhou city. The sites
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in Cluster 3 were more likely to be part of the polluted regions than those in Cluster 2.
Cluster 4 contained 13 sites, most of which were distributed in Taicang and Kunshan. These
sites should be given more attention. One site in Cluster 5 was located in Changshu, which
is next to Gehu Lake. This was a severely polluted site, but sites surrounding it did not
show signs of serious pollution. One site in Cluster 6 was located at the boundary of
Taicang and Changshu.
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from 2010 to 2014.

In general, sites in Clusters 4–6 were included in polluted regions in most years. Sites
in Clusters 2 and 3 were included in polluted regions in some years.

3.3.2. Spatial Heterogeneity of Water Quality

Moran’s I values of the TN and TP concentrations showed similar trends from 2010
to 2014 (Table 5). Both concentrations had high Moran’s I values and z-scores in 2010 and
2011. The z-scores were positive from 2012 to 2014, which means that the patterns in these
years showed weak clustering characteristics. However, the values were small; thus, they
showed random distribution patterns. The TN and TP pollution in the plain area of Taihu
Basin showed clustered patterns in 2010 and 2011. These types of pollutants were clustered
to indicate polluted regions. However, from 2012 to 2014, the patterns showed random
distribution characteristics, which means that these types of pollutants did not obviously
cluster during this time. Therefore, TN and TP pollution was not as concentrated as it
was previously.

Table 5. Moran’s I of TN and TP concentrations at monitoring sites from 2010 to 2014.

Year
TN TP

Moran’s I z-Score p-Value Pattern Moran’s I z-Score p-Value Pattern

2010 0.51 2.50 0.0125 Clustered 0.5 2.46 0.0140 Clustered
2011 0.58 3.52 0.0004 Clustered 0.34 2.16 0.0310 Clustered
2012 0.13 0.16 0.8727 Random 0.09 0.12 0.9040 Random
2013 0.03 0.05 0.9632 Random 0.11 0.14 0.8891 Random
2014 0.05 0.06 0.9501 Random 0.01 0.14 0.8859 Random
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3.3.3. Water Quality Pollution Areas

To determine how the regions of TN and TP pollution specifically changed, standard
deviational ellipses were calculated for the polluted regions.

Sites with high mean TP concentrations were distributed in three regions. The first
region was around the boundary of Changzhou, Jiangyin, and Wuxi. The second region
was around the boundary of Kunshan and Taicang. The third region was located near the
northern part of Suzhou Old Town. Generally, almost every region decreased in size during
these 5 years (Figure 6).
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Figure 6. Standard ellipses of TP polluted regions from 2010 to 2014.

The first region was smaller in 2011 than in 2010, but it always comprised the boundary
of Changzhou, Jiangyin, and Wuxi. The distribution at the boundary may be because all of
these cities have high-pollution industries that are located far from the city centers where
humans aggregate. The direction of this ellipse’s long axis is similar to the direction of the
Jiangnan Canal, which was part of the Beijing–Hangzhou Canal in Wuxi in 2010 and 2011.
During these two years, water pollution may have been considerably affected by the
Jiangnan Canal. Thus, the distribution of polluted sites along the east of the Jiangnan
Canal was likely. In 2012 and 2013, no polluted region was recorded in this area. There
were two small polluted regions in the same area in 2014. One was in Changzhou, while
the other was in Jiangyin/Zhangjiagang. The river water quality has improved in recent
years, and the polluted regions have decreased in size.

The second polluted region was the worst and largest region, and the sites in this
region were monitored most intensively. From 2010 to 2012, the polluted region was large,
but it decreased in size in 2013 and 2014. The polluted region was near the boundary of
Shanghai, and its direction was similar to that of the boundary. We can assume that the
main reason for the observed trend was economic development. Shanghai is a large city,
and its economy is very developed. To reduce economic costs, many economic activities,
especially industrial activities, were relocated to Taicang and Kunshan. The increased
economic activities and population sizes caused by economic growth led to more pollutant
emissions in these two counties and subsequently higher TP concentrations than those in
other regions. In 2014, the polluted region moved to the north, and its direction no longer
followed the Shanghai municipal boundary. Thus, the distribution attribution changed.
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The third polluted region was located in the northern part of Suzhou Old Town. The
polluted sites were distributed in the river north of Suzhou in 2010 and expanded to the
moat of northern Suzhou. However, in 2014, the TP concentration in the northern moat
decreased to 0.189 mg/L, and this polluted region disappeared. The TP pollution problem
greatly improved in this area.

