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Abstract: The aim of this study was to determine whether endemic coral fish commonly consumed
by Jeddah residents could serve as bioindicators of oil contamination. In addition, we planned to
investigate the relationship between amino acid changes and hydrocarbon concentrations in fish
tissue. The composition of amino acids was analyzed using high-pressure liquid chromatography
with precolumn derivatization. An analytical study of the polycyclic aromatic hydrocarbons and total
petroleum hydrocarbons was conducted by combining gas chromatography with gas chromatogra-
phy/mass spectrometry. Multivariate statistical analysis was applied using Statgraphics software to
determine the impact of the polycyclic aromatic hydrocarbons and total petroleum hydrocarbons on
the amino acid profile of three species of fish. In addition, the bioconcentration factor was estimated
in the studied species and was used to validate the results obtained from the multivariate analysis.
Based on the results of the study, the sum of polycyclic aromatic hydrocarbons with two cycles, and
with five to six cycles, is in reverse order in Plectropomus pessuliferus with respect to Epinephelus tauvina
and Cephalopholis argus. The factor analysis showed high factor scores for aspartic acid, glutamic acid,
tyrosine, chrysene, and total petroleum hydrocarbons, and for lipids and benzo(g,h,i)perylene, which
could be explained by bioaccumulation. It was concluded that the high proportions of glutamic
acid (8.32–11.10%) and aspartic acid (6.06–8.27%) in the muscles of the studied species are a sign of
contamination with petroleum hydrocarbons. The incremental lifetime cancer risk values for the
three endemic fish exceeded the limit value (>10−5), indicating a high potential cancer risk for the
Saudi population.

Keywords: amino acids; bioindicator; endemic fish; health risk; hydrocarbons pollution; sea water

1. Introduction

The Red Sea’s underwater ecosystem provides a habitat for more than 300 coral species
and 1200 fish species, including 120 exclusive species. Nonetheless, it was found that the
Gulf of Mexico accounted for 4.7% of the total oil pollution reported worldwide [1]. This
is mainly due to the presence of refineries and the important industrial development and
urbanization in the region, which resulted in increasing pollution of the marine environ-
ment. Jeddah is one of the most industrialized cities on the west coast of Saudi Arabia and
is under increasing impacts of human activities [2]. The European Food Safety Authority
considers eight PAHs, including benzo[a]pyrene (B[a]P) and dibenzo[a,h]anthracene, as
carcinogenic when present in foodstuffs [3]. Moreover, according to the International
Agency for Research on Cancer (IARC), 15 polycyclic aromatic hydrocarbons (PAHs) are
classified as probable or possibly carcinogenic substances [4]. B[a]P is classified as a group 1
carcinogen (i.e., carcinogenic to humans). B[a]P is also classified as category 1B due to its
reproductive toxicity by the European Union [5].

Marine organisms, in particular fish and crustaceans, are significantly affected by
oil pollution. Hydrocarbons originating from petroleum, particularly highly toxic poly-
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cyclic aromatic hydrocarbons (PAHs), accumulated by marine animals may interact with
sub-cells and tissues to produce various lesions and give rise to localized inflammatory
responses [6]. In addition, PAHs can have significant negative effects on the coral reef
ecosystem and even human health through trophic transfer via the food chain [7]. The
damage caused by petroleum hydrocarbons at the sub-cellular and molecular levels in
marine animals can provide early warning of pollution and quick access to reliable water
quality data [8]. Attention should be paid to the potential consequences of the accumu-
lation of petroleum hydrocarbons in the lipoid compartments [9] and their biotransfor-
mation in marine organisms, particularly in countries where fishes are consumed in large
quantities [10,11]. Viarengo et al. [12] stated that exposure to hydrocarbons enhances the
instability of lysosomal membranes, which leads to protein catabolism, with an attendant
increase in proteinogenic amino acids.

According to a survey carried out on the fish species consumed by Saudis and expatri-
ates living in the Jeddah region, Burger et al. [13] showed that locals preferred “Hamour”
fish (grouper), including Epinephelus and Cephalopholis, followed by Plectropomus pes-
suliferus, which were eaten by 72.1% and 58.2% of the region’s residents, respectively.

To evaluate the pollution level in the Jeddah marine environment, three coral reef fish
species were selected: Epinephelus tauvina, Cephalopholis argus, and Plectropomus pessuliferus,
which are known for their sensitivity to the bioaccumulation of pollutants, as shown by
Li et al. [14]. Due to their differential sensitivity to pollution, these species have been used
as biological indicators of oil pollution.

It is possible to estimate the amount of pollution that accumulates in aquatic organisms
using the bioaccumulation concentration factor (BCF). BCFs are calculated by comparing the
concentrations of xenobiotics in organisms and in their environment [15,16]. In organisms
with higher lipid contents, hydrophobic hydrocarbons have a higher BCF, which increases
their cytotoxicity [15].

In this study, we estimated the level of TPHs, PAHs, and amino acids (AA) in three
chosen endemic species of fish commonly consumed by Jeddah residents. In this work,
we also studied the relationship between TPHs concentrations and amino acids and lipid
changes in fish tissues. Moreover, the bioconcentration factors (BCFs) estimated in the stud-
ied species were used to validate the results obtained from the multivariate analysis of the
interactions between PAHs, lipids, amino acids, and TPHs. Toxic equivalency factors (TEFs)
and USEPA equations were used to calculate the incremental lifetime cancer risk (ILCR)
from the consumption of endemic fish contaminated with PAHs by the Saudi population.

2. Materials and Methods
2.1. Study Area

Fish species were captured at selected stations at different distances from the Jeddah
coast (Figure 1) from September 2020 to December 2021. The study area extended between
latitudes of approximately 20.75◦–21.05◦ N and longitudes 39.10◦–39.35◦ E.

2.2. Sample Collection

A total of 35 biota samples (Epinephelus tauvina, Cephalopholis argus, and Plectroponus
pessuliferus) (Table 1) and water were sampled from coral reef areas in Jeddah, Saudi Arabia.
Thirty-five (35) fish of three grouper species were collected and classified according to
Heemstra and Randall [17] (Epinephelus tauvina, Figure 419, p. 241; Cephalopholis argus,
Figure 71, p. 34; Plectroponus pessuliferus, Figure 509, p. 296). Local Jeddah fisherman
assisted in collecting all the fish samples on site. These fish species belong to the Serranida
family and were selected because they are consumed often and are sensitive to the bioac-
cumulation of pollutants. Therefore, the concentration of pollutants in these species can
provide authorities with information on the level of pollution in the coral reef ecosystem.
Once the ship reached the port, the fish samples were frozen at −20 ◦C and transported to
the laboratory. The samples were cleaned and descaled using deionized water. Then, the
specimens’ body length and weight were measured (Table 1). Upon dissection of the fish,
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the dorsal muscles were vacuum freeze-dried, ground to a fine powder, and stored in a
deep freezer at −20 ◦C until analysis.
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Table 1. Sample Characteristics.

