Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study
Abstract
:1. Introduction
2. Data Collection and Country Profile
3. FAO PM56 Method and Development of ML Models
3.1. Tree-Based ML Models
3.1.1. Single Decision Tree
3.1.2. Tree Boost
3.1.3. Decision Tree Forest
3.2. Neural Network (NN)-Based ML Models
3.2.1. Multilayer Perceptron Neural Network (MLPNN)
3.2.2. Generalize Regression Neural Network (GRNN)
3.2.3. Cascade Correlation Neural Network (CCANN)
3.2.4. Radial Basis Function Neural Network (RBFNN)
3.3. Multifunction (MF)-Based ML Models
3.3.1. Gene Expression Programming (GEP)
3.3.2. Support Vector Machine (SVM)
3.3.3. Global Method of Data Handling (GMDH)
3.4. Proposed ML Models
3.5. Model Evaluation Indicators
4. Training Results of Developed ML Models
4.1. Tree-Based Models
4.2. Neural Network (NN)-Based ML Models
4.3. Multifunction (MF)-Based ML Models
5. Evaluation of the Proposed ML Models against the FAO PM56 Method
ETo Interpolation Maps Based on the Best ML Model
6. Study Discussion and Comparison with ML Studies
7. Conclusions
Limitations, Suggested Improvements and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Monthly Averages of Climatic Variables and PM ETo
Sr. No. | Climatic | Lon | Lat | Alt | Tmin | Tmax | RHavg | U | N | PM ETo |
Stations | DD | DD | m | °C | °C | % | km/Day | Hours | mm | |
1 | Multan | 71.43 | 30.2 | 123 | 18.6 | 33.3 | 57 | 184 | 9.3 | 5.38 |
2 | Chaman | 66.45 | 30.93 | 1313 | 12.7 | 25.7 | 36 | 196 | 7.9 | 4.89 |
3 | Quetta | 67 | 30.16 | 1672 | 6.2 | 24.1 | 54 | 313 | 10.6 | 5.14 |
4 | Lyallpur | 73.01 | 31.36 | 184 | 17.4 | 31.6 | 53 | 130 | 7 | 4.38 |
5 | Zhob | 69.46 | 31.35 | 1407 | 12 | 26.5 | 45 | 89 | 7.6 | 3.7 |
6 | Sargodha | 72.66 | 32.05 | 188 | 16.7 | 30.9 | 57 | 222 | 7.6 | 5.03 |
7 | Chilas | 74.11 | 32.41 | 1250 | 14.3 | 26.7 | 33 | 56 | 5.9 | 3.29 |
8 | Parachinar | 70.08 | 33.86 | 1726 | 8.8 | 21.3 | 47 | 101 | 7.2 | 3.23 |
9 | Islamabad | 73.1 | 33.61 | 508 | 14.4 | 28.4 | 55 | 269 | 7.5 | 5.06 |
10 | Peshawar | 71.58 | 34.01 | 360 | 15.7 | 29.3 | 50 | 156 | 8.1 | 4.51 |
11 | Karachi | 66.98 | 24.8 | 04 | 20.3 | 31.6 | 72 | 338 | 7.4 | 4.64 |
12 | Karachi | 67.13 | 24.9 | 22 | 20.3 | 31.5 | 62 | 482 | 8 | 5.97 |
13 | Gilgat | 74.33 | 35.93 | 1454 | 11.2 | 22.4 | 46 | 37 | 5.9 | 2.71 |
14 | Astore | 74.9 | 35.36 | 2168 | 4.3 | 15.5 | 46 | 58 | 4.9 | 2.5 |
15 | Sakardu | 75.61 | 35.3 | 2181 | 4.6 | 17.1 | 56 | 62 | 6.1 | 2.69 |
16 | Hyderabad | 68.41 | 25.38 | 28 | 21.1 | 35.1 | 48 | 345 | 8.3 | 7.05 |
17 | Gupis | 73.4 | 36.16 | 2156 | 7.4 | 18.9 | 36 | 62 | 6 | 2.85 |
18 | Nawabshah | 68.36 | 26.25 | 38 | 18.3 | 34.8 | 49 | 303 | 7.9 | 6.69 |
19 | Nokkndi | 62.75 | 28.81 | 683 | 16.7 | 32.2 | 35 | 158 | 7.7 | 5.28 |
20 | Dal Bandin | 64.4 | 28.88 | 850 | 13 | 30.3 | 37 | 158 | 7.8 | 5.03 |
21 | Jacobabad | 68.46 | 28.3 | 56 | 20.6 | 34.4 | 47 | 266 | 7.8 | 6.43 |