The TN-polluted regions were located around Wuxi and Kunshan/Taicang and in
some other areas in different years. The TN pollution distribution was similar to the TP
pollution distribution (Figure 7).
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The first polluted region was located between Changzhou and Wuxi, and it included
the Jiangnan Canal, which linked these two cities. The direction of this ellipse’s long
axis was similar to the direction of the canal. TN pollution was more likely affected
by the canal than TP pollution in 2010. There were no polluted regions in this area in
2011 and 2012. However, in 2013 and 2014, polluted regions appeared in Wuxi/Jiangyin
and Changzhou/Wuxi, respectively.

The second polluted region was relatively large in 2010 and 2011 and decreased in
size in 2012 and 2013. The region eventually split into two regions in 2014. One region
was distributed at the boundary of Changshu/Taicang, and the other was distributed at
the boundary of Taicang/Kunshan. The direction of the polluted region was similar to the
direction of the Shanghai boundary.

Other TN pollution regions appeared in Suzhou in 2011 and Zhangjiagang in 2012.
The TN pollution was not stable and could not be easily controlled in the plain area of
Taihu Basin. In 2012, both TN and TP showed high pollution attributes in Zhangjiagang,
which suffered from considerable water pollution.

3.4. Influencing Factors of Water Quality

The factors influencing water quality include the impervious surface rate, paddy land
rate, population and precipitation. Precipitation is a natural factor and the others are
artificial factors. (Table 6)
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Table 6. Correlations between different factors and TN and TP.

Year Spring Summer Autumn Winter

TN TP TN TP TN TP TN TP TN TP

Impervious
surface rate

500 m 0.197 * 0.236 * 0.202 * 0.205 * 0.167 0.164 0.108 0.227 * 0.091 0.089
1000 m 0.221 * 0.223 * 0.247 ** 0.208 * 0.156 0.148 0.152 0.255 ** 0.107 0.138
1500 m 0.243 ** 0.231 * 0.259 ** 0.202 * 0.159 0.144 0.199 * 0.271 ** 0.138 0.166
2000 m 0.255 ** 0.238 ** 0.264 ** 0.190 * 0.173 0.149 0.230 * 0.289 ** 0.154 0.178

Paddy land rate

500 m −0.020 0.057 −0.063 0.026 0.049 0.161 0.029 0.025 0.031 −0.011
1000 m −0.026 0.086 −0.086 0.041 0.091 0.179 * 0.021 0.026 0.023 0.003
1500 m −0.019 0.089 −0.074 0.070 0.138 0.211 * 0.033 0.043 0.018 0.002
2000 m −0.009 0.092 −0.067 0.093 0.146 0.206 * 0.031 0.042 0.023 0.002

Population

500 m 0.157 0.058 0.169 0.021 0.068 −0.041 0.173 0.131 0.150 −0.011
1000 m 0.179 * 0.106 0.195 * 0.067 0.131 0.007 0.219 ** 0.221 ** 0.142 0.106
1500 m 0.172 0.075 0.178 0.018 0.117 0.000 0.176 0.199 * 0.148 0.081
2000 m 0.158 0.07 0.167 0.014 0.093 −0.002 0.184 * 0.199 * 0.126 0.049

Precipitation - −0.002 −0.014 −0.109 −0.304 ** 0.191 * 0.234 * 0.130 0.049 −0.052 −0.237 **

** Correlation is significant at the 0.01 level. * Correlation is significant at the 0.05 level.

The directions of the correlations between artificial and natural factors and water
quality parameters were opposite. The correlations between water quality parameters
and the impervious surface rate were more significant than the correlations with other
factors at all spatial scales. However, the correlation was not significant in summer. The
paddy land rate presented a slight effect on water quality. It had a positive influence on
the TP concentration in summer, with a statistically significant at the 0.05 level. Population
exhibited positive correlation with TN, and the significant level of the correlation was
highest in the 1000 m buffer in any seasons. The correlations between water quality
parameters and precipitation were not significant. However, precipitation had significant
positive influences on TN and TP concentration in summer.

