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Abstract

:

The hydraulic conductivity of saturated soil is a crucial parameter in the study of any engineering problem concerning groundwater. Hydraulic conductivity mainly depends on particle size distribution, soil compaction, and properties that influence aggregation and water retention. Generally, finding simple and accurate analytical equations between the hydraulic conductivity of soil and the characteristics on which it depends is a very hard task. Machine learning algorithms can provide excellent tools for tackling highly nonlinear regression problems. Additionally, hybrid models resulting from the combination of multiple machine learning algorithms can further improve the accuracy of predictions. Five different models were built to predict saturated hydraulic conductivity using a dataset extracted from the Soil Water Infiltration Global database. The models were based on different predictors. Seven variants of each model were compared, replacing the implemented algorithm. Three variants were based on individual models, while four variants were based on hybrid models. The employed individual machine learning algorithms were Multilayer Perceptron, Random Forest, and Support Vector Regression. The model based on the largest number of predictors led to the most accurate predictions. In addition, across all models, hybrid variants based on all three algorithms and hybridized variants of Random Forest and Support Vector Regression proved to be the most accurate (R2 values up to 0.829). However, all variants showed a tendency to overestimate conductivity in soils where it is very low.
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1. Introduction


The hydraulic conductivity of soil in saturated or unsaturated conditions has great importance for several issues of interest in hydrology and hydraulics but has also a paramount role in different geotechnical and geo-environmental problems. It affects various processes that contribute to the phases of the hydrological cycle: infiltration, runoff, groundwater seepage, etc. [1,2]. Its quantification is essential for addressing design problems connected with the withdrawal of groundwater resources and with consequences on the natural and anthropic environment [3]. Water conductivity rules the consolidation process and thus its determination is fundamental to quantify the time evolution of settlements after construction of structures and infrastructures [4]. Seepage induced below water retaining structures (dams, weirs, levees) and leakage from contaminated sites are other non-secondary applications that depend significantly on soil conductivity. The effectiveness of permeation grouting as a ground improvement technique relies on the permeability of the treated soil to the injected fluid.



In saturated conditions, groundwater seepage is well described by Darcy’s law, which is valid for laminar flow regime, i.e., with relatively small gradients through fine-grained or granular sediments having a relatively small dimension of pores. In these cases, hydraulic conductivity is characterised by the permeability coefficient Ksat, which is one of the most widely variable characteristics in nature, being able to assume values ranging from 10−11 cm/s to 102 cm/s [5]. Ksat quantifies the ease of water when seeping through a porous medium under certain hydraulic gradients, and its values mainly depend on size, distribution, and interconnection between the soil pores. These characteristics depend primarily on the soil grading, but also on shape of particles, compaction level and on other factors that affect aggregation and water retention [6]. The latter include the organic matter content, which affects soil aggregation and aggregate stability. The influence of different soil characteristics on hydraulic conductivity has been investigated in several past studies (e.g., [7,8,9,10,11,12,13,14]).



Hydraulic conductivity in saturated zones can be determined, directly or indirectly, by a variety of methods that include empirical formulas, laboratory tests under steady or transient conditions on representative samples, tracer tests, auger hole tests, and pumping tests in wells [15]. A comprehensive review of predictive methods for saturated soils was provided by [16]. However, due to the complexity of the phenomenon at the particle scale, it is difficult to build analytical relationships, between the hydraulic conductivity of a given soil and all the ruling characteristics, which are simultaneously simple, robust, and accurate.



Procedures deriving from Artificial Intelligence studies have proved to be excellent tools for identifying highly nonlinear relationships between natural quantities in many areas [17,18]. Machine Learning algorithms have made it possible to develop highly accurate forecasting models in earth sciences applications [19,20,21,22,23,24,25,26,27,28]. In recent years these algorithms have been widely used to deal with problems of a quantitative and qualitative nature related to groundwater [29,30,31] as well as to model infiltration phenomena [32,33].



As regards the prediction of Ksat by means of Machine Learning algorithms, in recent years some papers of great value and merit have been published. Jorda et al. [34] investigated the key factors that affect saturated and near-saturated hydraulic conductivities in undisturbed soils with a database of tension infiltrometer measurements using boosted regression trees. The authors’ model predicted the hydraulic conductivity at a tension of 10 cm (K10) and the saturated hydraulic conductivity (Ksat) with low values of coefficient of determination. Araya & Ghezzehei [35] compared the results of four well-known machine learning algorithms and different input scenarios. The 10th percentile particle diameter turned out to be the most influential predictor followed by clay content, bulk density, and organic carbon content. The authors also evaluated the effects of structural perturbations on Ksat. Kotlar et al. [36] used parametric and non-parametric machine learning techniques to estimate saturated (Ks) and near-saturated (K10) hydraulic conductivities from easily quantifiable soil properties including soil fabric, organic matter, bulk density, and water content. The applied non-parametric supervised machine learning methods, namely Gaussian process regression, support vector machine, and an ensemble method, showed a significantly improved accuracy compared to the parametric methods when used, namely the stepwise linear model and Lasso regression.



Sihag et al. [37] focused on unsaturated hydraulic conductivity and developed prediction models based on the M5 tree model and Random Forest. In addition, a multivariate nonlinear regression relationship was obtained. In the study by Sihag et al., the Random Forest-based model outperformed both the M5-based model and the multivariate nonlinear regression relationship.



The goal of this study is to assess the effectiveness of some hybrid algorithms and demonstrate that they can outperform some of the more commonly used individual machine learning algorithms, enabling more accurate and reliable Ksat forecasting models to be developed. To the best of the authors’ knowledge, there is no such study in the technical literature. The Multilayer Perceptron, Random Forest, and Support Vector Regression algorithms were considered as basic algorithms to be hybridized and subsequently compared to the obtained hybrid models. These algorithms have been chosen because they have already proved reliable in solving the problem under study and because they have significantly different characteristics, which makes them suitable for a hybridization approach, as better specified below. Five different combinations of input variables were considered, in order to highlight which predictor has the greatest influence on the performance of the prediction models.