Scientific Name Local Name Samples (n) Length 1 (cm) Weight 1 (g)

Epinephelus tauvina Tauvina 14 47 ± 8 1226 ± 602
Cephalopholis argus Hamour 12 35 ± 4 634 ± 68
Plectropomus pessuliferus Najil 9 48 ± 24 1765 ± 1390

1 Results are expressed as mean ± standard error.

2.3. Chemicals

All solvents, US EPA PAH MIX 25, and amino acid standards were purchased from
Sigma-Aldrich (Darmstadt, Germany).

2.4. Extraction and Separation

Saturated aliphatic and aromatic hydrocarbons were extracted using the method de-
scribed by Kanzari et al. [18] with slight modification. Briefly, the extraction was performed
in a Soxtec™ 2055 extraction system. A mixture of the dried fish sample powder (5 g)
and 15 g of sodium anhydrous sulfate was placed in a cellulose extraction thimble. The
mixture of analytes was extracted with 50 mL of n-hexane after a boiling time of 2 h and
a rinsing time of 1 h after the addition of internal standards. The extracts were thereafter
evaporated to approximately 1 mL. For improved purification, the extracts were passed
through a multilayered column preconditioned with n-hexane (40 mL). The hexane fraction
was concentrated by vacuum distillation in a rotary evaporator (Büchi, Flawil, Switzerland)
to approximately 10 mL at 40 ◦C, and concentrated in Reacti-Therm evaporating units
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in a current of nitrogen gas to a volume of 1 mL. A glass 45 × 2 cm (LxID) chromatog-
raphy column was packed from bottom to top with layers of silica gel (8 g), followed
by 8 g of alumina (8 g) and sodium sulfate (1 g). After loading the concentrated extract
(1 mL), the aliphatic fraction (F1) was consecutively rinsed with 30 mL of n-heptane and
20 mL of n-heptane/DCM (90:10). The aromatic fraction (F2) was eluted with 50 mL of
n-heptane/DCM (80:20). To remove the sulfur interference, the extract was shaken with
hydrochloric acid washed copper powder. The two fractions were then evaporated under
a slight stream of nitrogen. Finally, the residues of F1 and F2 were reconstituted by the
addition of 0.5 mL of n-hexane. The method employed for the determination of amino acids
was in accordance with the Agilent method described by several authors [19–26], except for
the dry block heater used for the derivatization experiments. Under vacuum and 150 ◦C
for 6 h, dried fish powder (5 g) was hydrolyzed with 6 mol/L HCl solutions containing
0.1% phenol. Following hydrolysis, the samples were evaporated to dryness at 70 ◦C under
a stream of nitrogen and filtered. High-performance liquid chromatography (HPLC) was
used to analyze the derivatives after filtering the filtrate with cellulose membrane syringe
filters. The fat content was quantitatively determined in petroleum spirit using Soxtec 2055
(FOSS Tecator, Foss, Hillerod, Denmark) in duplicates. The dry matter was determined
gravimetrically according to ISO 1443:1973 (AOAC960. 39, AOAC INTERNATIONAL,
Rockville, MD, USA) by drying the sample to a constant weight at +103 ± 2 ◦C.

Finally, the total protein content was determined using the analyzer Kjeltec 2300 (FOSS,
Höganäs, Sweden), according to the ISO 937:1978 standard.

2.5. Chromatographic Analysis

Aliphatic fraction (F1) (n-C13-n-C34) analysis using programmable temperature va-
porization (PTV) and large volume injection (LVI) mode was carried out using an Agilent
A6890N gas chromatograph system equipped with an FID and an HT-5 thin film capillary
column, 12 m × 0.22 mm ID × 0.1µm film thickness (SGE part number 054631). The
chromatographic conditions were as follows: The oven temperature was kept at 26 ◦C for
1.5 min after injection, increased at a rate of 15 ◦C/min to 320 ◦C, and then kept for 3.83 min
min at this temperature. The detector temperature was set at 320 ◦C. The carrier gas flow
rate was set at 2.0 mL/min. The aromatic hydrocarbons fractions (F2) were analyzed by gas
chromatography coupled to mass spectrometry (Agilent HP-6890 GC GC with 5973 MSD,
Conquer Scientific, Poway, CA, USA). The samples were injected in the splitless mode onto
a 30 m × 0.25 mm × 0.32 µm DB-5 fused silica capillary column. The oven temperature
was initially set at 60 ◦C, then immediately raised to 300 ◦C with an increasing rate of
15 ◦C/min, and finally kept at the final temperature for 10 min. The carrier gas (helium)
was allowed to flow at a constant flow rate of 1 mL·min−1. The ionizing energy of the mass
spectrometer was set at 70 eV. The quantification of PAHs was made using chrysene-d12
and phenanthrene-d10 as the internal standards. Analytes identification was based on
the retention indices and a series of confirmation ions (SIM) as described in a previous
paper [27]. The GC/MS was calibrated by the injection of standards at five concentrations.

The amino acids composition of the three fish species was determined using an
HPLC (Agilent Technologies, 1200 Series, Santa Clara, CA, USA) method, with pre-column
derivatization using 9-fluorenylmethyl chloroformate (FMOC) and o-phthaldialdehyde
(OPA) and with DAD detection at λ1 = 338 nm and λ2 = 262 nm, based on the Agilent
methods cited above. Samples were analyzed using a Zorbax Eclipse Plus column C18—
150 mm length, inner diameter—4.6 mm, and sorbent grain diameter of 5 µm (Hypersil
ODS). A gradient regime (Table 2) of 2 mobile phases was used at a constant flow rate of
1.5 mL: Mobile phase A—10 mmol Na2HPO4, 10 mM Na2B4O7 and 5 mM NaN3, pH 7.8;
and mobile phase B—CH3CN: CH3OH: H2O (45:45:10, v/v/v). The column oven was set
at 40 ◦C. All data are presented as mean ± standard deviation.
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Table 2. Gradient separation regime.

Total Time (min) A% B%

0.1 85 15
4.0 85 15
5.5 80 20
7.5 65 35

11.5 64.5 34.5
13 100 0
18 85 15

2.6. Bioconcentration Factor (BCF) and Bioaccumulation

Bioconcentration is a process by which a chemical is directly absorbed into an organism
only after being dissolved in water. The bioconcentration of a chemical is evaluated through
the bioconcentration factor (BCF), which is expressed as the ratio of the concentration
of a chemical in an organism to the concentration of the chemical in the surrounding
environment. In this case, BCF is the ratio between the concentration of polycyclic aromatic
hydrocarbons in the studied endemic fish species (CB) (mass of chemical per kilogram of
organism/dry weight) and its freely dissolved concentration in the surrounding water
(CW) (mass of chemical/liter) (Equation (1)) [28]:

BCF = CB/CW, (1)

2.7. Assessment of Cancer Risk of Saudis Exposed to PAHs in Endemic Fish

For assessment of the potential carcinogenic risks of PAH compounds in fish consumed
by the Saudi population, the toxic equivalency factors (TEFs), determination of carcinogenic
PAHs (CPAHs), and incremental lifetime cancer risk (ILCR) were used.

