Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Identification and Selection of Criteria for Desalination Plant Sites
2.3. Model Implementation: Pairwise Comparison Using the Analytical Hierarchy Process (AHP)
2.4. MCE Modelling
2.4.1. Boolean Method
2.4.2. WLC Method
2.5. Site Selection
3. Results
3.1. Fuzzy Membership Function Criteria
3.2. Model Implementation
3.2.1. Boolean Modelling
3.2.2. Final Aggregated Suitability Image (FASI)
3.3. Site Selection by Boolean and WLC Approach by Zonal Land Suitability (ZLS)
3.3.1. Suggested Sites in the Eastern Part of the Region
3.3.2. Suggested Sites in the Central Part of the Region
3.3.3. Suggested Sites in the Western Part of the Region
4. Discussion
5. Conclusions
- (1)
- The development of a decision rule for the desalination facility site selection is one of the most significant accomplishments of this research. It was generated using the study area and various scenarios.
- (2)
- In addition to inland and coastal segment criteria, marine criteria were included in modelling to reduce the desalination plant’s negative environmental impacts.
- (3)
- In addition to meeting the study area’s water needs and shortages, the model’s results and output will assist regional managers and policymakers in applying the results and decision rule to other coastal provinces.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ercin, A.E.; Hoekstra, A.Y. Water footprint scenarios for 2050: A global analysis. Environ. Int. 2014, 64, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [Green Version]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostafaeipour, A.; Saidi-Mehrabad, M.; Rezaei, M.; Qolipour, M. The ranking of southern ports and islands of Iran for seawater desalination plants using ELECTRE III method. J. Renew. Energy Environ. 2017, 4, 10–22. [Google Scholar]
- Bremere, I.; Kennedy, M.; Stikker, A.; Schippers, J. How water scarcity will effect the growth in the desalination market in the coming 25 years. Desalination 2001, 138, 7–15. [Google Scholar] [CrossRef]
- Grubert, E.A.; Stillwell, A.S.; Webber, M.E. Where does solar-aided seawater desalination make sense? A method for identifying sustainable sites. Desalination 2014, 339, 10–17. [Google Scholar]
- Salem, M.S.; El-Shazly, A.H.; Nady, N.; Elmarghany, M.R.; Sabry, M.N. PES/PVDF blend membrane and its composite with graphene nanoplates: Preparation, characterization, and water desalination via membrane distillation. Desalin. Water Treat 2019, 166, 9–23. [Google Scholar] [CrossRef]
- Ziolkowska, J.R. Is desalination affordable?—Regional cost and price analysis. Water Resour. Manag. 2015, 29, 1385–1397. [Google Scholar]
- El-Ghonemy, A. Future sustainable water desalination technologies for the Saudi Arabia: A review. Renew. Sustain. Energy Rev. 2012, 16, 6566. [Google Scholar] [CrossRef]
- Aydin, F.; Sarptas, H. Spatial assessment of site suitability for solar desalination plants: A case study of the coastal regions of Turkey. Clean Technol. Environ. Policy 2020, 22, 309–323. [Google Scholar] [CrossRef]
- Mohamed, S.A. Application of geo-spatial Analytical Hierarchy Process and multi-criteria analysis for site suitability of the desalination solar stations in Egypt. J. Afr. Earth Sci. 2020, 164, 103767. [Google Scholar] [CrossRef]