2. Methodology


2.1. Base Models


2.1.1. Multilayer Perceptron


A Multilayer Perceptron (MLP) is a simple feedforward Artificial Neural Network [38]. An MLP (Figure 1) includes three types of layers: an input layer, one or more hidden layers, and an output layer. The input layer comprises a set of nodes corresponding to the input features. Each neuron in the hidden layers processes the values of the previous layer with a weighted linear summation, followed by a non-linear activation function. The output layer obtains the values from the last hidden layer and provides the output values. The neurons in the MLP are trained with the supervised technique called back propagation learning algorithm. Based on a set of features and a target, MLP can train a non-linear function to execute regression operations.



In this research, the optimal structures of the neural networks had only one hidden layer, whose number of neurons was equal to (number of input variables + 1)/2. Sigmoid was chosen as activation function. The adopted learning rate was 0.3, while the selected momentum rate for the backpropagation algorithm was 0.2. A preliminary sensitivity analysis has shown that the model is not very sensitive to parameter variations.




2.1.2. Random Forest


A Random Forest (Figure 2) is an ensemble model consisting of many uncorrelated, simple regression trees [39]. Regression Trees derive from decision trees adapted to become forecasting models [40]. The internal nodes progressively define conditions in the input variables, while leaves represent the target variables. Developing a regression tree model is a process that involves recursively splitting the input domain data into subdomains. A multivariable linear regression model is used to achieve predictions in each subdomain.



The tree growth is an iterative procedure, which progresses by splitting each subset into smaller branches, assessing all the possible splits on every field, and determining at each step the subdivision into two separate partitions that leads to the minimum squared deviation:


  R ( t ) =  1  N ( t )     ∑  i ∈ t      (  y i  −  y m  ( t ) )  2     



(1)




where N(t) is the sample size in the node t, yi is the value of the target variable in the i-th unit, while ym is the average value of the target variable in the node t. R(t) represents a measure of the “impurity” at each node. The algorithm stops when a halt condition occurs. Reaching the lowest level of impurity is the most commonly used stopping rule.



The risk of overfitting is reduced by means of a pruning process, that decreases the size of the tree model by removing the splits that do not significantly improve the forecasting ability.



Based on a training dataset, each tree of the forest is built from a different bootstrap sample of the data. Furthermore, in Random Forests the growth process of a single tree is different, since each node is assigned not by referring to the best subdivision among all the input variables but by randomly choosing only a part of the variables to subdivide. The number of these variables does not change during the expansion of the forest. Each tree grows as much as possible, bound only by the assigned number of elements for each leaf, without pruning. The random forests used in this research were made of 600 trees.




2.1.3. Support Vector Regression


The idea behind the Support Vector Regression (SVR) algorithm is to identify a function f(x) with a maximum ε deviation from the experimental target values yi, and as flat as possible (Figure 3). Starting from a training dataset {(x1, y1), (x2, y2), …, (xl, yl)} ⊂ X × R, where X is the space of the input arrays (e.g., X ∈ Rn), and a linear function:


  f ( x ) = 〈 w , x 〉 + b  



(2)




where ∈ X and b ∈ R, the Euclidean norm ||w||2 needs to be minimized. This involves the solution of a constrained convex optimization problem.



In many cases it is necessary to accept a not very small error, thus slack variables ξι, ξι* need to be introduced in the constraints. Consequently, the optimization problem can be presented as follows:


  minimize          1 2     w   2  + C   ∑  i = 1  l      ξ i  +  ξ i *       



(3)






  subject   to              y i  − 〈 w ,  x i  〉 − b ≤ ε +  ξ i        〈 w ,  x i  〉 + b −  y i  ≤ ε +  ξ i *       



(4)




where the flatness of the function and the accepted deviations depend on the constant C > 0.



In order to make the SVR algorithm on linear, the training instances xi are pre-processed by a function Φ: X→F, where F is some feature space. Since SVR only depends on the dot products between the different instances, a kernel   k (  x i  ,  x j  ) =   Φ (  x i  ) , Φ (  x j  )     is used rather than explicitly employing the function Φ(∙).



In this study, the Pearson VII universal function kernel (PUFK) has been chosen:


  k (  x i  ,  x j  ) =  1      1 +       2        x i  −  x j     2     2  ( 1 / ω )   − 1       / σ    2     ω     



(5)




where the parameters σ and ω affect the half-width and the tailing factor of the peak. The optimal results have been obtained for σ = 0.5, ω = 0.5. Based on preliminary analyzes, it was found that the PUK function led to more accurate predictions than possible alternatives such as Radial Basis Function, Polynomial, or Sigmoid.





2.2. Hybrid Models and Evaluation Metrics


Based on the predictions obtained with the different algorithms, it is possible to develop hybrid models by combining conceptually different machine learning regressors to improve the modelling performances. A framework for the different rules for the combination of classifiers was given by Kittler et al. [41].



In this research the different regressors were combined using the average probabilities approach to obtain the final prediction. This approach, also known as soft voting, can be useful for a set of similarly performing models in order to balance out their individual weaknesses.



Individual models were optimized using a random search procedure. The values of the parameters adopted in the individual algorithms, i.e., MLP, Random Forest and SVM, within the hybrid model, were the same as reported in the previous sections.



Four different metrics were used to assess the effectiveness of the prediction models: the Coefficient of Determination R2, the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), and the Relative Absolute Error (RAE).



R2 indicates the proportional amount of variation in the response variable explained by the independent variables. It assesses how the model fits observed results and how well it forecasts future outcomes, providing very good assessment of the model accuracy.