2.7.1. Carcinogenic Potency of PAHs (BaPequi) in Fish

The carcinogenic potency of PAH compounds measured in endemic fish consumed
by the Saudi population was calculated by the equivalency of benzo(a)pyrene (B[a]Pequi)
according to the TEFs proposed by Nisbet and Lagoy [29]. A reference chemical, B[a]P, was
selected as the most toxic PAH compound, and it was given a value of one [30,31]. BaPequi
for each species was calculated using the following equation (Equation (2)):

B[a]Pequi (ng/g) =
n

∑
i=1

CixTEFi, (2)

As defined by Nisbet and Lagoy [29], Ci is the concentration of each PAH compound in
the species of fish studied; TEF is the corresponding individual equivalence factor for each
toxicity equivalency factor and congener of PAHs, respectively. The total cancer potency
of all PAH compounds in fish was calculated by summing the estimated cancer potency
relative to BaP.

2.7.2. Cancer Risk Estimates Based on PAH Exposure to Fish

A health risk assessment of the Saudi population exposed to PAHs in endemic fish
was carried out in the present study using environmental protection agency (EPA) risk
assessment models developed in the United States.

According to Equation (3), the incremental lifetime cancer risk (ILCR) associated with
dietary exposure to PAHs in the Saudi population is as follows [32]:

Carcinogenic risk = ILCRingestion =

Cs ×
{

CSFingestion × 3
√

BW
70

}
×IRing.×EF × ED × CF

BW × AT
, (3)
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where ILCR is the incremental lifetime cancer risk (dimensionless); Ci is the sum of con-
verted PAHs concentration (mg B[a]Pequi/kg) in the species of fish studied; IRi is the
amount of fish consumed per day (g d−1) by a specific species based on the B[a]P equiva-
lent concentration of PAHs (ng·g−1) [33]; CSFingestion is the carcinogenic oral slope factors
(mg/kg/day) for ingestion with a geometric mean of 7.3 (mg kg−1 day−1)−1 [34–37]; IRi is
the fish ingestion rate; BW is the body weight of an adult (70 kg); TEFi is the corresponding
individual equivalence factor for each toxicity equivalency factor and congener of PAHs,
respectively; EF is the exposure frequency (365 days year−1) [38,39]; ED is the exposure
duration for each life segment [40]; and AT is the average life span (years) [41–44].

Table 3 provides detailed information on the exposure factors used in the above models
(Equations (2) and (3)).

Table 3. Parameters used for estimating the exposure assessment through endemic fish consumption.

Exposure Factors Symbol Unit Reference

B[a]Pequi concentration for PAH compounds Cs ng B[a]Pequi/g Present study

Ingestion rate IR g/day 850 [33,34]

Exposure frequency EF days year−1 365 [36,37]

Exposure duration for each life segment ED years 30 [39]

Carcinogenic oral slope factors CSF (mg kg−1 day−1)−1 7.3 [37]

Average life span(years)
(70 years × 365 days/year) AT days 25,550 [40]

conversion factor CF mg·ng−1 10−6

bodyweight BW kg 70 [38]

2.8. Statistical Methods

For the evaluation of the fish species and analytical results, multivariate statistical
methods, including Pearson product-moment correlation analysis, factor analysis (FA),
principal component analysis (PCA), cluster analysis (CA), and normality tests, were
applied. The data matrix of the fish species and analytical results was analyzed using the
software Statgraphics for Windows, Version 1.8.

3. Results and Discussion
3.1. Profile of the Amino Acid Content in the Three Fish Species

In the present study, a total of 14 amino acids were detected: 7 essential, 4 non-essential,
and 3 conditional essential amino acids. The amino acid concentrations in fish muscles
(g/100 g of crude protein) are presented in Table 4. The results show that glutamic acid is
the major amino acid (8.32–11.10%), followed by aspartic acid (6.06–8.27%).

In the case of essential amino acids (EAAs), Plectropomus pessuliferus was found to have
the highest values of essential amino acids (EAAs) while the other two species Epinephelus
tauvina and Cephalopholis argus had similar EAA values. The results obtained for the major
amino acids, such as lysine (5.36–11.27%), leucine (4.83–10.33%), and valine (3.37–4.51%),
are consistent with previous results found in 27 food fishes [45].

Non-essential or conditional amino acids such as arginine, alanine, and glycine were
found to range from 2.69% to 4.06% in Epinephelus tauvina, 3.75% to 5.33% in Cephalopholis
argus, and 7.17% to 10.70% in Plectropomus pessuliferus. Moreover, Plectropomus pessuliferus
samples had the lowest serine concentrations (1.97%) while Cephalopholis argus samples had
the highest recorded serine mean value of 2.87%. It is well established that the physiological
state of organisms is deeply related to the information provided by conditional amino
acids [46]. Under specific circumstances or conditions, it may be considered as a suitable
indicator of stress. Pollution may influence the concentration of the major conditional
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amino acids [46–48]. Moreover, an alteration in the enzymes involved in amino acids
metabolism has also been reported [49].

Table 4. Amino acid concentrations in fish samples (g/100 g).

Essential Amino Acids

N◦ Amino Acid Epinephelus
tauvina *

Cephalopholis
argus *

Plectropomus
pessuliferus *

1 Histidine - 1.90 ± 0.04 2.40 ± 0.10
2 Isoleucine 3.08 ± 0.16 2.04 ± 1.58 5.93 ± 0.32
3 Leucine 4.83 ± 0.18 5.69 ± 0.13 10.33 ± 0.49
4 Lysine 5.36 ± 0.18 6.28 ± 0.17 11.27 ± 0.46
5 Methionine 2.13 ± 0.12 2.64 ± 0.07 4.10 ± 0.26
6 Phenylalanine 2.71 ± 0.13 3.40 ± 0.10 4.83 ± 0.06
7 Threonine 2.93 ± 0.13 3.52 ± 0.08 4.40 ± 0.17

Non-essential Amino Acids

1 Alanine 4.02 ± 0.33 5.33 ± 0.13 10.70 ± 0.61
2 Aspartic acid 6.06 ± 0.20 7.26 ± 0.20 8.27 ± 1.02
3 Glutamic acid 8.32 ± 0.33 10.54 ± 0.18 11.10 ± 1.39
4 Serine 2.29 ± 0.13 2.87 ± 0.02 1.97 ± 0.06

Conditional Amino Acids

1 Arginine 4.06 ± 0.19 4.95 ± 0.09 9.80 ± 0.10
2 Glycine 2.69 ± 0.15 3.75 ± 0.12 7.17 ± 0.67
3 Tyrosine 0.64 ± 0.08 1.83 ± 0.08 2.73 ± 0.32

* Mean values ± standard error (n = 3).

Four conditional essential amino acids were detected in the studied fish samples:
arginine, glycine, and tyrosine. Comparing Plectropomus pessuliferus to the two other fish
species, the total arginine percentage was significantly higher. In contrast, no significant
variations were observed in the total percentage of arginine and glycine in both Epinephelus
tauvina and Cephalopholis argus fish samples (Table 1). The highest percentages of arginine,
glycine, and proline were found in Plectropomus pessuliferus fish samples, whereas small
variability in the tyrosine concentration was found between the three species. The mean
tyrosine concentrations were 0.64, 1.83, and 2.73 g/100 g, respectively, in the Epinephelus
tauvina, Cephalopholis argus, and Plectropomus pessuliferus samples. Indicators of stress have
been derived from the ratio of certain conditional amino acids, such as taurine:glycine, the
sum of serine and threonine, or alanine [50–52]. Other behavioral stress indicators using
free amino acids, such as the burying capacity of Macoma balthica, have been reported by
Duquesne et al. [53].