- Salim, M.G. Selection of groundwater sites in Egypt, using geographic information systems, for desalination by solar energy in order to reduce greenhouse gases. J. Adv. Res. 2012, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Badi, I.; Ballem, M.; Shetwan, A. Site selection of desalination plant in libya by using combinative distance-based assessment (codas) method. Int. J. Qual. Res. 2018, 12, 609. [Google Scholar]
- Kallali, H.; Anane, M.; Jellali, S.; Tarhouni, J. GIS-based multi-criteria analysis for potential wastewater aquifer recharge sites. Desalination 2007, 215, 111–119. [Google Scholar] [CrossRef]
- Paktinat, H.; Faraji, H.A.; Kian, A.R. Solar desalination plant site suitability through composing decision-making systems and fuzzy logic in Iran (using the desert areas approach). Desert 2014, 19, 111–119. [Google Scholar]
- Zia, I.; Kazmi, S.J.; Zafar, H.; Khan, I.A. Desalination plant site suitability along Karachi Coast and protection of mangroves by Spatial Decisions Support System (SDSS). Int. J. Biol. Biotechnol. 2017, 14, 41–47. [Google Scholar]
- Yang, J.-S.; Kim, I.-H. Analysis of promising country for seawater desalination plant using delphi method. J. Korean Soc. Civ. Eng. 2013, 33, 2351–2357. [Google Scholar] [CrossRef] [Green Version]
- Dweiri, F.; Khan, S.A.; Almulla, A. A multi-criteria decision support system to rank sustainable desalination plant location criteria. Desalination 2018, 444, 26–34. [Google Scholar] [CrossRef]
- Gastli, A.; Charabi, Y.; Zekri, S. GIS-based assessment of combined CSP electric power and seawater desalination plant for Duqum—Oman. Renew. Sustain. Energy Rev. 2010, 14, 821–827. [Google Scholar] [CrossRef]
- Alyami, S.H.; Rezgui, Y.; Kwan, A. Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach. Renew. Sustain. Energy Rev. 2013, 27, 43–54. [Google Scholar] [CrossRef]
- Malczewski, J. Integrating multicriteria analysis and geographic information systems: The ordered weighted averaging (OWA) approach. Int. J. Environ. Technol. Manag. 2006, 6, 7–19. [Google Scholar] [CrossRef]
- Eldrandaly, K. Developing a GIS-based MCE site selection tool in ArcGIS using COM technology. Int. Arab. J. Inf. Technol. 2013, 10, 276–282. [Google Scholar]
- Saaty, T. The Analytic Hierarchy Process; McGrawHill: New York, NY, USA; RWS Publications: Pittsburgh, PA, USA, 1980; International, Translated to Russian, Portuguesses and Chinese, Revised Edition, Paperback (1996, 2000). [Google Scholar]
- Ouma, Y.O.; Kipkorir, E.C.; Tateishi, R. MCDA-GIS integrated approach for optimized landfill site selection for growing urban regions: An application of neighborhood-proximity analysis. Ann. GIS 2011, 17, 43–62. [Google Scholar] [CrossRef]
- Mahini, A.S.; Gholamalifard, M. Siting MSW landfills with a weighted linear combination methodology in a GIS environment. Int. J. Environ. Sci. Technol. 2006, 3, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Baban, S.M.; Parry, T. Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renew. Energy 2001, 24, 59–71. [Google Scholar] [CrossRef]