22 | Kalat | 66.58 | 29.03 | 2017 | 3.7 | 22.3 | 43 | 183 | 7.9 | 4.17 |
Appendix A.2. Linking Functions for the GEP Machine Learning Model
No. | Operators | Linking Function | RMSE (mm/Month) |
F1 | Add. | 1.94 | |
F2 | Add. | 2.09 | |
F3 | Add. | 2.11 | |
F4 | Add. | 2.03 | |
F5 | Add. | 1.78 | |
F6 | Add. | 1.63 | |
F7 | Add. | 1.55 | |
F8 | Add. | 1.44 | |
F9 | Add. | 1.69 | |
F10 | Add. | 1.46 | |
F11 | Mul. | 1.47 | |
F12 | Mul. | 2.13 | |
F13 | Mul. | 1.97 | |
F14 | Mul. | 2.18 | |
F15 | Mul. | 2.13 | |
F16 | Mul. | 2.13 | |
F17 | Mul. | 1.51 | |
F18 | Mul. | 2.08 | |
F19 | Mul. | 2.37 | |
F20 | Mul. | 1.51 |
Appendix A.3. Linking Functions for the GMDH Machine Learning Model
Functions | Equations | RMSE (mm/Month) |
Linear 1 variable | 2.11 | |
Linear 2 variables | 2.10 | |
Linear 3 variables | 2.07 | |
Quadratic 1 variable | 1.48 | |
Quadratic 2 variables | 0.83 | |
Cubic 1 variable | 1.55 | |
Ratio 2 variables | 1.86 | |
Asymptotic 1 variable | 2.20 | |
Gaussian 1 variable | 1.48 | |
Logistic 1 variable | 2.10 | |
Exponential 1 variable | 2.14 | |
Product 2 variables | 2.11 | |
Log 1 variable | 2.23 | |
Note: P1 = Tmax; P2 = Tmin; P3 = RHavg; P4 = N; P5 = U and x1 = 0.876; x2 = 0.7654; x3 = 0.5576. |
Appendix A.4. TB ETo Point Dataset Used for the Interpolation Process
Long | Lat | Alt | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
74.9 | 35.36 | 2168 | 0.69 | 0.88 | 1.46 | 2.53 | 3.47 | 4.45 | 4.4 | 4.18 | 3.43 | 2.32 | 1.42 | 0.72 |
66.45 | 30.93 | 1313 | 1.81 | 2.39 | 3.59 | 5.04 | 6.82 | 7.99 | 7.95 | 7.23 | 6.15 | 4.67 | 3.01 | 1.99 |
74.11 | 32.41 | 1250 | 0.91 | 1.4 | 2.39 | 3.52 | 4.31 | 5.4 | 6 | 5.62 | 4.53 | 2.87 | 1.53 | 1.01 |
64.4 | 28.88 | 850 | 1.88 | 2.55 | 4.07 | 5.58 | 7.06 | 8.11 | 8.3 | 7.74 | 5.93 | 4.21 | 2.85 | 2.06 |
74.33 | 35.93 | 1454 | 0.74 | 1.2 | 2.06 | 2.99 | 3.95 | 4.78 | 4.8 | 4.35 | 3.45 | 2.21 | 1.21 | 0.78 |
73.4 | 36.16 | 2156 | 0.7 | 1.05 | 1.99 | 3.23 | 4.14 | 5.24 | 5.07 | 4.67 | 3.76 | 2.37 | 1.25 | 0.75 |
68.41 | 25.38 | 28 | 3.62 | 4.44 | 6.41 | 8.43 | 11.19 | 11.52 | 11.83 | 8.16 | 8.06 | 6.57 | 4.43 | 3.58 |
73.1 | 33.61 | 508 | 1.85 | 3.02 | 3.86 | 6.32 | 8.71 | 9.99 | 6.78 | 5.47 | 5.19 | 4.31 | 3.15 | 2.07 |
68.46 | 28.3 | 56 | 2.89 | 3.95 | 5.89 | 8.1 | 10.34 | 10.76 | 8.83 | 7.58 | 6.8 | 5.63 | 3.73 | 2.64 |
66.58 | 29.03 | 2017 | 1.65 | 2.12 | 3.26 | 4.33 | 5.79 | 6.61 | 6.53 | 6.27 | 5.22 | 3.87 | 2.57 | 1.86 |
67.13 | 24.9 | 22 | 4.21 | 4.78 | 6.17 | 7.57 | 7.86 | 7.26 | 6.66 | 5.93 | 6 | 6.08 | 5.06 | 4.03 |
66.98 | 24.8 | 4 | 3.36 | 3.78 | 4.78 | 5.57 | 6.49 | 5.77 | 4.76 | 4.32 | 4.76 | 4.76 | 3.96 | 3.43 |
73.01 | 31.36 | 184 | 1.57 | 2.38 | 3.57 | 5.52 | 6.85 | 7.52 | 6.09 | 5.54 | 5.14 | 3.99 | 2.59 | 1.81 |
71.43 | 30.2 | 123 | 1.8 | 2.68 | 4.39 | 6.44 | 8.39 | 10.24 | 8.02 | 7.03 | 6.45 | 4.6 | 2.62 | 1.92 |
68.36 | 26.25 | 38 | 3.03 | 4.07 | 6.02 | 8.28 | 10.58 | 10.96 | 8.96 | 8.16 | 7.36 | 5.85 | 4.03 | 3.01 |