MAE evaluates the average magnitude of the errors in a set of predictions, without considering their direction.



RMSE is the sample standard deviation of the residuals. It measures the data concentration around the best-fit line.



RAE evaluates a normalized total absolute error. These performance metrics are defined as follows:


   R 2  =   1 −     ∑  i = 1  m         log   10   (  f i  ) −   log   10   (  y i  )    2        ∑  i = 1  m         log   10   (  y a  ) −   log   10   (  y i  )    2         



(6)






  MAE =     ∑  i = 1  m       log   10   (  f i  ) −   log   10   (  y i  )      m   



(7)






  RMSE =       ∑  i = 1  m         log   10   (  f i  ) −   log   10   (  y i  )    2     m     



(8)






  RAE =     ∑  i = 1  m       log   10   (  f i  ) −   log   10   (  y i  )         ∑  i = 1  m       log   10   (  y a  ) −   log   10   (  y i  )        



(9)




where m is the total number of observed data, fi is the predicted value for data point i, yi is the measured value for data point i, and ya is the averaged value of the observed data. The use of the four metrics defined above allows full characterization of the accuracy of the forecast models developed, as they measure the goodness of fit, absolute, and relative errors.




2.3. Training Dataset


The data used for the modelling were extracted from the Soil Water Infiltration Global (SWIG) database [42], a global database of soil infiltration measurements that also provides some Ksat values. SWIG database includes data from 54 different countries, with major contributions from China, Iran, and the USA, collected from 1976 to 2017. Records were extracted from the dataset considering only the cases that included all the variables of interest for this study. Here the fraction of Clay, Silt and Sand, the mean and standard deviation of soil particle diameter, the soil organic carbon content, the soil bulk density, and the saturated soil water content have been considered, insofar as a large part of data was discarded from the entire dataset. A complete statistical description of the assumed dataset, divided by texture classes, is reported in Table 1 and Table 2. The two tables are separated only for layout reasons. For each texture and for each characteristic of interest, the tables show the minimum, maximum and median values, the first and third quartile, mean, standard deviation, and skewness of the distribution. In the tables, data are grouped considering the main soil component.



The characterization of the training dataset is completed by Figure 4 and Figure 5. Figure 4 shows the training dataset composition with reference to soil texture. It can be noted that sandy loams represent by far the most prevalent type of soil, constituting almost 50% of the soils included in the dataset. Figure 5 shows hydraulic conductivity box plots for the different types of soil. It can be noted that all types have a rather limited variability of conductivity, except for sandy loams. Moreover, few data records are characterized by the conductivity range 10−3 < Ksat < 10−2 cm/h. These fall almost exclusively into the sandy clay loams.





3. Results


Based on different combinations of input variables, five models were built for the prediction of Ksat. Seven variants of each model were developed, changing the implemented machine learning algorithm. Model M1 is characterized by the following input variables: the Clay percentage, the Silt percentage, the Sand percentage, the geometric mean diameter dg (mm), the standard deviation of soil particle diameter Sg, the soil organic carbon content OC (%), the soil bulk density Db (g/cm3), and the saturated soil water content WCs (g/g).



Model M2 needs the following input variables: dg, Sg, OC, Db, and WCs. Model M3 requires as input the following quantities: dg, Sg, Db, and WCs. The M4 model is based on dg, Sg, OC, and Db. Finally, the simplest model, M5, requires only dg, Sg, and Db as input variables.



Each model was built through a k-fold cross validation procedure [43], using a set of 640 vectors. In k-fold cross validation, the initial dataset is randomly partitioned into k subsets. Then, k − 1 subsets are employed as training data while the remaining single subset is used as the validation data. The cross-validation process is repeated k times: every subset is used once as the validation dataset. Finally, the k results from the folds are averaged to provide a single outcome. In this study k = 20 led to optimal results. In order to improve the performance of model training, the input data underwent a normalization process (min-max feature scaling), to bring all values into the range [0, 1].



Table 3 and Figure 6 show a general summary of the results, in terms of the evaluation metrics.



Model M1 showed the best predictive capabilities. The hybrid models Hyb_MLP-RF-SVR (R2 = 0.829, MAE = 0.582 log10 (cm/h), RMSE = 0.802 log10 (cm/h), RAE = 57.19%) and Hyb_RF-SVR (R2 = 0.826, MAE = 0.562 log10 (cm/h), RMSE = 0.796 log10 (cm/h), RAE = 55.16%) led to the best outcomes. The two hybrid models Hyb_MLP-RF and Hyb_MLP-SVR showed forecasting capabilities comparable to those of the two models based on RF and VR. The MLP-based model was by far the least accurate (R2 = 0.632, MAE = 0.821 log10 (cm/h), RMSE = 1.079 log10 (cm/h), RAE = 80.63%).



Model M2 underperformed M1 in all its variants. In this case, Hyb_RF-SVR clearly outperformed the other variants. The Hyb_MLP-RF-SVR variant was more accurate than the other two hybrid variants, Hyb_MLP-SVR and Hyb_MLP-RF, while these in turn outperformed RF, SVR, and MLP.



The M3 model showed a further reduction in prediction accuracy, in all variants. The Hyb_RF-SVR variant again proved to be the best performing model (R2 = 0.759, MAE = 0.622 log10 (cm/h), RMSE = 0.910 log10 (cm/h), RAE = 61.04%). The hybrid models once again proved more accurate than the basic models, except for the Hyb_MLP-RF model (R2 = 0.687, MAE = 0.749 log10 (cm/h), RMSE = 1.026 log10 (cm/h), RAE = 73.65%), whose results were barely less accurate than the results provided by RF.



The accuracy of the M4 model was unsatisfactory. The Hyb_RF-SVR variant also, in this case, led to the best predictions, but the superiority of the hybrid models was not as clear as in the case of the M1 and M2 models; indeed, RF outperformed both Hyb_MLP-RF and Hyb_MLP-SVR.