- Barzehkar, M.; Dinan, N.M.; Salemi, A. Environmental capability evaluation for nuclear power plant site selection: A case study of Sahar Khiz Region in Gilan Province, Iran. Environ. Earth Sci. 2016, 75, 1016. [Google Scholar] [CrossRef]
- Yousefi, H.; Hafeznia, H.; Yousefi-Sahzabi, A. Spatial site selection for solar power plants using a gis-based boolean-fuzzy logic model: A case study of Markazi Province, Iran. Energies 2018, 11, 1648. [Google Scholar] [CrossRef] [Green Version]
- Nasehi, S.; Karimi, S.; Jafari, H. Application of fuzzy GIS and ANP for wind power plant site selection in East Azerbaijan Province of Iran. Comput. Res. Prog. Appl. Sci. Eng. 2016, 2, 116–124. [Google Scholar]
- Sepehr, M.; Fatemi, S.M.; Danehkar, A.; Moradi, A.M. Application of Delphi method in site selection of desalination plants. Glob. J. Environ. Sci. Manag. 2017, 3, 89. [Google Scholar]
- Salam, M.; Khatun, N.; Ali, M. Carp farming potential in Barhatta Upazilla, Bangladesh: A GIS methodological perspective. Aquaculture 2005, 245, 75–87. [Google Scholar] [CrossRef]
- Naghdi, F.; Monavvari, S.M.; Hosseini, S.M.; Gharagozlu, A. Industrial zoning of east azerbaijan province of iran using multicriteria evaluation modeling. Appl. Ecol. Environ. Res. 2017, 15, 1565–1576. [Google Scholar] [CrossRef]
- Shahi, E.; Alavipoor, F.S.; Karimi, S. The development of nuclear power plants by means of modified model of Fuzzy DEMATEL and GIS in Bushehr, Iran. Renew. Sustain. Energy Rev. 2018, 83, 33–49. [Google Scholar] [CrossRef]
- Tsiourtis, N.X. Criteria and procedure for selecting a site for a desalination plant. Desalination 2008, 221, 114–125. [Google Scholar] [CrossRef]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef] [Green Version]
- Tsala, M.B. Analysis on Factors Affecting Industrial Site Selection in Hawassa Town by Using GIS and Remote Sensing Technologies. Am. J. Remote Sens. 2022, 10, 1–14. [Google Scholar]
- Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz Province, Iran. Energy Strategy Rev. 2020, 29, 100478. [Google Scholar] [CrossRef]
- Díaz, H.; Soares, C.G. An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline. Renew. Sustain. Energy Rev. 2020, 134, 110328. [Google Scholar] [CrossRef]
- Kondili, E.; Kaldellis, J.K.; Paidousi, M. A multicriteria analysis for the optimal desalination–RES system. Special focus: The small Greek islands. Desalination Water Treat. 2013, 51, 1205–1218. [Google Scholar] [CrossRef]
- Darre, N.C.; Toor, G.S. Desalination of water: A review. Curr. Pollut. Rep. 2018, 4, 104–111. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Yousefi, H.; Mohammadi, M. Multi-criteria decision support system for wind farm site selection using GIS. Sustain. Energy Technol. Assess. 2016, 13, 38–50. [Google Scholar] [CrossRef]
- Nozar, S.L.; Pauzi, M.Z.; Salarpouri, A.; Daghooghi, B.; Salimizadeh, M. Total petroleum hydrocarbons in edible marine biota from Northern Persian Gulf. Environ. Monit. Assess. 2015, 187, 214. [Google Scholar] [CrossRef] [PubMed]
- Hashemizadeh, A.; Ju, Y.; Dong, P. A combined geographical information system and Best–Worst Method approach for site selection for photovoltaic power plant projects. Int. J. Environ. Sci. Technol. 2020, 17, 2027–2042. [Google Scholar] [CrossRef]