62.75 | 28.81 | 683 | 2.28 | 3.07 | 4.23 | 5.72 | 7.29 | 8.33 | 8.47 | 7.98 | 6.16 | 4.42 | 3.07 | 2.29 |
70.08 | 33.86 | 1726 | 1.3 | 1.59 | 2.45 | 3.29 | 4.67 | 5.36 | 4.78 | 4.93 | 4.03 | 3.09 | 1.97 | 1.35 |
71.58 | 34.01 | 360 | 1.73 | 2.29 | 3.29 | 4.61 | 7.38 | 8.35 | 7.16 | 6.04 | 5.11 | 3.81 | 2.59 | 1.8 |
66.91 | 30.26 | 1621 | 1.82 | 2.55 | 3.75 | 5.13 | 7.33 | 8.69 | 8.56 | 7.58 | 6.46 | 4.76 | 3.02 | 1.99 |
72.66 | 32.05 | 188 | 1.79 | 2.61 | 3.95 | 6.31 | 8.42 | 9.05 | 7.34 | 6.26 | 5.64 | 4.47 | 2.69 | 1.82 |
75.61 | 35.3 | 2181 | 0.63 | 0.88 | 1.72 | 2.99 | 3.97 | 4.88 | 4.82 | 4.41 | 3.67 | 2.32 | 1.23 | 0.72 |
69.46 | 31.35 | 1407 | 1.37 | 1.94 | 3.09 | 4.18 | 5.23 | 6.33 | 5.93 | 5.3 | 4.44 | 3.22 | 1.95 | 1.41 |
References
- Brasseur, G.P.; Jacob, D.; Schuck-Zöller, S. Climate Change 2001: Working Group II: Impacts, Adaptation and Vulnerability; Falkenmark and Lindh Quoted in UNEP/WMO; UNEP: Nairobi, Kenya, 2009. [Google Scholar]
- Fangmeier, D.D.; Elliot, W.J.; Workman, S.R.; Huffman, R.L.; Schwab, G.O. Soil and Water Conservation Engineering, 5th ed.; Thomson: Stamford, CT, USA, 2006. [Google Scholar]
- Gavilan, P.; Berengena, J.; Allen, R.G. Measuring versus estimating net radiation and soil heat flux: Impact on Penman–Monteith reference ET estimates in semiarid regions. Agric. Water Manag. 2007, 89, 275–286. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- López-Urrea, R.; De Santa Olalla, F.M.; Fabeiro, C.; Moratalla, A. Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric. Water Manag. 2006, 85, 15–26. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E.; Snyder, R.L. The ASCE standardised reference evapotranspiration equation. In Task Committee on Standardization of Reference Evapotranspiration of the EWRI of the ASCE; ASCE: Reston, VI, USA, 2005. [Google Scholar]
- Başağaoğlu, H.; Chakraborty, D.; Winterle, J. Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework. Water 2021, 13, 557. [Google Scholar] [CrossRef]
- Chakraborty, D.; Başağaoğlu, H.; Winterle, J. Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling. Expert Syst. Appl. 2021, 170, 114498. [Google Scholar] [CrossRef]
- Ravindran, S.M.; Bhaskaran, S.K.M.; Ambat, S.K.N. A Deep Neural Network Architecture to Model Reference Evapotranspiration Using a Single Input Meteorological Parameter. Environ. Process. 2021, 8, 1567–1599. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, L.; Lin, A.; Qin, W.; Lu, Y.; Li, J.; Zhong, Y.; He, L. Exploring the potential of deep factorization machine and various gradient boosting models in modeling daily reference evapotranspiration in China. Arab. J. Geosci. 2020, 13, 1–20. [Google Scholar] [CrossRef]