The M5 model led to somewhat poor results. Even the most accurate of the variants, again represented by Hyb_RF-SVR, was characterized by unsatisfactory values of the efficiency metrics (R2 = 0.595, MAE = 0.848 log10 (cm/h), RMSE = 1.164 log10 (cm/h), RAE = 83.37%).



Figure 7, which reports the predicted values versus the observed values for the M1 model, shows that all variants have had better accuracy in the range 100 < Ksat <102 cm/h. Likewise, all variants showed a tendency to overestimate Ksat in the range 10−3 < Ksat < 10−2 cm/h. The reason for this unsatisfactory result lies both in the more limited number of training data falling within this interval, and in the greater heterogeneity of the same as regards the values of the predictors. This trend also characterized the other models with worse performances. The diagrams have not been reported for the sake of brevity.



From the graphs of Figure 8, which show the box plots of the absolute errors = predicted values—actual values, the following can be deduced:




	-

	
All variants of the M1 and M2 models have a negligible bias. A more appreciable, albeit slight bias is observed in the SVR and MLP based variants of the M4 and M5 models.




	-

	
The Hyb_MLP-RF-SVR and Hyb_RF-SVR variants are characterized by the lowest variance of the absolute error within all the considered models, in particular within the M1 and M2 models.




	-

	
Model M1 shows the lowest number of outliers.




	-

	
The distribution of the error in all variants of the M3, M4, and especially M5 models, is clearly asymmetrical.









These results help to better understand the above in terms of metrics analysis.



In order to further highlight the effectiveness of the approach based on machine learning algorithms, a comparison with a classic formulation for the estimation of Ksat is proposed below. The prediction with theoretical, empirical or semi-empirical equations that relate the saturated conductivity coefficient of porous materials to physical properties of the seeping fluid and soil assembly is a classical goal of research. Starting from the Hagen–Poiseuille equation that describes the flow of a fluid in capillary pipes, the Kozeny–Carman equation [7,44] is among the first written equations:


   K  s a t   =    ρ w  g    μ w       n 3    C  S o 2    ( 1 − n )  2     



(10)




where ρw and μw are respectively the density and viscosity of water (set equal to ρw = 1000 kg/m3; μw = 0.001 Pa*s)), g is gravity, n is the soil porosity, and So is the surface of soil particles per unit volume. Alternatively, the equation can be expressed as:


   K  s a t   =    ρ w  g    μ w     e  C   ( 1 − e )  2     D g 2   



(11)




where e is the void ratio (=n/(1 − n)), Dg is geometric mean particle size, obtained by subdividing the grain size distribution into l classes and computing:


   D g  = exp     ∑ 1 l    f i  ⋅ ln (  d i  )      



(12)




where fi and di are respectively the fraction of contained material and the representative diameter of each class. The coefficient C (equal generally to 180) can be particularized including a dependency on the particle shapes expressed by a sphericity factor. Carman [8] and other researchers showed that this equation is quite effective in estimating permeability for coarse-grained soils.



On the other hand, experimental evidence does not confirm the validity of this relationship for clay soils. Taylor [45] ascribed this difference to the reduction in the effective pore space available for the free flow of fluid due to the film of water attached to the surfaces of clay particles. Olsen [46] considered the difference between water conductivity measured in saturated clay and the values predicted with the Kozeny-Carman relation to the heterogenous pore size distribution of clay materials. Chapuis and Aubertin [47] adopted the Specific Surface Area to predict the vertical permeability coefficient of a homogeneous soil. Ren et al. [48] introduced the concept of effective void ratio subdividing the total volume of voids into two parts, one effective ee occupied by flowing water, the other ineffective ei occupied by immobile water, i.e., attached to the soil particles of located closed pores. These authors proposed the following relation between effective and total void ratio:


   e e  = e      e  1 + e      m   



(13)




where m is a non-negative constant ranging between 0 and 2 (m = 0.05 ± 0.05 for sandy soil, m = 1 ± 0.2 for silty soil, m = 1.5 ± 0.5 for clay).



In the present work, the permeability coefficient has been computed with the following formula extracted from Hong et al. (2020):


   K  s a t   =  1 C     ρ w  g    μ w     1   S o 2   ρ s 2       e e 2      ( 1 +  e i  )    2 / 3       



(14)







Considering the available database, ρs has been fixed as equal to 2650 kg/m3, the effective void ratio ee has been computed with Equation (13), setting the exponent m equal to 1.5, i.e., considering the relevant presence in each dataset of silt and clay components; the ineffective void ratio has been computed as ei = e − ee. The specific surface So has been evaluated as function of the clay fraction, adopting the mean curve among the data collected by Hong et al. [49].



The comparison between the results obtained with the M1 model, Hyb_MLP-RF-SVR variant, and those obtained with the Kozeny-Carman formulation is shown in Figure 9. For the predictions obtained with the Kozeny-Carman equation, the following values of the metrics considered above were found: R2 = 0.187, MAE = 3.52 log10 (cm/h), RMSE = 6.23 log10 (cm/h), RAE = 346%). It is quite evident that an approach based on machine learning algorithms is significantly more effective than a classic approach based on formulations deriving from the studies of Kozeny, Carman, and subsequently. The better performance justifies the greater complexity of the forecasting tool.




4. Discussion


The combination of the different predictors is of considerable importance to the accuracy of Ksat estimate based on the physical characteristics of soil. It is essential that the number of input variables is sufficiently representative of the soil characteristics. The detailed knowledge of the soil grain size distribution, and particularly of the fractions of clay, silt, and sand, together with the mean and standard deviation of soil particle diameter, is a fundamental starting point for a Ksat prediction with machine learning algorithms. However, some preliminary analyses have shown that the parameters obtainable from the grain size distribution curve alone do not enable a sufficiently accurate model, therefore the relative results have not been shown here. Knowledge of additional parameters such as the soil organic content, bulk density, and the saturated soil water content is essential to improve the accuracy of predicting models. Similarly, models based only on global geometric parameters such as dg, Sg, and Db fail to provide acceptable results.