- Rezaeisabzevar, Y.; Bazargan, A.; Zohourian, B. Landfill site selection using multi criteria decision making: Influential factors for comparing locations. J. Environ. Sci. 2020, 93, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Sitorus, F.; Brito-Parada, P.R. Equipment selection in mineral processing-a sensitivity analysis approach for a fuzzy multiple criteria decision making model. Miner. Eng. 2020, 150, 106261. [Google Scholar] [CrossRef]
- Singh, S.; Bhattacharya, S.; Saddikuti, V. An application of AHP and fuzzy AHP with sensitivity analysis for selecting the right process to impart knowledge. Int. J. Knowl. Manag. Stud. 2020, 11, 258–277. [Google Scholar] [CrossRef]
- Al Garni, H.Z.; Awasthi, A.; Al Garni, H.Z.; Awasthi, A. A Monte Carlo approach applied to sensitivity analysis of criteria impacts on solar PV site selection. In Handbook of Probabilistic Models; Elsevier: Amsterdam, The Netherlands, 2020; pp. 489–504. [Google Scholar]
- Afify, A. Prioritizing desalination strategies using multi-criteria decision analysis. Desalination 2010, 250, 928–935. [Google Scholar] [CrossRef]
- Ghasempour, R.; Alhuyi Nazari, M.; Ebrahimi, M.; Ahmadi, M.H.; Hadiyanto, H. Multi-Criteria Decision Making (MCDM) Approach for Selecting Solar Plants Site and Technology: A Review. Int. J. Renew. Energy Dev. 2019, 8, 15–25. [Google Scholar] [CrossRef] [Green Version]
Group | Criteria | Scale | Data Source |
---|---|---|---|
inland and costal | Landforms | 1:25,000 | Ports and Maritime Organization (PMO) |
Slope (%) | 1:25,000 | PMO and NCC | |
geology | 1:25,000 | Ports and Maritime Organization (PMO) | |
Distance to River | 1:25,000 | National Cartographic Center (NCC) | |
Distance to floodway | 1:25,000 | National Cartographic Center (NCC) | |
Distance to City | 1:25,000 | National Cartographic Center (NCC) | |
Distance to village | 1:25,000 | National Cartographic Center (NCC) | |
Distance to Building blocks | 1:25,000 | National Cartographic Center (NCC) | |
Distance to Roads | 1:25,000 | National Cartographic Center (NCC) | |
Distance to Powerline | 1:25,000 | National Cartographic Center (NCC) | |
Distance to Protected Areas | 1:25,000 | Department of Environment (DOI) | |
Distance to Estuary | 1:25,000 | National Cartographic Center (NCC) | |
Distance to coastline | 1:25,000 | National Cartographic Center (NCC) | |
Distance to Fault | 1:25,000 | Geological Survey and Mineral Explorations (GSI) | |
Marine zone | Depth | 1:25,000 | National Cartographic Center (NCC) |
Bed Slope (%) | 1:25,000 | ||
Velocity | Resolution: 3 km | HYCOM model (Kara et al., 2010) | |
Fetch | 1:25,000 | Ports and Maritime Organization (PMO) | |
Sea surface Temperature | Resolution: 4 km | MODIS-Aqua | |
Sea Salinity | Resolution: 4 km | Argo-Project | |
Water quality | Chlorophyll-a | Resolution: 4 km | MODIS-Aqua |
Group | Project Objectives and Criteria | Constraint (m) | Control Point and Fuzzy Membership (m) | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Conservative | Optimization | Minimization | |||||||||
Control Point (a) | Control Point (b) | Control Point (a) | Control Point (b) | Control Point (a) | Control Point (b) | ||||||
inland and costal segment | Landforms | Prioritization based on erosion sensitivity | |||||||||
Linear and monotonically decreasing | |||||||||||