- Deo, R.C.; Wen, X.; Qi, F. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy 2016, 168, 568–593. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Hu, B.; Gong, W. Modeling and comparison of hourly photosynthetically active radiation in different ecosystems. Renew. Sustain. Energy Rev. 2015, 56, 436–453. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques: Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Software for estimating reference evapotranspiration using limited weather data. Comput. Electron. Agric. 2010, 71, 158–162. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P. Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman–Monteith model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Martí, P.; Royuela, A.; Manzano, J.; Palau-Salvador, G. Generalization of ETo ANN Models through Data Supplanting. J. Irrig. Drain. Eng. 2010, 136, 161–174. [Google Scholar] [CrossRef]
- Rojas, J.P.; Sheffield, R.E. Evaluation of Daily Reference Evapotranspiration Methods as Compared with the ASCE-EWRI Penman-Monteith Equation Using Limited Weather Data in Northeast Louisiana. J. Irrig. Drain. Eng. 2013, 139, 285–292. [Google Scholar] [CrossRef]
- Sahoo, B.; Walling, I.; Deka, B.C.; Bhatt, B.P. Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. J. Irrig. Drain. Eng. 2012, 138, 880–895. [Google Scholar] [CrossRef]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kisi, O.; Fard, A.F.; Marti, P. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241. [Google Scholar] [CrossRef]
- Ehteram, M.; Singh, V.P.; Ferdowsi, A.; Mousavi, S.F.; Farzin, S.; Karami, H.; Mohd, N.S.; Afan, H.A.; Lai, S.H.; Kisi, O.; et al. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PLoS ONE 2019, 14, e0217499. [Google Scholar] [CrossRef]
- Sayyahi, F.; Farzin, S.; Karami, H. Forecasting Daily and Monthly Reference Evapotranspiration in the Aidoghmoush Basin Using Multilayer Perceptron Coupled with Water Wave Optimization. Complexity 2021, 2021, 668375. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H.; Abghari, H. Utility of coactive neuro-fuzzy inference system for pan evaporation modeling in comparison with multilayer perceptron. Meteorol. Atmos. Phys. 2012, 116, 147–154. [Google Scholar] [CrossRef]
- Zakeri, M.S.; Mousavi, S.F.; Farzin, S.; Sanikhani, H. Modeling of Reference Crop Evapotranspiration in Wet and Dry Climates Using Data-Mining Methods and Empirical Equations. J. Soft Comput. Civ. Eng. 2022, 6, 1–28. [Google Scholar] [CrossRef]
- Fooladmand, H.R.; Zandilak, H.; Ravanan, M.H. Comparison of different types of Hargreaves equation for estimating monthly evapotranspiration in the south of Iran. Arch. Agron. Soil Sci. 2008, 54, 321–330. [Google Scholar] [CrossRef]
- George, B.A.; Reddy, B.R.S.; Raghuwanshi, N.S.; Wallender, W.W. Decision support system for estimating reference evapotranspiration. J. Irrig. Drain. Eng. 2002, 128, 1–10. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Tabari, H. Regional estimation of reference evapotranspiration in arid and semiarid regions. J. Irrig. Drain. Eng. 2010, 136, 724–731. [Google Scholar] [CrossRef]