Hybrid models have appreciably outperformed individual base models in predicting Ksat in the more complex cases of models characterized by a greater number of predictors (e.g., M1 and M2). This result agrees with those obtained by other scholars in the context of relevant scientific contributions on other topics. Pham and Prakash [50] proposed a novel use of bagging-based naïve Bayes trees for the assessment of landslide susceptibility. The developed hybrid model was compared to individual models including Rotation forest-based Naïve Bayes Trees, Naïve Bayes Trees, and SVM. The hybrid method proved to be the most accurate model for the assessment of landslide vulnerability, increasing the accuracy of the standalone models. Wu et al. [51] proposed a hybrid model to forecast electricity load in five states of Australia. The developed model included an advanced integration of Extreme Learning Machine, ensemble empirical mode decomposition, and grasshopper optimization algorithm. The hybrid model was compared to some base models in terms of RMSE, MAE and Mean Absolute Percentage Error (MAPE), showing a higher performance and accuracy. Bui et al. [52] used four individual (random forest, M5P, random tree, and reduced error pruning tree) and 12 hybrid ML algorithms to predict water quality indices in a humid catchment of northern Iran. The results of the hybrid models, compared to the individual algorithms, showed that they had improved prediction accuracies, but may not be as successful in all cases.



The above-mentioned literature shows that hybrid methods are becoming more and more popular due capability in improving prediction performance. Hybrid machine learning leads to the best performance when the underlying models are not correlated. For instance, it is possible to train different models such as regression trees, neural network, and support vector machines on different datasets or features. The less correlated the base models are, the better the forecasting performance. The idea behind using uncorrelated models is that each could address a weakness in the other. They also have different strengths which, when combined, will result in a good performing estimator.



Despite the much smaller size of the training dataset, and the smaller number of considered predictors, the predictive ability of the hybrid models developed in this study is close to that of the best models developed by Araya and Ghezzehei [35]. A further comparison with Jorda et al. [34] and Kotlar et al. [36] supports even further the need to train the models with large and varied datasets; otherwise, accuracy of prediction may become unsatisfactory. This aspect might be seen as a main weakness of this study: a too broad classification of the soil types, mostly for those characterized by a very low conductivity, had a significant negative impact on the overall performance of the model. Additionally, the insufficient size of the training dataset for some soil categories might play a negative role too, as well as the predominant presence of data relating to sandy loam samples in the initial dataset. Another factor that negatively affects the performance of prediction is the heterogeneity of the training dataset. Permeability coefficients have been obtained under very different experimental conditions, generally aimed at evaluating the infiltration rate. This variety introduces a considerable noise into the estimate of Ksat as shown by the large variability of results within each soil category. However, the above factors, out of control in the present analysis, negatively impact on the training and performance of any predictive model. In the authors’ opinion, the interpretation of dependencies inherent in the proposed model might serve also to create new databases with a more coherent categorization of soil types, and to the more appropriate definition of relevant variables. In addition, the availability in the future of a dataset as homogeneous as possible as regards the Ksat estimation method represents a necessary condition for obtaining significant improvements in the forecasting capabilities of models based on Machine Learning algorithms.



Future developments of this research will be aimed at further improving the accuracy of forecasting models, especially for soils characterized by low hydraulic conductivity, considering larger and more varied training datasets, a greater number of predictors and hybridizing different basic algorithms. In addition, it could be useful to develop different predictive models for coarse-grained and fine-grained soils, given the considerable differences in the seepage processes observed in them.




5. Conclusions


An accurate prediction of the hydraulic conductivity of a saturated soil is essential to address groundwater issues. If reliable data are available, machine learning algorithms are powerful tools to obtain good predictions. In addition, hybrid models resulting from the combination of multiple machine learning algorithms can further improve the performance of individual models.



In this study, five different models were developed to predict saturated hydraulic conductivity starting from a dataset extracted from the Soil Water Infiltration Global database. The models differed in the input variables. Seven variants of each model were compared, changing the employed algorithm. Three variants were based on individual models, while four variants were based on hybrid models. The selected individual machine learning algorithms were Multilayer Perceptron, Random Forest, and Support Vector Regression.



Model M1, which requires as input variables the clay percentage, the silt percentage, the sand percentage, the geometric mean diameter, the standard deviation of soil particle diameter, the soil organic carbon content, the soil bulk density, and the saturated soil water content, led to the most accurate results. The M4 and M5 models, based on a limited number of soil characteristics, gave unsatisfactory results.



Across all models, hybrid variants based on all three algorithms and hybridized variants of Random Forest and Support Vector Regression provided the most accurate predictions. However, all variants showed a tendency to overestimate Ksat in the range 10−3 < Ksat < 10−2 cm/h, due to the reduced number of training data falling within this interval, and in the high heterogeneity of the same data as concerns the values of the predictors.