According to Viarengo et al. [12], exposure to hydrocarbons leads to the destabilization
of lysosomal membranes and therefore, a concomitant increase in protein amino acids.
According to Moore et al., long-term exposure to anthracene and phenanthrene can cause
lysosomal enlargement, which may be associated with chemical-induced lipidosis [8,54–58]
and a general impairment of the lysosome’s ability to degrade its components. In general,
the conditional amino acids composition in coral reef fish can be considered as a molecular
approach to assess the state of pollution of marine biota.

It is important to investigate other hydrocarbon substances that may have negative
effects on coral fish metabolism, such as polycyclic aromatic hydrocarbons, specifically to
determine a possible link between amino acids and oil hydrocarbon intake.

3.2. TPHs and PAHs Levels in the Coral Reef Fish Samples

The Kingdom of Saudi Arabia is one of the main crude oil producers in the world.
Jeddah is the largest city located on the eastern shore of the Red Sea and the economic
capital of Saudi Arabia. Since the 1970s, the city has grown rapidly and developed a large
number of industries, including refineries and petrochemical complexes. In addition, there
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are several ports where maritime traffic and accidental oil spills may constitute potential
pollution sources [59]. Consequently, contamination by oil pollutants has become one
of the main concerns for the authorities in the region [60]. As the coral reef area is a
shallow water ecosystem, the contamination risk of hydrocarbons for different fish species
is highly probable. Petroleum pollutants tend to accumulate more in living organisms than
the environment. Therefore, fishes may be used as bio-indicators for the evaluation of
contamination levels in an aquatic environment [61,62].

Groupers were chosen as representatives of reef predators because they are relatively
sedentary and do not display long-distance movement [63–65]. Several research studies
have revealed the presence of TPHs and PAHs at various concentrations in different fish
species and in several other marine vertebrates around the world [1,62,66–69].

3.3. Total Petroleum Hydrocarbon Concentrations in Tissues

P. pessuliferus fishes had higher TPHs concentrations in muscle tissue (7.4 ± 3.2 µg g−1)
followed by C. argus (6.8 ± 3.6 µg g−1) and E. tauvina (4.2 ± 2.3 µg g−1) (Table 5).

Table 5. TPHs concentration and lipid content in fish species.

Scientific Name Local Name Samples (n) Lipid (%) * TPHs (µg g−1) *

Epinephelus tauvina Tauvina 14 1.2 ± 0.6 4.2 ± 2.3
Cephalopholis argus Hamour 12 0.6 ± 0.3 6.8 ± 3.6
Plectropomus pessuliferus Najil 9 1.0 ± 0.8 7.4 ± 3.2

* Mean values ± standard error.

Several possible causes might have been at the origin of the TPHs concentration
variations, including the differences in the marine habitat, the dietary habits, and the
different depths at which the fishes live in the marine environment, and the body and lipid
masses [1,70]. Although other studies reported a relationship between TPHs concentrations
and the lipid content in different fish species [71], no significant relationship was observed
in our study. The convergent results observed in the current study can be explained by the
fact that all the studied fish species were located in the same area of the coral reefs, and
because they belong to the same subfamily of Epinephelinae, part of the Serranidae family.

The fish muscle TPHs concentrations reported in samples from the marine biota
of Saudi Arabia and other sites with similar properties are presented in Table 6. The
TPHs levels in fish species reported herein were significantly lower than those found
by Afifi et al. [72] (10–156 µg g−1 dw) in marine fish samples obtained from the same
locality, and lower than the results reported in fish samples from Shatt Al-Arab River
(5.12–21.52 µg g−1 dw) [73]. However, lower TPHs concentrations were reported in Grouper
tissue samples from the Northern Persian Gulf (Table 6). Therefore, the concentrations of
TPHs in marine biota are indicative of the degree of contamination in marine coastal ecosystems.

Table 6. Comparison of fish muscle TPHs concentrations in marine biota from Saudi Arabia with
other locations in the world.

Species Sampling
Location Region Sampling

Year
TPHs

(µg g−1, Dry Weight) Reference

Epinephelus coioides Basrah
(Irak) North-West Arabian Gulf 2014–2015 4.36–5.23 [74]

Epinephelus morio Jeddah
(KSA) Eastern shore of the Red Sea 2014 10–156 [72]

Epinephelus tauvina Jeddah
(KSA) Eastern shore of the Red Sea 2021 4.2 ± 2.3 This study

Cephalopholis argus Jeddah
(KSA) Eastern shore of the Red Sea 2021 6.8 ± 3.6 This study
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Table 6. Cont.

Species Sampling
Location Region Sampling

Year
TPHs

(µg g−1, Dry Weight) Reference

Plectropomus pessuliferus Jeddah
(KSA) Eastern shore of the Red Sea 2021 7.4 ± 3.2 This study

Epinephelus morio Yanbu (KSA) Eastern shore of the Red Sea 2014 6–84 [72]
Lethrinas nebulosus Jeddah (KSA) Eastern shore of the Red Sea 2014 6–94 [75]
Lethrinas nebulosus Yanbu (KSA) Eastern shore of the Red Sea 2014 3.6–50 [75]

Trachurus trecae Benin
(Nigeria) Benin 2014 21–30 [76]

Leuciscus vorax Basrah (Irak) Shatt Al-Arab River Iraq 2015 5.12–21.52 [73]

Silver pomfret Hormozgan
(Iran) Northern Persian Gulf 2011 0.67–3.36 [77]

Grouper Hormozgan
(Iran) Northern Persian Gulf 2011 0.25–1.20 [77]

3.4. Polycyclic Aromatic Hydrocarbon Levels in Fish Species

Al-Mur et al. [2] studied the polycyclic aromatic hydrocarbons in 18 samples of bottom
sediments from marine coastal water in Jeddah, Saudi Arabia. The authors reported that
the coastal zone was polluted by ∑16 PAHs, with a total concentration ranging from
1169.8–3003.4 ng·g−1 dry wt.

Several studies revealed that PAHs from the aquatic environment may accumulate
and intoxicate fishes and invertebrates [78–80]. The accumulation of low-molecular-weight
PAHs was shown to be higher than that of high-molecular-weight PAHs in both fish
and invertebrates. This phenomenon could be due to the higher water solubility of low-
molecular-weight PAHs, making them more available, and other probable biological factors.

Very little information is available on the origin of aromatic hydrocarbon contamina-
tion in fish to distinguish between combustion and petroleum sources. Most researchers
have been more interested in studying total hydrocarbons than their sources or individual
compounds. To determine the sources of the aromatic compounds found in the studied
species, we used the concentration ratios proposed by other researchers [81–84] to de-
termine whether the contamination was from a petrogenic or pyrogenic source. Some
indicators proposed by certain authors to determine the sources of aromatic compounds
are presented in Table 7.