4. Discussion

The variations and characteristics of river water quality in study area are influenced
by many factors, including natural factors (e.g., meteorological elements and river order)
and artificial factors (e.g., urbanization).

4.1. Variations of the Water Quality in Plain Area of the Taihu

The mean DO concentration was the highest in winter and the lowest in summer [22,33],
and percent saturation of oxygen was lower in summer and autumn. The DO concentration
is usually affected by the factors of aeration, photosynthesis, respiration, and oxidation from
waste [34], which have relationships with temperature. The temperature was high in summer
and led to less DO in the water. Cyanobacterial growth is another factor that affects DO and
results in lower DO concentrations or percent saturation of oxygen. Under eutrophic conditions
in the study area, cyanobacterial blooms easily occur. Although cyanobacteria will increase
the DO in the surface water through photosynthesis, a high amount of cyanobacterial bloom
particles floating on the surface of the river will reduce light transmittance and affect the depth
of the water body in which phytoplankton photosynthesize to generate oxygen. High-density
algae accumulation will cause a sharp drop in DO in the water when the algae decays and
decomposes [35]. Meanwhile, microbiological activities in the water and bottom increased in
summer and autumn. For example, the higher temperature results in the decomposition of
organic matter in oxygen-consuming processes.

Similarly, Xiao thought that the CODMn concentration was slightly better during the
flood season than during the low water period in the southern part of the Taihu Lake [33].
Similarly, the nitrogen concentrations were generally lower in summer than in winter in a
study of rivers surrounding the Taihu Lake [22]. In the southern part of the Taihu Basin,
there was more TN pollution during the low water period [33], which was almost the same
as the situation during winter and spring. In the Taihu Lake, the TN concentration also
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reached a maximum in winter–spring and reached a minimum in summer–autumn [36].
Based on the sources of nitrogen pollution, high nitrogen concentrations were expected to
appear in the wet season. Because more rain and increased temperatures occur during the
same period, rice is planted during the wet season, and fertilizer and pesticides are used
to achieve higher yields. The lower concentrations of TN and NH4

+-N indicate that the
dilution effect from precipitation was more pronounced than the enhanced runoff effects
and the influence of rice planting [37].

The river water quality near the Yangtze River and the Taihu Lake was relatively good.
Taihu Lake and the Yangtze River are important sources of drinking water and industrial
water for these cities. After the cyanobacterial bloom in 2007, the government focused
more attention on the water quality of this lake. Therefore, pollutant emissions around
Taihu Lake were strictly controlled, and the water diversion and drainage project were also
conducted to accelerate changes in the water of Taihu Lake. The water quality in the rivers
around the lake also greatly benefitted from this project.

4.2. Influence Factors of the Surface Water Quality
4.2.1. Natural Factors

Natural factors change led to the seasonal variation, as the industrial point-source pol-
lutants are relatively stable across different seasons. Precipitation has a negative correlation
with water quality. The quality of rain water is much better than that of river water in the
Taihu Plain [18,38]. Rain water would dilute the pollution in the surface water during the
flood season. Meanwhile, the large amount of precipitation makes pollution accumulation
difficult because of quicker water exchange [30]. More precipitation occurs during the flood
season, resulting in a high water level which can dilute pollutants. Flow reduction can
result in larger concentrations of pollutants in the Ganga River around the industrialized
Kanpur Region [39]. Therefore, water quality during in the flood season is better than that
during the nonflood season.