- Tabari, H. Evaluation of reference crop evapotranspiration equations in various climates. Water Resour. Manag. 2010, 24, 2311–2337. [Google Scholar] [CrossRef]
- Xu, C.Y.; Singh, V.P. Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour. Manag 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Anaraki, M.V.; Farzin, S.; Mousavi, S.-F.; Karami, H. Uncertainty Analysis of Climate Change Impacts on Flood Frequency by Using Hybrid Machine Learning Methods. Water Resour. Manag. 2021, 35, 199–223. [Google Scholar] [CrossRef]
- Farzin, S.; Anaraki, M.V. Modeling and predicting suspended sediment load under climate change conditions: A new hybridization strategy. J. Water Clim. Chang. 2021, 12, 2422–2443. [Google Scholar] [CrossRef]
- Kumar, M.; Bandyopadhyay, A.; Raghuwanshi, N.S.; Singh, R. Comparative study of conventional and artificial neural network-based ETo estimation models. Irrig. Sci. 2008, 26, 531–545. [Google Scholar] [CrossRef]
- Kumar, M.; Raghuwanshi, N.S.; Singh, R. Artificial neural networks approach in evapotranspiration modeling: A review. Irrig. Sci. 2010, 29, 11–25. [Google Scholar] [CrossRef]
- Landeras, G.; Ortiz-Barredo, A.; López, J.J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 2008, 95, 553–565. [Google Scholar] [CrossRef]
- Khoob, A.R. Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrig. Sci. 2007, 26, 253–259. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridisation Techniques—A Review. Agronomy 2020, 10, 101. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Feng, Q.; Yang, L.; Deo, R.C.; Wen, X.; Si, J.; Xiao, S. Future Projection with an Extreme-Learning Machine and Support Vector Regression of Reference Evapotranspiration in a Mountainous Inland Watershed in North-West China. Water 2017, 9, 880. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Si, J.; He, Z.; Wu, J.; Shao, H.; Yu, H. Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions. Water Resour. Manag. 2015, 29, 3195–3209. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Z.-Y.; Chen, H.; Nie, Y.-P.; Wang, K.-L. Modeling daily reference ET in the karst area of northwest Guangxi (China) using gene expression programming (GEP) and artificial neural network (ANN). Theor. Appl. Climatol. 2016, 126, 493–504. [Google Scholar] [CrossRef]
- Sanikhani, H.; Kisi, O.; Maroufpoor, E.; Yaseen, Z.M. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: Application of different modeling scenarios. Theor. Appl. Climatol. 2019, 135, 449–462. [Google Scholar] [CrossRef]
- Pour, O.M.R.; Piri, J.; Kisi, O. Comparison of SVM, ANFIS and GEP in modeling monthly potential evapotranspiration in an arid region (Case study: Sistan and Baluchestan Province, Iran). Water Supply 2019, 19, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Peng, Y.; Fan, J.; Wang, Y. Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrol. Res. 2019, 50, 1730–1750. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Comput. Electron. Agric. 2019, 156, 387–398. [Google Scholar] [CrossRef]
- Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Marti, P.; Fard, A.F.; Kisi, O.; Landeras, G. Alternative heuristics equations to the Priestley–Taylor approach: Assessing reference evapotranspiration estimation. Appl. Clim. 2019, 138, 831–848. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Malik, A.; Kumar, A.; Souag-Gamane, D.; Kisi, O. Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrol. Sci. J. 2019, 64, 1824–1842. [Google Scholar] [CrossRef]
- Ferreira, L.B.; da Cunha, F.F.; de Oliveira, R.A.; Filho, E.I.F. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM—A new approach. J. Hydrol. 2019, 572, 556–570. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Keshtegar, B.; Kisi, O.; Zounemat-Kermani, M. Polynomial chaos expansion and response surface method for nonlinear modelling of reference evapotranspiration. Hydrol. Sci. J. 2019, 64, 720–730. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abdullahi, J. Multi-station artificial intelligence based ensemble modeling of reference evapotranspiration using pan evaporation measurements. J. Hydrol. 2019, 577, 123958. [Google Scholar] [CrossRef]
- Shiri, J. Modeling reference evapotranspiration in island environments: Assessing the practical implications. J. Hydrol. 2019, 570, 265–280. [Google Scholar] [CrossRef]
- Raza, A.; Hu, Y.; Shoaib, M.; Elnabi, M.K.A.; Zubair, M.; Nauman, M.; Syed, N.R. A Systematic Review on Estimation of Reference Evapotranspiration under Prisma Guidelines. Pol. J. Environ. Stud. 2021, 30, 5413–5422. [Google Scholar] [CrossRef]
- Smith, M.; Allen, R.G.; Monteith, J.L.; Pereira, L.S.; Perrier, A.; Pruitt, W.O. Report on the Expert Consultation on Revision of FAO Guidelines for Crop Water Requirements, Land and Water Development; Division, FAO: Rome, Italy, 1991. [Google Scholar]
- Sarfaraz, S.; Arsalan, M.H.; Fatima, H. sRegionalising the climate of Pakistan using Köppen classification system. Pak. Geogr. Rev. 2014, 69, 111–132. Available online: http://www.academia.edu/download/39532009/PGR_2014_Vol_69_No_02_article_05.pdf (accessed on 25 March 2022).
- Raza, A.; Shoaib, M.; Khan, A.; Baig, F.; Faiz, M.A.; Khan, M.M. Application of non-conventional soft computing approaches for estimation of reference evapotranspiration in various climatic regions. Theor. Appl. Climatol. 2020, 139, 1459–1477. [Google Scholar] [CrossRef]
- Raza, A.; Shoaib, M.; Faiz, M.A.; Baig, F.; Khan, M.M.; Ullah, M.K.; Zubair, M. Comparative Assessment of Reference Evapotranspiration Estimation Using Conventional Method and Machine Learning Algorithms in Four Climatic Regions. J. Pure Appl. Geophys. 2020, 177, 4479–4508. [Google Scholar] [CrossRef]
- Shoaib, M. Impact of Wavelet Transformation on Data Driven Rainfall-Runoff Models. Ph.D. Thesis, University of Auckland, Auckland, New Zealand, 2016. Available online: http://hdl.handle.net/2292/28463 (accessed on 22 March 2022).
- Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. Runoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approach. J. Hydrol. 2015, 527, 326–344. [Google Scholar] [CrossRef]
- Martí, P.; Manzano, J.; Royuela, A. Assessment of a 4-input artificial neural network for ET o estimation through data set scanning procedures. Irrig. Sci. 2011, 29, 181–195. [Google Scholar]
- Wang, K.; Sun, J.; Cheng, G.; Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau. J. Mt. Sci. 2011, 8, 808–816. [Google Scholar] [CrossRef]
- Turgut, E.T.; Usanmaz, Ö. An analysis of vertical profiles of wind and humidity based on long-term radiosonde data in Turkey. Anadolu Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2016, 17, 830–844. [Google Scholar]
- Droogers, P.; Allen, R.G. Estimating Reference Evapotranspiration Under Inaccurate Data Conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H.; Zounemat-Kermani, M.; Niazi, F. Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Comput. Electron. Agric. 2015, 115, 66–77. [Google Scholar] [CrossRef]
- Martí, P.; González-Altozano, P.; Gasque, M. Reference evapotranspiration estimation without local climatic data. Irrig. Sci. 2011, 29, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Feng, Y.; Gong, D.; Jiang, S.; Zhao, L.; Cui, N. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Comput. Electron. Agric. 2020, 173, 105430. [Google Scholar] [CrossRef]
Variables | Observations | Minimum | Maximum | Mean | Std. Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Min Temp | 264.00 | −8.70 | 30.30 | 13.78 | 9.69 | −0.18 | −0.95 |
Max Temp | 264.00 | 0.80 | 44.20 | 27.55 | 9.73 | −0.57 | −0.38 |
Humidity | 264.00 | 19.00 | 83.00 | 49.50 | 14.18 | 0.23 | −0.55 |
Wind speed | 264.00 | 17.00 | 752.00 | 197.72 | 145.95 | 1.33 | 1.82 |
Sunshine | 264.00 | 0.80 | 13.90 | 7.44 | 1.87 | −0.50 | 1.72 |
ETo | 264.00 | 0.63 | 11.19 | 4.58 | 2.39 | 0.48 | −0.31 |
ML Models | Basic Algorithm | Parametric Values for Model Development | ||
---|---|---|---|---|
Depth of Tree | Split Value | Pruned Size Node | ||
DT | Iterative Dichotomiser 3 (ID3) | 09 | 26 | 10 |
TB | Gradient Boosting Algorithm (GBA) | 05 | 8.2 | 05 |
TF | Random Forest Algorithm (RFA) | 16 | 77.3 | 08 |
Model | Depth of the Tree | R2 (%) | r | RMSE (mm/Month) | MAE (mm/Month) | NSE (%) |
---|---|---|---|---|---|---|
DT | 09 | 89.78 | 0.94 | 0.758 | 0.75 | 85.67 |
TB | 05 | 96.87 | 0.98 | 0.41 | 0.42 | 95.34 |
TF | 16 | 90.40 | 0.96 | 0.73 | 0.62 | 89.42 |
Model | Kernel Function | NN Structure | R2 (%) | r | RMSE (mm/Month) | MAE (mm/Month) | NSE (%) |
---|---|---|---|---|---|---|---|
MLPNN | SCG | 2-6-1 | 85.78 | 0.92 | 0.89 | 0.66 | 84.72 |
TCG | 2-18-1 | 88.02 | 0.93 | 0.82 | 0.60 | 87.17 | |
GRNN | Gu | 2-7-1 | 98.41 | 0.99 | 0.29 | 0.18 | 97.43 |
Res | 2-5-1 | 99.99 | 0.99 | 0.01 | 0.01 | 98.67 | |
CCANN | Sig | 2-8-1 | 98.92 | 0.99 | 0.24 | 0.18 | 97.88 |
Gu | 2-12-1 | 97.59 | 0.98 | 0.36 | 0.30 | 96.48 | |
S&G | 2-16-1 | 96.23 | 0.98 | 0.46 | 0.36 | 95.24 | |
RBFNN | RBF | 2-36-1 | 96.41 | 0.98 | 0.44 | 0.35 | 95.32 |