Slope | 0–15% | ||||||||||
Linear and monotonically decreasing | |||||||||||
h-geo | Prioritization based on strength for deployment | ||||||||||
Distance to River | 400 | 1000 | 33,474 | 400 | 5000 | 400 | 33,474 | [26,27,28] | |||
Linear-increasing | Sig-increasing | Sig-increasing | |||||||||
Distance to floodway | 700 | 2000 | 15,334 | 2000 | 5000 | 500 | 15,334 | [29] | |||
Sig-increasing | Sig-increasing | Sig-increasing | |||||||||
Distance to City | 1200 | 2000 | 143,082 | 1200 | 5000 | 10,000 | 143,080 | 1200 | 143,082 | [26,29] | |
Linear-increasing | Symmetric | Linear-increasing | |||||||||
Distance to village | 1000 | 2000 | 15,794 | 1000 | 3000 | 8000 | 15,794 | 1000 | 15,794 | [29,30] | |
Linear-increasing | Symmetric | Linear-increasing | |||||||||
Distance to Building blocks | 1300 | 2000 | 16,826 | 1300 | 10,000 | 1100 | 16,826 | ||||
Linear and monotonically increasing | |||||||||||
Distance to Roads | 100 to the last distance | ||||||||||
Linear and monotonically decreasing | |||||||||||
Distance to Powerline | 200 | 500 | 270,832 | 200 | 270,830 | 200 | 270,830 | [31] | |||
Linear, Monotonically Decreasing | |||||||||||
Distance to Protected Areas | 7000 | 7000 | 84,626 | 7000 | 84,626 | 1800 | 84,626 | [27,32,33] | |||
Linear and monotonically increasing | |||||||||||
Distance to Estuary | 7000 | 7000 | 42,180 | 7000 | 42,180 | 1800 | 42,180 | ||||
Linear and monotonically increasing | |||||||||||
Distance to Fault | 1000 | 2000 | 90,852 | 1000 | 10,000 | 500 | 90,852 | ||||
Linear and monotonically increasing | |||||||||||
Marine zone | Depth | - | - | 0 | 30 | 50 | 100 | - | - | ||
Symmetric | |||||||||||
Slope bath (%) | - | - | 0 | 0.5 | 1 | 10 | - | - | |||
Symmetric | |||||||||||
Velocity | - | - | 0.02 | 0.15 | 0.2 | 0.3 | - | - | |||
Symmetric | |||||||||||
Sea surface Temperature | Minimum and maximum trend of change | [30,33] | |||||||||
Linear and monotonically decreasing | |||||||||||
Sea Salinity | Minimum and maximum trend of change | [30] | |||||||||
Linear and monotonically decreasing | |||||||||||
Water quality | Chlorophyll-a | Minimum and maximum trend of change | |||||||||
Linear and monotonically decreasing |
Criteria | Sector | Factor’s Weight | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
West | Centre | East | Sc1 | Sc2 | |||||||||
Birom | Lavan | Lar | Lengeh | Bandar Abass | Qeshm | Minab | Sirik | Jask | Pbeshk | ||||
Area (Hectare) | 153,132 | 115,120 | 7289 | 351,538 | 328,670 | 31,586 | 29,429 | 244,841 | 286,302 | 179,403 | |||
landforms | Area% | 13.76 | 25.25 | 63.78 | 51.69 | 66.81 | 31.7 | 75.88 | 45.57 | 44.86 | 55.4 | 0.048 | 0.042 |
Suitability | 87 | 69 | 255 | 107 | 130 | 103 | 136 | 99 | 85 | 93 | |||
slope | Area | 53.65 | 55.57 | 16.29 | 73.27 | 86.43 | 87.6 | 90.32 | 81.7 | 79.95 | 93.25 | 0.048 | 0.04 |
Suitability | 95 | 106 | 17 | 155 | 195 | 211 | 196 | 173 | 171 | 213 | |||
geology | Area | 100 | 100 | 100 | 99.7 | 98.24 | 95.59 | 100 | 99.66 | 99.97 | 100 | 0.048 | 0.04 |
Suitability | - | - | - | - | - | - | - | - | - | - | |||
river | Area | 98.5 | 97.92 | 100 | 95 | 91.75 | 94.40 | 100 | 97.7 | 90.66 | 98.15 | 0.048 | 0.034 |
Suitability | 239 | 229 | 242 | 210 | 171 | 191 | 250 | 229 | 153 | 232 | |||
