
Citation: Wang, Y.-J.; Chen, C.-Z.; Li,

P.; Liu, L.; Chai, Y.; Li, Z.-H. Chronic

Toxic Effects of Waterborne Mercury

on Silver Carp (Hypophthalmichthys

molitrix) Larvae. Water 2022, 14, 1774.

https://doi.org/10.3390/w14111774

Academic Editor: Ken Oakes

Received: 1 April 2022

Accepted: 27 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Chronic Toxic Effects of Waterborne Mercury on Silver Carp
(Hypophthalmichthys molitrix) Larvae
Ya-Jun Wang 1,†, Cheng-Zhuang Chen 2,†, Ping Li 2 , Ling Liu 2, Yi Chai 1,* and Zhi-Hua Li 2,*

1 Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education,
College of Agriculture, Yangtze University, Jingzhou 434025, China; yajun@126.com

2 Marine College, Shandong University, Weihai 264209, China; 202121021@mail.sdu.edu.cn (C.-Z.C.);
liping2018@email.sdu.edu.cn (P.L.); liu_ling@sdu.edu.cn (L.L.)

* Correspondence: chaiyi123456@126.com (Y.C.); lizh@sdu.edu.cn (Z.-H.L.)
† These authors contributed equally to this work.

Abstract: Mercury (Hg) is a kind of heavy metal pollutant widely existing in the aquatic envi-
ronment, and it is also recognized to have a highly toxic effect on fish. In this study, silver carp
(Hypophthalmichthys molitrix) larvae were exposed to 0 (control), 1, 5, and 10 µg/L Hg2+ for 2 weeks.
Antioxidant ability, neurotoxicity, and thyroid hormones (THs) content were evaluated. In compari-
son with the control, the superoxide dismutase (SOD) activity and the glutathione (GSH) activity
were lower in silver carp exposed to 10 µg/L Hg2+. The lowest catalase (CAT) activity was found
in the 10 µg/L Hg2+, while malondialdehyde (MDA) content was not significantly different among
all groups. Compared with the control, monoamine oxidase (MAO) activity and nitric oxide (NO)
content were significantly higher in the 10 µg/L Hg2+, while acetylcholinesterase (AChE) activity
significantly decreased. Compared with the control, triiodothyronine (T3) content was significantly
higher in the 1 µg/L Hg2+ and significantly lower in the 10 µg/L Hg2+; the 1 µg/L and 5 µg/L Hg2+

groups had significantly higher thyroxine (T4) content than the other groups. In the 1 µg/L Hg2+,
the integrated biomarker response (IBR) index value was the highest. In summary, exposure to Hg
could decrease the antioxidant ability, cause changes in neurotoxic parameters, and induce disorders
of the thyroid hormone system in silver carp larvae. The results of this study may contribute to the
understanding of the adverse effects of chronic mercury poisoning on fish.

Keywords: Hypophthalmichthys molitrix; mercury; biochemical responses; thyroid hormones; IBR

1. Introduction

Mercury (Hg) is a heavy metal contaminant widely present in aquatic ecosystems,
exhibiting teratogenicity, neurological, nephrogenic, and immunotoxicity [1–4]. The impact
of various heavy metal pollutants, including Hg, on aquatic environments, has become an
increasingly serious problem due to increased human activities [5,6]. Hg has been found in
various aquatic environments around the world. For example, the concentration of total Hg
reached 16.8 ± 8.4 ng/L in Ya-Er Lake, Xinjiang Province, China [7]. Total Hg was found
at 1.8 ± 1.00 ng/L at the bottom of Minamata Bay, Japan [8]. Hg is usually present in the
aquatic environment mainly in three forms: elemental mercury (Hg0), inorganic mercury
(IHg), and organic mercury (MeHg), with IHg being the most abundant form in freshwater
environments and easily converted to methylmercury through continuous biogeochemical
cycling [9]. Methylmercury is more likely to accumulate in sediment-feeding aquatic
animals and persists in fish tissue via biomagnification in the food chain [10]. Trace
amounts of Hg in aquatic environments accumulate in animals with high nutrient levels
through the food chain. It endangers aquatic organisms as well as human health and
safety [11]. Due to its high toxicity, it is capable of many adverse effects on reproduction
and nervous systems [12]. At present, it has become one of the hot spots of ecotoxicological
research.
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Previous studies on the toxic effects of Hg in different aquatic animals have been
extensively reported [13]. For example, Hg exposure leads to oxidative stress, and genes
encoding antioxidant enzymes were found to be significantly upregulated in the spleen,
head, and kidney of Pelteobagrus fulvidraco [14]. Hg exposure increases the accumulation of
Hg in the liver of Danio rerio and damages the ultrastructure of the liver [15]. Hg exposure
causes neurotoxicity in the marine medaka Oryzias melastigma through the induction of
oxidative stress and the disruption of cellular metabolism [16]. Hg could cause damage to
the immune system of fish, including cell necrosis or necrotizing apoptosis and changes
in immune gene expression profiles in marine gilthead sea bream and European sea
bass [17,18]. Exposure to Hg at even low concentrations could lead to physiological,
biochemical, genetic, metabolic, and morphological abnormalities in fish [19,20]. Silver
carp (Hypophthalmichthys molitrix) is one of the four major Chinese carp species, as well
as one of the most essential freshwater commercial fish, with a global production of
4.79 million tons in 2018 [21,22]. Previous studies on silver carp have focused on growth and
development [23], genetic reproduction [24], and ecological regulation [25,26]. However,
relatively few studies on the toxicity of heavy metal Hg to silver carp have been reported,
especially for nerve damage and related biomarkers such as thyroid hormones (THs).