A comparison with the classic Kozeny-Carman formulation further demonstrated the convenience of an approach based on machine learning algorithms, given the significantly higher performance.
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Figure 1. Typical structure of a Multilayer Perceptron. 
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Figure 2. Typical architecture of the Random Forest algorithm. 
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Figure 3. Example of Support Vector Regression. Errors can be neglected if they are less than ε, while larger deviations are penalized. 
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Figure 4. Training dataset composition with reference to soil texture. 
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Figure 5. Hydraulic conductivity box plots for the different types of soil. 
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Figure 6. Radar charts of the error metrics (left column) and histograms of the coefficients of determination (right column). 
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Figure 7. Hydraulic conductivities predicted versus observed for the different variants of the M1 model. 
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Figure 8. Box plots of the absolute errors in all models and variants. 
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Figure 9. Comparison between the results obtained with the M1 model, Hyb_MLP-RF-SVR variant, and those obtained with the Kozeny-Carman formulation. 
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Table 1. Characteristics of the training dataset (1/2).
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Clay

	
Silt

	
Sand

	
dg

	
Sg

	
OC

	
Db

	
WC_s

	
Log(Ksat)




	

	

	
[%]

	
[%]

	
[%]

	
[mm]

	

	
[%]

	
[g/cm3]

	
[cm3/cm3]

	
Log [cm/hr]