Table 7. Contamination source indicators.

Ratio Petrogenic Source Pyrogenic Source References

Fluoranthene (FLUE)/Pyrene (PYR) <1 >1 [81]
Phenanthrene (PHE)/Anthracene (ANT) <1 - [82]
1 LMW/HMW 2 >1 <1 [83]
ANT/(ANT + PHE) <0.1 >0.1 [84]
benzo(a)anthracene/(benzo(a)anthracene+chrysene) <0.2 >0.35 [84,85]

1 Low Molecular Weight = Naphthalene + Acenaphthylene + Acenaphthene + Fluorene. 2 High Molecular
Weight = Fluorananthene + Pyrene + BaA+ Chrysene + Bbf+ BKf + BaP + DBA + B(ghi)perylene + indenol pyrene.

The total PAHs concentrations in the three fish species ranged from 21.78 ng·g−1 dw in
Plectropomus pessuliferus to 59.44 ng·g−1 dw in Cephalopholis argus and reached 36.61 ng·g−1 dw
in Epinephelus tauvina (Table 8).

Naphthalene (NAP) followed by acenaphthene (ACE) and fluorene (FLU) were the
most frequently detected dominant PAHs in the current study. These results are in agree-
ment with several other works [86–89]. Among the explanations for the predominance of
low-molecular-weight (LMW) compounds in the tissues of fish species, such as naphtha-
lene and three-ring PAHs, is their lipophilic character [86–89]. Although several authors
reported positive correlations between the lipid content and total PAHs concentrations
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in marine fish [87,90], other studies found an extremely weak positive correlation or no
correlation between the lipid content and PAHs concentrations in fish tissues [91–93], in
accordance with our results.

Table 8. PAHs concentrations (mean ± SD) and ratios in fish tissue.

Compound Name Epinephelus tauvina Cephalopholis argus Plectropomus pessuliferus

Naphthalene (NAP) 14.04 ± 6.23 25.7 ± 7.33 12.03 ± 5.64
Acenaphthylene (ACY) <DL 1 <DL 1 <DL 1

Acenaphthene (ACE) 4.05 ± 3.23 5.2 ± 3.24 2.86 ± 1.22
Fluorene (FLU) 2.1 ± 1.72 6.7 ± 4.56 0.33 ± 0.43
Phenanthrene (PHE) 1.63 ± 1.45 2.3 ± 1.43 0.42 ± 0.56
Anthracene (ANT) <DL 1 <DL 1 <DL 1

Fluoranthene (FLUE) 1.20 ± 1.32 1.64 ± 0.93 0.75 ± 0.47
Pyrene (PYR) 2.8 ± 1.25 3.24 ± 2.17 1.08 ± 0.92
Benzo(a)anthracene (BaA) <DL 1 0.02 ± 0.09 0.07 ± 0.04
Chrysene (CHY) 1.8 ± 0.92 1.57 ± 0.87 1.42 ± 0.91
Benzo(b)fluoranthene (BbF) 3.46 ± 2.09 4.23 ± 2.40 0.65 ± 0.43
Benzo(k)fluoranthene (BkF) 1.14 ± 0.93 2.45 ± 1.69 0.7 ± 0.54
Benzo(a)pyrene (BaP) 1.74 ± 0.67 3.02 ± 1.85 0.21 ± 0.32
Dibenzo(a,h)anthracene (DahA) 2.65 ± 1.72 3.25 ± 2.33 0.24 ± 0.41
Benzo(g,h,i)perylene (BPY) <DL 1 3.45 ± 2.45 1.09 ± 0.87
Indeno[1,2,3-cd]pyrene (InP) <DL 1 <DL 1 <DL 1

ΣPAHs 36.61 59.44 21.78
FLU/PYR 0.69 0.50 0.69
2 Low Molecular Weight/High Molecular
Weight 3 18.26 30.87 23.29

BaA/BaA + CHY 0.04 0.01 0.04
1 DL: Detection limit (DLi(ACY) = 0.22 ng/g; DLi(ANT) = 0.17 ng/g; DLi(BaA) = 0.19 ng/g; DLi(BPY) = 2.8 ng/g).
2 Low Molecular Weight = Naphthalene + Acenaphthylene + Acenaphthene + Fluorene. 3 High Molecular
Weight = Fluorananthene + Pyrene + BaA+ Chrysene + Bbf+ BKf + BaP + DBA + B(ghi)perylene + indenol pyrene.

In light of these results, the lipid content cannot be the sole explanation of the fate
of pollutants in fish species. Indeno[1,2,3-cd]pyrene (InP) and certain PAHs could not be
detected in any fish species while other PAHs were detected in low concentrations. This
may be due to their rapid biotransformation or depuration. The elimination or accumu-
lation of PAHs in fish depends on different factors such as the lipid content in the fish
tissue, duration of exposure, and interspecies differences. The most abundant PAHs in
the muscle of Epinephelus tauvina were naphthalene (NAP), acenaphthene (ACE), fluorene
(FLU), pyrene (PYR), and benzo(b)fluoranthene (BbF) (Table 8). For Cephalopholis argus,
the most abundant PAHs were naphthalene (NAP), acenaphthene (ACE), fluorene (FLU),
phenanthrene (PHE), pyrene (PYR), benzo(b)fluoranthene (BbF), benzo(g,h,i)perylene
(BPY), dibenzo(a,h)anthracene (DahA), and benzo(a)pyrene (BaP) (Table 8). Finally, naph-
thalene (NAP), acenaphthene (ACE), pyrene (PYR), and chrysene (CHY) were found to be
the most abundant PAHs in Plectropomus pessuliferus (Table 8). Certain ratios have been
calculated to identify the sources of the aromatic compounds. In the current study, all
(FLU/PYR) ratios were below one (<1) (Table 8), suggesting that the major PAHs’ source
could be petrogenic. In addition, all HMW/LMW ratios were >1, indicating that petroleum
is the main source of PAHs.

The total PAHs concentration found in Cephalopholis argus samples in the present study
appears to be lower than the concentration reported by Li et al. [7] (409.28 ng·g−1, dry
weight) in Yongle Atoll (South China Sea). However, the PAHs concentration detected in
Epinephelus tauvina in the present study is higher than the levels reported by Al-Saleh and
Al-Doush [93] (6.273 ng·g−1, dry weight) in samples from Dammam and Sharq Dareen (Ara-
bian Gulf waters of the Eastern province), and lower than the levels in Yongle Atoll—South
China Sea (57.37 ng·g−1, dry weight) [7]. Fish species have different abilities to accumulate
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PAHs from the surrounding environment. Among all fish species presented in Table 9, it
seems that Cephalopholis argus has a high ability to accumulate most PAH compounds.

Table 9. Comparison of PAH levels with results from other studies from Saudi Arabia and
other countries.