SVM Model | Kernel Function | R2 (%) | R | RMSE (mm/Month) | MAE (mm/Month) | NSE (%) |
---|---|---|---|---|---|---|
€-SVM | Linear | 73.98 | 0.86 | 2.08 | 1.78 | 72.49 |
RBF | 99.77 | 1.00 | 0.11 | 0.10 | 98.56 | |
Polynomial | 65.46 | 0.80 | 2.16 | 1.89 | 64.29 | |
Sigmoid | 69.67 | 0.83 | 2.10 | 1.78 | 68.55 | |
Nu-SVM | Linear | 69.26 | 0.83 | 2.08 | 1.78 | 67.32 |
RBF | 99.66 | 1.00 | 0.14 | 0.13 | 98.49 | |
Polynomial | 60.32 | 0.77 | 2.23 | 1.78 | 59.79 | |
Sigmoid | 67.25 | 0.82 | 2.08 | 1.78 | 66.98 |
No. | Operators | Linking Function | R2 (%) | r | RMSE (mm/Month) | MAE (mm/Month) | NSE (%) |
---|---|---|---|---|---|---|---|
F8 | Add. | 82.98 | 0.91 | 1.44 | 1.55 | 81.49 | |
F11 | Mul. | 80.77 | 0.89 | 1.47 | 1.62 | 79.56 |
Function | Equation | R2 (%) | r | RMSE (mm/Month) | MAE (mm/Month) | NSE (%) |
---|---|---|---|---|---|---|
Quadratic 2 variables | y | 91.06 | 0.95 | 0.83 | 0.85 | 90.88 |
Model | Gilgit | Islamabad | Jacobabad | Karachi | Lyallpur | Multan | Skardu |
---|---|---|---|---|---|---|---|
PM ETo | 2.7 | 5.1 | 6.43 | 4.65 | 4.38 | 5.38 | 2.69 |
MLPNN ETo | 2.5 | 5.0 | 6.53 | 4.68 | 4.32 | 5.19 | 1.86 |
GRNN ETo | 2.7 | 5.1 | 6.45 | 4.64 | 4.38 | 5.37 | 2.69 |
CCANN ETo | 2.8 | 5.3 | 6.51 | 4.71 | 4.43 | 4.92 | 2.37 |
RBFNN ETo | 2.5 | 5.0 | 6.51 | 4.76 | 4.21 | 5.40 | 1.87 |
SDT ETo | 3.2 | 5.0 | 6.40 | 4.94 | 4.90 | 5.94 | 2.44 |
DTF ET | 3.2 | 5.0 | 6.67 | 4.90 | 4.91 | 6.10 | 2.61 |
TB ETo | 2.7 | 5.1 | 6.42 | 4.64 | 4.38 | 5.37 | 2.69 |
GEP ETo | 2.6 | 5.2 | 6.35 | 6.07 | 5.19 | 5.70 | 2.33 |
GMDH ETo | 3.0 | 5.2 | 6.59 | 4.64 | 4.57 | 5.05 | 2.11 |
SVM ETo | 2.9 | 5.2 | 6.40 | 4.69 | 4.36 | 5.40 | 2.72 |
Input Data Parameter | Tmin | Tmax | RH | U | N | Rn | Aerodynamic Factors (Rn, es, ea, emin, emax, Δ, Z, and Ɣ) | Adopted Methodology | Target Result |
---|---|---|---|---|---|---|---|---|---|
Climatic and aerodynamic | √ | √ | √ | √ | √ | √ | √ | FAO PM56 | PM ETo |
Temperature | √ | √ | - | - | - | - | - | ML models | ML ETo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Raza, A.; Hu, Y.; Buttar, N.A.; Shoaib, M.; Saber, K.; Li, P.; Elbeltagi, A.; Ray, R.L. Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study. Water 2022, 14, 1666. https://doi.org/10.3390/w14101666
Wang J, Raza A, Hu Y, Buttar NA, Shoaib M, Saber K, Li P, Elbeltagi A, Ray RL. Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study. Water. 2022; 14(10):1666. https://doi.org/10.3390/w14101666
Chicago/Turabian StyleWang, Jizhang, Ali Raza, Yongguang Hu, Noman Ali Buttar, Muhammad Shoaib, Kouadri Saber, Pingping Li, Ahmed Elbeltagi, and Ram L. Ray. 2022. "Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study" Water 14, no. 10: 1666. https://doi.org/10.3390/w14101666
APA StyleWang, J., Raza, A., Hu, Y., Buttar, N. A., Shoaib, M., Saber, K., Li, P., Elbeltagi, A., & Ray, R. L. (2022). Development of Monthly Reference Evapotranspiration Machine Learning Models and Mapping of Pakistan—A Comparative Study. Water, 14(10), 1666. https://doi.org/10.3390/w14101666