	
Clay

	
Minimum value

	
40.40

	
9.0

	
4.60

	
0.002

	
6.147

	
0.650

	
0.461

	
0.217

	
0.014




	
1st Quartile

	
48.500

	
35.0

	
9.525

	
0.005

	
9.339

	
3.413

	
0.754

	
0.326

	
0.423




	
Median

	
51.000

	
37.3

	
11.7

	
0.007

	
10.383

	
4.350

	
0.977

	
0.397

	
0.777




	
3rd Quartile

	
55.800

	
38.8

	
15.375

	
0.009

	
11.914

	
6.230

	
1.101

	
0.481

	
0.892




	
Maximum value

	
80.000

	
39.8

	
36.0

	
0.024

	
21.520

	
11.572

	
1.468

	
0.590

	
1.174




	
Mean

	
53.557

	
33.661

	
12.777

	
0.008

	
10.846

	
5.212

	
0.963

	
0.402

	
0.668




	
Standard Deviation

	
9.071

	
8.818

	
6.660

	
0.004

	
3.114

	
2.661

	
0.242

	
0.102

	
0.322




	
Skewness

	
1.359

	
−1.812

	
1.656

	
2.028

	
1.603

	
1.044

	
0.127

	
0.178

	
−0.887




	
Silty Clay

	
Minimum value

	
44.900

	
40.5

	
1.0

	
0.005

	
5.490

	
2.230

	
0.687

	
0.232

	
−0.095




	
1st Quartile

	
45.200

	
43.5

	
8.525

	
0.008

	
8.545

	
2.230

	
0.861

	
0.286

	
0.197




	
Median

	
45.400

	
43.5

	
10.0

	
0.009

	
9.206

	
4.630

	
0.973

	
0.348

	
0.777




	
3rd Quartile

	
45.550

	
46.2

	
11.1

	
0.009

	
9.716

	
4.910

	
1.283

	
0.408

	
1.457




	
Maximum value

	
55.800

	
46.4

	
13.5

	
0.010

	
10.849

	
8.680

	
1.580

	
0.471

	
2.718




	
Mean

	
46.922

	
43.883

	
9.194

	
0.008

	
8.905

	
4.240

	
1.064

	
0.348

	
0.956




	
Standard Deviation

	
3.833

	
2.130

	
3.357

	
0.002

	
1.424

	
2.053

	
0.268

	
0.074

	
0.859




	
Skewness

	
1.976

	
−0.329

	
−1.180

	
−1.618

	
−1.016

	
0.927

	
0.348

	
−0.073

	
0.638




	
Silty Clay Loam

	
Minimum value

	
27.404

	
42.969

	
3.872

	
0.008

	
6.339

	
0.690

	
0.758

	
0.015

	
0.626




	
1st Quartile

	
29.319

	
47.2

	
13.39

	
0.012

	
9.032

	
1.600

	
1.062

	
0.161

	
0.946




	
Median

	
35.400

	
49.0

	
15.09

	
0.015

	
10.017

	
2.371

	
1.202

	
0.393

	
1.172




	
3rd Quartile

	
38.100

	
55.723

	
17.145

	
0.018

	
10.730

	
4.110

	
1.310

	
0.485

	
1.502




	
Maximum value

	
39.651

	
63.734

	
19.70

	
0.020

	
12.421

	
6.780

	
1.476

	
0.549

	
2.787




	
Mean

	
34.068

	
51.633

	
14.300

	
0.015

	
9.786

	
2.786

	
1.184

	
0.319

	
1.349




	
Standard Deviation

	
4.398

	
6.164

	
4.446

	
0.003

	
1.800

	
1.590

	
0.190

	
0.187

	
0.592




	
Skewness

	
−0.387

	
0.326

	
−1.147

	
0.065

	
−0.623

	
0.763

	
−0.353

	
−0.421

	
1.199




	
Clay Loam

	
Minimum value

	
27.003

	
21.926

	
20.70

	
0.016

	
11.302

	
0.577

	
0.617

	
0.030

	
0.134




	
1st Quartile

	
29.000

	
39.575

	
23.0

	
0.019

	
13.122

	
2.165

	
0.982

	
0.356

	
0.572




	
Median

	
30.600

	
40.5

	
25.95

	
0.024

	
13.728

	
3.045

	
1.173

	
0.433

	
0.759




	
3rd Quartile

	
34.830

	
44.029

	
30.800

	
0.031

	
14.638

	
3.570

	
1.406

	
0.538

	
0.969




	
Maximum value

	
38.300

	
50.647

	
43.403

	
0.050

	
21.252

	
5.200

	
1.531

	
0.648

	
1.265




	
Mean

	
31.971

	
40.888

	
27.141

	
0.026

	
14.110

	
2.938

	
1.190

	
0.433

	
0.726




	
Standard Deviation

	
3.347

	
5.747

	
6.139

	
0.008

	
1.980

	
1.198

	
0.232

	
0.135

	
0.344




	
Skewness

	
0.308

	
−1.097

	
1.309

	
1.442

	
1.477

	
−0.094

	
−0.452

	
−0.832

	
−0.318




	
Sandy Clay Loam

	
Minimum value

	
20.000

	
10.555

	
45.379

	
0.055

	
15.840

	
0.293

	
1.031

	
0.336

	
−2.870




	
1st Quartile

	
20.969

	
18.671

	
51.945

	
0.076

	
16.435

	
0.741

	
1.341

	
0.449

	
−2.588




	
Median

	
22.758

	
21.910

	
53.375

	
0.092

	
17.368

	
1.389

	
1.399

	
0.467

	
−2.448




	
3rd Quartile

	
27.076

	
25.784

	
56.926

	
0.103

	
19.436

	
6.506

	
1.449

	
0.496

	
−2.125




	
Maximum value

	
32.275

	
27.318

	
68.335

	
0.161

	
22.447

	
9.614

	
1.570

	
0.577

	
0.915




	
Mean

	
24.057

	
21.917

	
54.026

	
0.089

	
18.027

	
3.333

	
1.380

	
0.469

	
−2.046




	
Standard Deviation

	
3.968

	
4.153

	
4.422

	
0.023

	
1.970

	
3.358

	
0.113

	
0.050

	
0.969




	
Skewness

	
0.915

	
−0.631

	
0.875

	
0.767

	
0.934

	
0.813

	
−1.091

	
−0.247

	
1.917
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Table 2. Characteristics of the training dataset (2/2).






Table 2. Characteristics of the training dataset (2/2).





	

	

	
Clay

	
Silt

	
Sand

	
dg

	
Sg

	
OC

	
Db

	
WC_s

	
Log(Ksat)




	

	

	
[%]

	
[%]

	
[%]

	
[mm]

	

	
[%]

	
[g/cm3]

	
[cm3/cm3]

	
Log [cm/hr]