Species Sampling Location Region Sampling
Year

∑ PAHs
(ng·g−1, Dry Weight) Reference

Epinephelus tauvina Dammam and
Sharq Dareen

Arabian Gulf waters of the
Eastern province 2001–2002 6.273 [93]

Solea solea Yemen coast Gulf of Aden 1995–1996 48.0–50.3 [94]
Coilia dussumieri Mumbai western coast of India 2006–2008 70.44 [95]

Cephalopholis argus Xisha Islands Yongle Atoll (South China Sea) 2017 409.28 [7]
Epinephelus quoyanus Xisha Islands Yongle Atoll (South China Sea) 2017 57.37 [7]

Plectorhinchus
chaetodonoides Xisha Islands Yongle Atoll (South China Sea) 2017 24.75 [7]

Epinephelus tauvina Eastern shore of the
Red Sea Eastern shore of the Red Sea 2021 36.61 This study

Cephalopholis argus Eastern shore of the
Red Sea Eastern shore of the Red Sea 2021 59.44 This study

Plectropomus pessuliferus Eastern shore of the
Red Sea Eastern shore of the Red Sea 2021 21.78 This study

All the analytes, regardless of the spiking level, were recovered at 73.6–95.6%, with
the exception of BaA, the recovery of which did not exceed 67.6%, and BaP, which had a
lower recovery at the three levels (52.3–58.5%, 51.2–48.7%). The lower BaP recoveries may
be due to the degradation of analytes in samples kept at –20 ◦C.

As shown in Figure 2, two-ring PAHs were the predominant PAHs in all fish species.
In addition, Li et al. [14] reported similar findings for coral reef fish in the South China
Sea. Relatively large proportions of three-ring PAHs were also found in Cephalopholis argus
(23%) and Plectropomus pessuliferus (21%). However, it should be noted that the percentages
of compounds with three cycles (21%), and with four to five cycles (25%) are in reverse
order in Epinephelus tauvina with regard to the two other studied species.
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3.5. Health Risks from Endemic Fish Consumption
3.5.1. Carcinogenic Potential of PAHs (BaPequi)

A number of studies have suggested that BaP is a potentially carcinogenic compound
and is one of the most significant PAH compounds [96–98].

Table 9 shows the carcinogenic potential risks due to direct oral ingestion exposure to
PAH-contaminated endemic fish, which were calculated as the benzo(a)pyrene equivalent
(B[a]Pequi). To calculate the BaPequi concentrations for PAH compounds, the TEF values of
individual compounds were multiplied by their corresponding B[a]Pequi concentrations.
Based on the calculated B[a]Pequi concentration value for each individual PAH compound,
the cancer potency was evaluated.

In the present study, BaPeq concentrations ranged from 0.001 ng B[a]Pequi/g for
FLUE to 2.650 ng B[a]Pequi/g for DahA in E. tauvina; from 0.002 ng B[a]Pequi/g for PHE,
FLUE, and BaA to 3.250 B[a]Pequi/g for DahA in C. argus; and from 0.001 ng B[a]Pequi/g
for PYR to 0.240 B[a]Pequi/g for DahA in P. pessuliferus (Table 9). In addition, the total
carcinogenic activities (TCA) of the total PAHs in endemic fishes were 4.894, 7.035, and
0.633 ng B[a]Pequi/g for E. tauvina, C. argus, and P. pessuliferus, respectively. In terms
of the relative contribution of individual carcinogenic activities for BaA, BbF, BkF, BaP,
DahA, and CHY to the TCA (Table 9), BaP and DahA were the most dominant compounds;
they accounted for 54.148% and 35.554% (E. tauvina), 46.201% and 42.931% (C. argus), and
37.915% and 33.175% for the CHY compounds based on the TCA, respectively. In addition,
the total carcinogenic activities (TCAs) of the total PAHs in endemic fishes were 4.894, 7.035,
and 0.633 ng B[a]Pequi/g for E. tauvina, C. argus, and P. pessuliferus, respectively. Despite
the extent to which DahA and BaP act as surrogate compounds for PAHs in endemic fishes,
other compounds, such as BbF, BkF, BaA, and CHY, also contribute to the TCA.

3.5.2. Carcinogenic PAH Estimation

Fish-bound PAH compounds (CHY + BbF + BkF + BaP + DahA + BPY) were 10.79 ng/g
in E. tauvina, 17.97 ng/g in C. argus, and 4.31 ng/g in P. pessuliferus. As a result, these
concentrations accounted for 29.47%, 30.23%, and 19.78% of the total PAH concentrations for
E. tauvina, C. argus, and P. pessuliferus, respectively. The relative contributions of individual
carcinogenic PAH compounds to the total carcinogenic PAH concentrations were 16.68%,
8.74%, and 32.94% for CHY; 32.07%, 23.54%, and 15.08% for BbF; 10.57%, 13.64%, and
16.24% for BkF; 16.13%, 16.81%, 14.40%, and 4.87% for BaP; 24.56%, 18.09%, and 5.57% for
DahA; and 0.00%, 19.20%, and 25.29% for BPY in E. tauvina, C. argus, and P. pessuliferus,
respectively. Generally, BbF was the dominant carcinogen for both E. tauvina and C. argus
species, whereas for P. pessuliferus, CHY and BPY compounds were the predominant
carcinogenic compounds.

3.5.3. Incremental Lifetime Cancer Risk (ILCR)

To assess the potential cancer risks to Saudi adults exposed to endemic fish-bound
PAHs over a life expectancy of 70 years, the ILCR of the individual PAH compound
concentrations in the three endemic fishes through ingestion (ILCingesion) was estimated
(Figures 3 and 4), based on the toxic equivalent of BaP (TEF) and cancer slope factor (CSF).
An ILCR value of 10−6 indicates virtual safety, a value of 10−6 to 10−4 suggests potential
risk, and a value of more than 10−4 suggests a potential high risk [99,100].

BbF, BkF, BaP, DahA, and BPY showed high ILCR values compared to the other PAH
compounds in the three endemic fish species based on the ILCR values calculated from
individual exposure. In addition, the values of ILC of the individual and total PAHs were
between 10−6 and 10−4, indicating potential carcinogenic risk (Figures 3 and 4).

As shown in Figure 4, the values of ILCR for the three species were estimated to
be 2.40 × 10−5, 1.86 × 10−4, and 2.67 × 10−4, respectively, for P. pessuliferus, E. tauvina,
and C. argus. The ILCR values were higher than 10−5, indicating a potential cancer risk
in the Saudi population living in Jeddah from exposure to lifetime consumption of the
investigated endemic fishes (Figure 3).
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Figure 3. Incremental lifetime cancer risk (ILCR) of the individual PAH compound concentrations
for three endemic fish of Jeddah. 

2 

 
Figure 4. Incremental lifetime cancer risk and cancer risk (ILCR) of the ∑PAHs concentrations for
three endemic fish in Jeddah.
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3.6. Multivariate Analysis

Statistical analyses, including Pearson product-moment correlation analysis, factor
analysis and principal component analysis, and normality tests, were performed on the
average results obtained for petroleum hydrocarbons, lipids, amino acid, and PAHs in the
three fish species to determine the relationship between the parameters and the possible
sources of contamination or alteration in the amino acids composition.

3.6.1. Pearson and Spearman Correlation Analysis

The Pearson correlation describes both the forcefulness and the direction of the rela-
tionship that subsists between two variables measured on at least an interval scale.