floodway | Area | 49 | 52 | 98 | 44 | 58 | 70 | 97 | 68 | 51 | 57 | 0.048 | 0.034 |
Suitability | 3 | 6 | 135 | 7 | 12 | 56 | 174 | 59 | 14 | 26 | |||
city | Area | 98.68 | 100 | 100 | 98.79 | 95.95 | 94.68 | 91.17 | 100 | 99.51 | 100 | 0.048 | 0.032 |
Suitability | 218 | 126 | 245 | 199 | 222 | 210 | 202 | 156 | 204 | 71 | |||
village | Area | 91.56 | 92.30 | 100 | 89.16 | 86.81 | 88.19 | 64.06 | 84.50 | 91.99 | 86.12 | 0.048 | 0.032 |
Suitability | 189 | 188 | 199 | 179 | 166 | 162 | 97 | 156 | 190 | 160 | |||
building blocks | Area | 82.75 | 85.64 | 100 | 85.44 | 77.20 | 95.30 | 92.56 | 75.57 | 86.30 | 84.76 | 0.048 | 0.032 |
Suitability | 68 | 69 | 214 | 77 | 74 | 162 | 111 | 59 | 83 | 74 | |||
roads | Area | 90.5 | 88.41 | 97.05 | 84.29 | 87.52 | 90.79 | 99.8 | 94.95 | 94.24 | 91.18 | 0.048 | 0.03 |
Suitability | 233 | 233 | 218 | 235 | 230 | 212 | 164 | 219 | 215 | 232 | |||
powerline | Area | 100 | 100 | 100 | 98.86 | 97.21 | 96.18 | 100 | 99.97 | 100 | 100 | 0.048 | 0.032 |
Suitability | 207 | 223 | 245 | 242 | 246 | 248 | 244 | 202 | 109 | 38 | |||
protected areas | Area | 100 | 11.79 | 100 | 86.66 | 64.46 | 6.49 | 89.08 | 77.79 | 75.19 | 91.02 | 0.048 | 0.0896 |
Suitability | 123 | 1 | 30 | 68 | 15 | 0 | 20 | 25 | 35 | 83 | |||
estuary | Area | 95.09 | 86.78 | 100 | 89.75 | 68.32 | 6.69 | 93.74 | 80.06 | 72.14 | 71.21 | 0.048 | 0.0796 |
Suitability | 124 | 65 | 74 | 82 | 37 | 1 | 52 | 59 | 40 | 36 | |||
coastline | Area | - | - | - | - | - | - | - | - | - | - | 0.048 | 0.034 |
Suitability | 133 | 143 | 39 | 131 | 130 | 220 | 81 | 132 | 142 | 139 | |||
fault | Area | 99.91 | 100 | 89.12 | 97.04 | 97.43 | 100 | 100 | 90.12 | 90.51 | 95.11 | 0.048 | 0.04 |
Suitability | 246 | 255 | 69 | 202 | 207 | 254 | 250 | 151 | 155 | 164 | |||
slope bath (%) | Suitability | 144 | 180 | - | 128 | 82 | 101 | - | 148 | 193 | 57 | 0.048 | 0.034 |
depth | Suitability | 244 | 239 | - | 206 | 164 | 169 | - | 168 | 214 | 213 | 0.048 | 0.032 |
sea surface temperature | Suitability | 67 | 60 | - | 89 | 110 | 97 | - | 85 | 80 | 71 | 0.048 | 0.0796 |
sea salinity | Suitability | 17 | 6 | - | 98 | 34 | 192 | - | 110 | 165 | 145 | 0.048 | 0.0836 |
velocity | Suitability | 33 | 31 | - | 34 | 8 | 17 | - | 45 | 63 | 44 | 0.048 | 0.0936 |
fetch | Suitability | 255 | 255 | - | 251 | 254 | 231 | - | 162 | 255 | 255 | 0.048 | 0.034 |
chlorophyll-a | Suitability | 157 | 170 | - | 140 | 92 | 121 | - | 142 | 143 | 169 | 0.048 | 0.052 |
Distance from Criteria (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Criterion | Zone A | Zone B | Zone C | Zone D | |||||
1 | 2 | 3 | 4 | 1 | 2 | 1 | 1 | 2 | |
Slope of coastal areas | 0.69 | 0.67 | 0.51 | 0.43 | 0.29 | 0.55 | 0.66 | 0.31 | 0.33 |
river | 28,038 | 29,881 | 31,022 | 27,133 | 4996 | 841 | 14,998 | 20,818 | 24,933 |
floodway | 6124 | 4101 | 1247 | 1688 | 1120 | 1065 | 884 | 2845 | 3059 |
city | 106,328 | 117,219 | 122,528 | 104,055 | 15,211 | 8537 | 74,813 | 43,849 | 51,176 |
village | 3248 | 1587 | 2668 | 3035 | 2455 | 2952 | 4301 | 2694 | 1560 |
building blocks | 2676 | 1562 | 2459 | 2880 | 2361 | 3707 | 4128 | 2496 | 2088 |
road | 244 | 270 | 610 | 150 | 4696 | 841 | 14,998 | 340 | 681 |
protected area | 36,331 | 41,784 | 47,609 | 40,586 | 11,842 | 7520 | 7110 | 21,306 | 22,061 |