	
Loam

	
Minimum value

	
8.870

	
28.993

	
26.81

	
0.030

	
9.990

	
0.098

	
0.875

	
0.006

	
−1.699




	
1st Quartile

	
15.603

	
35.765

	
35.440

	
0.050

	
11.906

	
1.015

	
1.304

	
0.282

	
0.156




	
Median

	
18.631

	
41.008

	
41.985

	
0.065

	
12.505

	
1.658

	
1.370

	
0.461

	
0.585




	
3rd Quartile

	
22.502

	
45.496

	
45.563

	
0.086

	
14.077

	
2.521

	
1.448

	
0.509

	
0.916




	
Maximum value

	
25.535

	
49.488

	
51.959

	
0.123

	
17.176

	
5.968

	
1.653

	
0.679

	
1.687




	
Mean

	
18.637

	
40.497

	
40.866

	
0.067

	
13.087

	
1.902

	
1.361

	
0.389

	
0.521




	
Standard Deviation

	
4.137

	
5.913

	
6.601

	
0.021

	
1.651

	
1.181

	
0.164

	
0.189

	
0.482




	
Skewness

	
−0.042

	
−0.353

	
−0.264

	
0.286

	
0.646

	
1.013

	
−0.979

	
−0.963

	
−1.055




	
Silty Loam

	
Minimum value

	
2.029

	
50.011

	
2.30

	
0.017

	
3.862

	
1.020

	
0.342

	
0.012

	
0.057




	
1st Quartile

	
18.176

	
52.020

	
21.915

	
0.026

	
9.334

	
1.923

	
1.289

	
0.250

	
0.681




	
Median

	
21.504

	
53.940

	
24.840

	
0.032

	
10.379

	
2.190

	
1.414

	
0.372

	
0.891




	
3rd Quartile

	
22.732

	
57.445

	
27.650

	
0.040

	
10.985

	
2.497

	
1.487

	
0.479

	
1.086




	
Maximum value

	
26.786

	
81.600

	
34.320

	
0.074

	
11.610

	
87.900

	
1.658

	
0.871

	
2.153




	
Mean

	
19.762

	
56.092

	
24.146

	
0.035

	
9.846

	
8.286

	
1.334

	
0.352

	
0.930




	
Standard Deviation

	
5.828

	
6.572

	
6.001

	
0.013

	
1.752

	
22.353

	
0.314

	
0.223

	
0.432




	
Skewness

	
−1.926

	
2.102

	
−1.183

	
1.278

	
−1.822

	
3.450

	
−2.314

	
0.511

	
0.631




	
Sandy Loam

	
Minimum value

	
3.094

	
6.984

	
52.20

	
0.095

	
6.874

	
0.195

	
0.472

	
0.032

	
−3.481




	
1st Quartile

	
10.30

	
18.006

	
59.76

	
0.146

	
10.555

	
0.752

	
1.213

	
0.378

	
−0.275




	
Median

	
11.667

	
21.900

	
66.90

	
0.207

	
11.206

	
1.293

	
1.360

	
0.476

	
0.564




	
3rd Quartile

	
15.271

	
25.856

	
69.60

	
0.240

	
13.397

	
3.490

	
1.503

	
0.528

	
1.637




	
Maximum value

	
19.954

	
38.397

	
79.537

	
0.349

	
16.195

	
9.897

	
1.852

	
0.740

	
3.478




	
Mean

	
12.526

	
22.225

	
65.249

	
0.200

	
11.852

	
2.383

	
1.314

	
0.460

	
0.375




	
Standard Deviation

	
3.367

	
5.696

	
6.915

	
0.064

	
1.968

	
2.252

	
0.263

	
0.101

	
1.712




	
Skewness

	
0.298

	
0.055

	
−0.074

	
0.344

	
0.264

	
1.503

	
−0.937

	
−0.670

	
−0.550




	
Loamy Sand

	
Minimum value

	
0.684

	
9.279

	
74.870

	
0.359

	
4.277

	
0.480

	
1.010

	
0.211

	
−0.614




	
1st Quartile

	
1.023

	
14.600

	
80.346

	
0.399

	
4.357

	
2.439

	
1.408

	
0.344

	
−0.166




	
Median

	
1.023

	
15.407

	
83.570

	
0.542

	
4.357

	
5.000

	
1.724

	
0.388

	
0.007




	
3rd Quartile

	
5.559

	
15.407

	
83.570

	
0.542

	
7.097

	
5.000

	
1.914

	
0.419

	
0.111




	
Maximum value

	
9.378

	
22.283

	
86.329

	
0.555

	
8.960

	
9.970

	
1.958

	
0.525

	
0.976




	
Mean

	
3.120

	
14.855

	
82.025

	
0.485

	
5.571

	
4.428

	
1.637

	
0.388

	
0.040




	
Standard Deviation

	
2.760

	
2.396

	
2.735

	
0.078

	
1.598

	
2.406

	
0.272

	
0.065

	
0.319




	
Skewness

	
0.866

	
−0.067

	
−0.971

	
−0.677

	
0.806

	
0.431

	
−0.513

	
−0.119

	
1.092




	
Sand

	
Minimum value

	
0.159

	
0.00

	
96.064

	
0.871

	
2.015

	
0.090

	
0.843

	
0.400

	
−0.706




	
1st Quartile

	
0.193

	
0.591

	
96.653

	
0.881

	
2.054

	
8.003

	
0.843

	
0.481

	
−0.155




	
Median

	
0.653

	
2.170

	
97.086

	
0.892

	
2.208

	
8.500

	
1.042

	
0.607

	
0.123




	
3rd Quartile

	
1.743

	
3.181

	
97.617

	
0.901

	
2.577

	
8.500

	
1.375

	
0.682

	
0.281




	
Maximum value

	
2.344

	
3.731

	
97.656

	
0.909

	
2.855

	
8.766

	
1.610

	
0.682

	
0.915




	
Mean

	
0.992

	
1.942

	
97.032

	
0.891

	
2.332

	
7.032

	
1.133

	
0.574

	
0.090




	
Standard Deviation

	
0.973

	
1.609

	
0.665

	
0.015

	
0.354

	
3.415

	
0.339

	
0.126

	
0.545




	
Skewness

	
0.582

	
−0.150

	
−0.434

	
−0.151

	
0.791

	
−2.406

	
0.463

	
−0.425

	
0.084
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Table 3. Summary of the results.
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Model

	
Input Variables

	
Algorithm

	
R2

	
MAE

Log10 [cm/h]

	
RMSE

Log10 [cm/h]

	
RAE






	
M1

	
Clay, Silt, Sand, dg, Sg, OC, Db, WCs

	
Hyb_MLP-RF-SVR

	
0.829

	
0.582

	
0.802

	
57.19%




	
Hyb_RF-SVR

	
0.826

	
0.562

	
0.796

	
55.16%




	
Hyb_MLP-SVR

	
0.755

	
0.683

	
0.921

	
67.02%




	
Hyb_MLP-RF

	
0.803

	
0.642

	
0.861

	
63.05%




	
SVR

	
0.766

	
0.637

	
0.898

	
62.51%




	
RF

	
0.773

	
0.677

	
0.929

	
66.46%




	
MLP

	
0.632

	
0.821

	
1.079

	
80.63%




	
M2

	
dg, Sg, OC, Db, WCs

	
Hyb_MLP-RF-SVR

	
0.786

	
0.634

	
0.884

	
62.29%




	
Hyb_RF-SVR

	
0.802

	
0.572

	
0.838

	
56.19%




	
Hyb_MLP-SVR

	
0.747

	
0.684

	
0.937

	
67.15%




	
Hyb_MLP-RF

	
0.744

	
0.699

	
0.955

	
68.76%




	
SVR

	
0.685

	
0.721

	
1.019

	
70.82%




	
RF

	
0.735

	
0.689

	
0.979

	
67.72%




	
MLP

	
0.551

	
0.882

	
1.164

	
85.58%




	
M3

	
dg, Sg, Db, WCs

	
Hyb_MLP-RF-SVR

	
0.737

	
0.681

	
0.956

	
66.96%




	
Hyb_RF-SVR

	
0.759

	
0.622

	
0.910

	
61.04%




	
Hyb_MLP-SVR

	
0.703

	
0.724

	
0.999

	
71.07%




	
Hyb_MLP-RF

	
0.687

	
0.749

	
1.026

	
73.65%




	
SVR

	
0.647

	
0.748

	
1.069

	
73.51%




	
RF

	
0.688

	
0.737

	
1.035

	
72.40%




	
MLP

	
0.484

	
0.918

	
1.221

	
90.19%




	
M4

	
dg, Sg, OC, Db

	
Hyb_MLP-RF-SVR

	
0.631

	
0.793

	
1.084

	
77.89%




	
Hyb_RF-SVR

	
0.638

	
0.762

	
1.075

	
74.79%




	
Hyb_MLP-SVR

	
0.59

	
0.829

	
1.126

	
81.49%




	
Hyb_MLP-RF

	
0.606

	
0.831

	
1.111

	
81.61%




	
SVR

	
0.554

	
0.827

	
1.188

	
81.26%




	
RF

	
0.619

	
0.775

	
1.101

	
76.14%




	
MLP

	
0.443

	
0.957

	
1.252

	
93.95%




	
M5

	
dg, Sg, Db

	
Hyb_MLP-RF-SVR

	
0.574

	
0.856

	
1.142

	
84.07%




	
Hyb_RF-SVR

	
0.595

	
0.848

	
1.164

	
83.37%




	
Hyb_MLP-SVR

	
0.561

	
0.861

	
1.155

	
84.46%




	
Hyb_MLP-RF

	
0.562

	
0.884

	
1.152

	
86.79%




	
SVR

	
0.506

	
0.851

	
1.235

	
83.47%




	
RF

	
0.535

	
0.889

	
1.197

	
87.26%




	
MLP

	
0.497

	
0.941

	
1.208

	
92.32%
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