A high negative correlation was found between lipids and benzo(g,h,i)perylene
(−1.00), naphthalene (−0.90), and fluorene (−0.84) (Figure 5), indicating that these com-
pounds have a high ability to accumulate in the three fish species. The results are consistent
with those obtained by Jafarabadi et al. [87] and Yu et al. [90]. The Spearman coefficients
between each pair of variables, including lipids, TPHs, and the most significant PAHs
compound, are given in Table 10. The only pair of variables with p-values below 0.05,
indicating significant non-zero correlation at the 95.0% confidence level, is the pair (lipid,
benzo(g,h,i)perylene).
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On the other hand, chrysene showed a high negative correlation with aspartic acid
(−1.0), glutamic acid (−0.98), and tyrosine (−1.0) (Figure 5). Among the three pairs of
variables, (aspartic acid, chrysene (CHY)) and (tyrosine and chrysene (CHY)) had p-values
below 0.05 (Table S1).

The information provided by the table in Figure 5, based on the correlations between
pairs of variables, including amino acids, TPHs, and PAHs, can be used to assess the
physiological condition of organisms living in polluted areas. As shown in Figure 5,
isoleucine presented a high correlation with pyrene, benzo(b)fluoranthene (BbF), and
dibenzo(a,h)anthracene (DahA) at the 95.0% confidence level. Although the pairs of vari-
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ables involving serine, threonine, alanine, and glycine showed high correlation coefficients
with some PAHs (>0.9), such as phenanthrene, chrysene, fluorene, and acenaphthene, all
p-values were higher than 0.05. To avoid these discrepancies, Sokolowski et al. [50] chose
to use the ratio of amino acids as indicators of stress.

Table 10. B[a]P equivalent concentrations for PAH compounds in three endemic fishes.

PAHs TEF
E. tauvina C. argus P. pessuliferus

ng/g ng BaPequiv/g ng/g BaPequiv/g ng/g BaPequiv/g

NAP 0.001 14.04 0.014 25.7 0.025 12.03 0.012
ACY 0.001 - - - - - -
ACE 0.001 4.05 0.004 5.2 0.005 2.86 0.003
FLU 0.001 2.1 0.002 6.7 0.007 0.33 -
PHE 0.001 1.63 0.002 2.3 0.002 0.42 -
ANT 0.01 - - - - - -
FLUE 0.001 1.2 0.001 1.64 0.002 0.75 -
PYR 0.001 2.8 0.003 3.24 0.003 1.08 0.001
BaA 0.1 - - 0.02 0.002 0.07 0.007
CHY 0.01 1.8 0.018 1.57 0.016 1.42 0.014
BbF 0.1 3.46 0.346 4.23 0.423 0.65 0.065
BkF 0.1 1.14 0.114 2.45 0.245 0.7 0.07
BaP 1 1.74 1.74 3.02 3.02 0.21 0.21
DahA 1 2.65 2.65 3.25 3.25 0.24 0.24
BPY 0.01 - - 3.45 0.0345 1.09 0.011
InP 0.1 - - - - - -
Total carcinogenic activity (TCA) 4.894 7.035 0.633
Contribution of BaA to the TCA (%) 0.000 0.028 1.106
Contribution of BbF to the TCA (%) 7.070 6.013 10.269
Contribution of BkF to the TCA (%) 2.329 3.483 11.058
Contribution of BaP to the TCA (%) 35.554 42.931 33.175
Contribution of DahA to the TCA (%) 54.148 46.201 37.915
Contribution of CHY to the TCA (%) 0.368 0.227 2.212

3.6.2. Factor Analysis

We performed factor analysis on 10 variables that may provide information about the
marine biota selected from Table S1 (Supplementary Material) to trim down the number
of variables and determine the potential relationships between them. This method is
similar to the principal components, except that the factor weights were scaled. In this
case, two weight factors were extracted with a percentage variance of 66.369% and 33.631%,
respectively, covering a cumulative percentage of 100% (Table 11).

Table 11. Factor Analysis.

Factor Number Eigenvalue Percentage of Variance Cumulative Percentage

1 6.63686 66.369 66.369
2 3.36314 33.631 100.000
3 4.39234 × 10−16 0.000 100.000
4 3.97859 × 10−16 0.000 100.000
5 2.51672 × 10−16 0.000 100.000
6 5.55669 × 10−17 0.000 100.000
7 −6.48359 × 10−17 0.000 100.000
8 −3.24332 × 10−16 0.000 100.000
9 −3.99903 × 10−16 0.000 100.000

10 −1.36544 × 10−15 0.000 100.000

Factor 1 showed a high factor score for aspartic acid, glutamic acid, tyrosine, chry-
sene (CHY), and TPHs, which can be used to infer destabilization of lysosomal mem-
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branes. Factor 2 showed a high factor score for lipid and benzo(g,h,i)perylene (BPY)
(Tables 12 and 13), which could be attributed to bioaccumulation (Figure 5).

Table 12. Factor Analysis.

Factor 1 Factor 2

Lipid −0.291525 −0.956563
TPHs 0.937449 0.348123
Benzo(g,h,i)perylene (BPY) 0.300214 0.953872
Aspartic acid 0.998268 0.0588275
Glutamic acid 0.942335 0.33467
Chrysene (CHY) −0.991533 −0.129852
Pyrene (PYR) −0.759481 0.65053
Benzo(b)fluoranthene (BbF) −0.751745 0.659454
Dibenzo(a,h)anthracene(DahA) −0.762406 0.647099
Tyrosine 0.996024 0.0890876

Table 13. Factor scores.

Specie Factor 1 Factor 2

Epinephelus tauvina −6.78724 1.18294
Cephalopholis argus 1.67075 3.50619
Plectropomus pessuliferus 5.11649 −4.68913

3.6.3. Principal Component Analysis

Principal component analysis (PCA) was applied to reduce dimensionality and se-
lect the most important parameters of fish species (Table 11). The principal components
extracted explained 66.4% and 33.6% of the total sample variance, respectively.

The first and second principal components have the following equations, respectively:

PC1 = −0.294805 ∗ Pyrene (PYR) − 0.295941 ∗ Dibenzo(a,h)anthracene (DahA) − 0.291803 ∗ Benzo(b)fluoranthene (BbF)

− 0.384881 ∗ Chrysene (CHY) − 0.11316 ∗ Lipid + 0.116533 ∗ Benzo(g,h,i)perylene (BPY) + 0.363887 ∗ TPHs

+ 0.387495 ∗ Aspartic acid + 0.365784 ∗ Glutamic acid + 0.386624 ∗ Tyrosine

(4)

PC2 = 0.354727 ∗ Pyrene (PYR) + 0.352857 ∗ Dibenzo(a,h)anthracene (DahA) + 0.359594 ∗ Benzo(b)fluoranthene (BbF)

− 0.070807 ∗ Chrysene (CHY) − 0.521604 ∗ Lipid + 0.520136 ∗ Benzo(g,h,i)perylene (BPY) + 0.189828 ∗ TPHs

+ 0.032078 ∗ Aspartic acid + 0.182492 ∗ Glutamic acid + 0.0485785 ∗ Tyrosine
(5)

Variables such as TPHs, aspartic acid, glutamic acid, and tyrosine have the highest
correlations in PC1, which accounts for about 66.4% of the total variance. On the other
hand, pyrene (PYR), dibenzo(a,h)anthracene (DahA), and benzo(b)fluoranthene (BbF) have
the highest correlations values in PC2, and represents 33.6% of the variance (Figure 5). In
Plectropomus pessuliferus, non-essential amino acids are preponderant.