estuary | 8539 | 11,252 | 9018 | 8927 | 9376 | 8476 | 7771 | 8388 | 7588 |
coastal | 253 | 925 | 1021 | 111 | 1983 | 1454 | 1510 | 381 | 1370 |
faults | 16,385 | 18,254 | 14,521 | 12,758 | 16,041 | 4336 | 5298 | 9635 | 9845 |
depth | 55 | 55 | 55 | 55 | 64.30 | 64.30 | 50.45 | 61.88 | 61.88 |
suitability | 56 | 60 | 69 | 65 | 53 | 40 | 70 | 66 | 54 |
Area (hectare) | 179 | 94 | 469 | 110 | 1743 | 98 | 237 | 181 | 126 |
Distance from Criteria (m) | |||
---|---|---|---|
Criterion | Zone E | Zone F | |
1 | 2 | 1 | |
Slope of coastal areas | 0.13 | 0.13 | 0.21 |
river | 3838 | 8604 | 10,871 |
floodway | 3437 | 1156 | 1727 |
city | 1430 | 7132 | 27,929 |
village | 2125 | 1883 | 4459 |
building blocks | 1600 | 1730 | 3486 |
road | 1575 | 654 | 2861 |
protected area | 18,148 | 16,708 | 15,315 |
estuary | 11,483 | 16,058 | 10,577 |
coastal | 707 | 1575 | 1854 |
faults | 5347 | 1999 | 15,842 |
depth | 40.38 | 40.38 | 19.80 |
suitability | 57 | 51 | 72 |
Area (hectare) | 172 | 217 | 2153 |
Distance from Criteria (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Criterion | Zone G | Zone H | Zone I | Zone J | Zone K | |||||
1 | 2 | 1 | 2 | 3 | 1 | 1 | 2 | 1 | 2 | |
Slope of coastal areas | 0.35 | 0.29 | 0.16 | 0.16 | 0.25 | 0.88 | 0.64 | 0.73 | 0.57 | 0.95 |
river | 29,265 | 945 | 16,108 | 17,385 | 25,440 | 12,039 | 9907 | 10,490 | 9150 | 7524 |
floodway | 1160 | 1089 | 1805 | 2955 | 1051 | 2333 | 2963 | 1885 | 1639 | 1182 |
city | 9514 | 25,996 | 31,636 | 29,547 | 24,676 | 79,775 | 9063 | 6710 | 19,816 | 24,214 |
village | 2324 | 1594 | 2526 | 1766 | 4213 | 7868 | 4918 | 3911 | 4702 | 5383 |
building blocks | 2180 | 1718 | 2413 | 1624 | 3109 | 7783 | 4138 | 2225 | 2653 | 4155 |
road | 230 | 519 | 790 | 289 | 465 | 325 | 688 | 563 | 226 | 1973 |
protected area | 31,671 | 14,492 | 31,250 | 30,289 | 27,222 | 10,783 | 59,270 | 56,279 | 72,248 | 80,851 |
estuary | 26,110 | 19,957 | 22,012 | 23,875 | 31,352 | 20,674 | 39,364 | 40,401 | 24,974 | 18,353 |
coastal | 512 | 553 | 1176 | 770 | 1845 | 575 | 693 | 1662 | 696 | 747 |
faults | 6296 | 7046 | 23,762 | 22,724 | 17,600 | 21,270 | 67,144 | 63,352 | 81,331 | 86,905 |
depth | 26.83 | 26.83 | 62.14 | 62.14 | 62.14 | 60.77 | 70.86 | 70.86 | 78 | 78 |
suitability | 69 | 52 | 74 | 67 | 76 | 56 | 64 | 75 | 69 | 57 |
Area (hectare) | 198 | 107 | 274 | 130 | 495 | 201 | 286 | 110 | 115 | 257 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gholamalifard, M.; Ahmadi, B.; Saber, A.; Mazloomi, S.; Kutser, T. Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants. Water 2022, 14, 1669. https://doi.org/10.3390/w14101669
Gholamalifard M, Ahmadi B, Saber A, Mazloomi S, Kutser T. Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants. Water. 2022; 14(10):1669. https://doi.org/10.3390/w14101669
Chicago/Turabian StyleGholamalifard, Mehdi, Bonyad Ahmadi, Ali Saber, Sohrab Mazloomi, and Tiit Kutser. 2022. "Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants" Water 14, no. 10: 1669. https://doi.org/10.3390/w14101669
APA StyleGholamalifard, M., Ahmadi, B., Saber, A., Mazloomi, S., & Kutser, T. (2022). Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants. Water, 14(10), 1669. https://doi.org/10.3390/w14101669