In summer, agricultural activities result in many nonpoint-source pollutants. More
precipitation leads to higher pollution concentrations in rivers. The temperature is higher
in summer than in winter. In summer, aquatic plants grow, absorb some pollution from the
water and improve water quality. However, cyanobacterial outbreaks may worsen river
water quality in summer in some regions. The natural factors mainly cause the seasonal
variation of the river water quality.

4.2.2. Artificial Factors

The impervious surface rate influences the water quality the most among all factors.
This occurs because factories are built on impervious surfaces, which has a greater impact
on water quality in this area [25]. Water quality in the Taihu Basin was related not only
to point sources but also nonpoint sources [40]. Point source pollutants such as domestic
and municipal sewage and industrial wastewater are discharged into rivers. Meanwhile,
impervious surfaces were also considered as the main source of nonpoint-source pollution,
and the nonpoint output in urban land was even greater than that in paddy land [41].
Therefore, the impervious surface rate distribution makes river water around polluted.
Meanwhile, this region has interconnected waterways and is agriculturally well developed.
Nutrients can be generated by agricultural activities [42], which results in a significant
positive correlation between the paddy land rate and TP. Water area changes to agricultural
land through the reclamation of lakes and rivers. This may result in a negative influence of
the water body on TP and TN [43]. Rapid urbanization and industrialization in this area
have also resulted in tremendous changes in the structure of the river network [44]. Rivers
were buried in the study area, influencing the transfer of water pollution and self-cleaning
capacity. However, the flow velocity increased after the water diversion and drainage
project was conducted, and the self-cleaning capacity of river water subsequently improved.

The influence of artificial factors on river water quality is very complex. To improve en-
vironmental conditions, relevant departments have focused attention on pollution problems
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in river water. Point source pollutants were monitored at sewage discharge locations. Non-
point source pollutants were intended to be controlled by existing policies and economics.
Overall, artificial factors influence water quality more than natural factors.

5. Conclusions

This study aimed to detect the interannual and seasonal changes and spatial patterns of
water quality in this region. Based on cluster analysis, Moran’s I, and standard deviational
ellipses, the site clusters, spatial heterogeneity of water quality characteristics and identified
polluted regions were clarified. Finally, factors influencing water quality were discussed.

(1) Water quality in the plain area of Taihu Basin generally improved from 2002 to 2014.
There was an obvious increasing trend in the DO (4.38 to 5.98 mg/L) concentration
and decreasing trends in the CODMn (6.88 to 5.35 mg/L), NH4

+-N (4.20 to 1.87 mg/L),
and TN (6.48 to 4.39 mg/L) concentrations from 2002 to 2014. TN was the worst type
of pollution in the plain area of Taihu Basin. The TP concentration did not show an
effectively steady descending trend. However, its concentration was 0.25 mg/L in
2010–2014, which was lower than the previous concentration (0.29 mg/L). The DO
concentration was high in winter and low in summer because of the temperature
changes among different seasons. In terms of nutrients and CODMn, the water quality
was relatively good in summer and the best in autumn. Water quality should be paid
more attention in winter and spring.

(2) There were still relatively polluted regions, although the water quality improved.
Polluted sites showed clustered patterns in 2010 and 2011, while they were randomly
distributed from 2012 to 2014. The regions with TN pollution were distributed in
Taicang/Kunshan, Wuxi/Changzhou/Jiangyin, and Suzhou. The regions with TP
pollution were mainly distributed in Taicang/Kunshan and other areas. The region
in Taicang/Kunshan was the most polluted. TN and TP pollution in this area lasted
from 2010 to 2014. Pollution reduction programs should be conducted in these
polluted regions.

(3) Natural factors influence the seasonal variations of water quality. In summer, the
precipitation influenced TP or TN more significantly than any other factor. Artifi-
cial factors had a more significant influence on water quality than natural factors.
Among artificial factors, the impervious surface rate influences water quality the
most. Pollution from impervious surface should be paid more attention for water
quality improvement.
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