They are believed to be the result of destabilization of the lysosomal membranes due
to its exposure to polycyclic aromatic hydrocarbons unlike the two other species, including
Cephalopholis argus and Epinephelus tauvina.

3.6.4. Cluster Analysis

By combining the clustering results with information from the analysis of PAHs
interacting with lipids and amino acids, we identified fish species that resulted in the
formation of these clusters.

Figure 6 shows a dendrogram (two charts). From these charts, it is possible to see that
Plectropomus pessuferus would form an independent cluster and Epinephelus tauvina and
Cephalopholus argus would form one cluster.
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Figure 6. Dendrogram showing the clusters formed by the studied fish species.

The assignments of the clusters with the parameters according to their possible pollu-
tion sources are given in Table 14.

Table 14. Sensitivity of fish species to pollution sources.

Cluster Lipids TPHs Isoleucine Aspartic Acid Glutamic Acid Tyrosine

Epinephelus tauvina 0.916667 6.13333 3.68667 7.19667 9.98667 1.73333

Cluster Chrysene (CHY) Pyrene (PYR) Benzo(g,h,i)perylene (BPY)

Cephalopholus argus 1.59667 2.37333 1.51333

Cluster Dibenzo(a,h)anthracene(DahA)

Plectromus pessuferus 2.04667

3.7. Bioconcentration Factor (BCF) and Bioaccumulation

According to Regulations (EC) N0 1272/2013 (starting 27 December 2015) (REACH)
and the Toxic Substances Control Act (TSCA), polycyclic aromatic hydrocarbons are classi-
fied as ‘bioaccumulative’ if their BCF ranges between 1000 and 5000 and ‘very bioaccumu-
lative’ if their BCF exceeds 5000 (Table 15).

Table 15. Bioconcentration factor (BCF) threshold values.

Regulatory Act Threshold Values

Regulation (EC) N0 1272/2013 (REACH) ≥2000 = bioaccumulative
≥5000 = very bioaccumulative

US EPA Toxic Substances Control Act (TSCA) ≥1000 = bioaccumulative
≥5000 = very bioaccumulative

According to the regulatory acts, phenanthrene and fluoranthene are ‘bioaccumula-
tive’ (BCF ≥ 2000) in Cephalopholus argus and Epinephelus tauvina but not in Plectropomus
pessuferus, whose BCF value is 1250. Fluoranthene is considered bioaccumulative according
to TSCA but not phenanthrene, which has a BCF value below 1000 (Table 15 and Figure 7).
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These results corroborate the cluster analysis, which showed that the two species Epinephelus
tauvina and Cephalopholus argus form a single group independent of that of Plectropomus
pessuferus. As shown in Figure 7, the BCF values for naphthalene, acenaphthene, ace-
naphthylene, and fluorene in the three species are lower than 2000, most likely because
these compounds are metabolized and excreted. Benzo(a)anthracene, benzo[a]pyrene,
benzo[b]fluoranthene, chrysene, and benzo[k]fluoranthene, with BCFs < 500, are all likely
to undergo biotransformation in the three studied species. This may explain the non-
accumulation of these compounds in these fishes.
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In accordance with the US Environmental Protection Agency’s Toxic Substances Con-
trol Act (TSCA) regulations, dibenzo(a,h)anthracene is considered bioaccumulative in
Cephalopholus argus and Epinephelus tauvina (BCF > 1000). The BCF values for benzo(g,h,i)perylene
were less than the lower values allowed by the classification (Table 15 and Figure 7) for
the two species Epinephelus tauvina and Plectromus pessuferus (BCF < 700) but higher than
1000 for Cephalopholus argus.

In risk assessment, the degree of bioaccumulation of a compound is an important
criterion. Bioaccumulation of trace organic contaminants such as PAHs is largely governed
by simple physicochemical processes, which are largely dependent on the partitioning of
contaminants between aqueous and nonaqueous phases. A correlation between an organic
contaminant’s water-soluble content and its uptake by aquatic organisms illustrates this
relationship. Generally, the BCF increases with increasing chemical hydrophobicity because
of the increased tendency of the chemical to partition into the animal’s lipids rather than
remaining dissolved in the aqueous solution [101,102]. PAHs with an increased molecular
weight tend to decrease water solubilization and increase lipophilicity [103].

As a general rule, a high log Kow (n-octanol/water partition coefficient) indicates
low water affinity and high hydrophobicity. The bioaccumulation rate is higher in com-
pounds with log Kow > 4.5. Amongst the studied PAHs, four compounds (phenanthrene,
fluoranthene, dibenzoa,h,i anthracene, and benzoacetone) had log Kow values greater
than 4.5 [104]. PAHs can reach aquatic ecosystems and aquatic organisms through the
effects of bioconcentration, bioaccumulation, and the food chain, which may endanger
human health.

4. Conclusions

In this work, we investigated whether the endemic coral fish commonly consumed by
Jeddah residents can serve as a bioindicator for petroleum hydrocarbons contamination.
According to a multivariate analysis approach, the results allowed us to demonstrate that
the concentrations of TPHs, PAHs, and metabolites were related to the species of coral
fishes. Moreover, this study suggests that Jeddah seawater could be an important source of



Water 2022, 14, 1706 19 of 23

persistent organic pollutants (POPs) bioaccumulation in endemic fish, such as pyrene (PYR),
chrysene (CHY), and benzo(g,h,i)perylene (BPY). This study showed that the distribution
percentages of compounds with three cycles and four to five cycles are in reverse order
in the species Epinephelus tauvina compared to the two other studied species. The cluster
study highlights the importance of the identification of pollutants or expressed metabolites
in the muscle of each species chosen as a bioindicator to trace pollution in the region.
Furthermore, the bioconcentration factor (BCF) estimated in the studied species was used
to validate the results obtained from the multivariate analysis of the interactions between
PAHs, lipids, amino acids, and THPs. The high sensitivity of endemic fishes to some
aromatic compounds through alterations in the amino acids composition can be used as a
pollution tracer. Based on the benzo[a]pyrene equivalent (B[a]Pequi) calculations, the total
carcinogenic activity (TCA) for total PAHs represents 29.47% (E. tauvina), 30.23%, (C. argus),
and 19.78% (P. pessuliferus) of the total PAH concentrations. BaP and DahA were the most
dominant compounds contributing to the TCA, suggesting the importance of BaP and
DahA as surrogate compounds for PAHs in endemic fishes. The incremental lifetime cancer
risk (ILCR) values for the three endemic fishes exceeded the limit (>10−5), indicating a high
potential cancer risk in the Saudi population. Therefore, Epinephelus tauvina, Cephalopholis
argus, and Plectropomus pessuferus can be adopted as bioindicators of various hydrocarbons
even at trace levels and respond to the growing demands of environmental monitoring.
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