Therefore, this study aimed to investigate the effect of chronic waterborne Hg exposure
on antioxidant ability, neurotoxicity, and THs content in silver carp larvae. Furthermore,
this study also provides a comprehensive overview of the physiological stress of chronic
waterborne Hg on silver carp larvae via using the integrated biomarker response (IBR)
index. This study may increase our understanding of the effects of Hg toxicity on silver
carp larvae.

2. Materials and Methods
2.1. Experimental Animals and Test Chemicals

Silver carp larvae were purchased from the Yangtze River Fisheries Research Institute
(Jingzhou, China). Silver carp were acclimated in the 120 L plastic box for 7 days, and the
experimental water was tap water with full aeration for more than 24 h. Fish were fed
hatched brine shrimp (Artemia nauplii) twice a day. The experimental conditions were a
water temperature of 24.0 ± 1.0 ◦C, photoperiod 12L:12D, and dissolved oxygen >7.0 mg/L.

Mercuric chloride (HgCl2, purity > 99%) was purchased from Sigma-Aldrich (St. Louis,
MO, USA). As a stock solution of 1 g/L HgCl2, deionized water was prepared. Then, the
solution was stored in a brown bottle at room temperature, protected from light. Finally, it
was diluted to the mass concentration required for the experimental design.

2.2. Experimental Design and Sample Collection

After acclimation, healthy silver carp larvae (average initial weight 0.027 ± 0.004 g;
average body length 1.25 ± 0.06 cm) were selected and randomly assigned to 12 tanks
(40 × 23 × 25 cm). In the experiment, silver carp larvae were set up in four groups, three
parallel in each group. Each tank contained 20 L tap water and 60 silver carp larvae.
The selection of test concentrations of Hg2+ was based on data from our previous acute
toxicology experiments (not yet published). Four concentrations of Hg2+ were set at 0, 1, 5,
and 10 µg/L in the experiment. All solutions samples were analyzed and the measured
concentrations were within 20% of the nominal concentration following OECD guidelines.
During the two-week experimental period, half of the water in the tank was replaced with
tap water aerated for more than 24 h every day. The temperature was kept at 24.0 ± 1.0 ◦C,
dissolved oxygen >7.0 mg/L, and photoperiod 12L:12D throughout the experimental
period. All procedures and animal handling comply with the guidelines approved by the
Chinese Society of Laboratory Animal Science. The research has been approved by the
Animal Ethics Committee of Yangtze University.

At the end of the exposure experiment, the mucus on the surface of the fish was
washed with sterile distilled water. After absorbing the water on the surface of the fish with
absorbent tubes, the whole fish were collected in 2 mL Eppendorf tubes and transferred to
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the −80 ◦C refrigerator for the next analysis. Because the silver carp larvae were too small,
the whole fish was used for biochemical analysis.

2.3. Biochemical Analysis

The 10% concentration of homogenate was prepared by three whole fish per tank
with precooled sterile 0.9% saline solution at a ratio of 10% as m (tissue, g): v (saline
solution, ml). The homogenate was centrifuged for 10 min at 4 ◦C in the centrifuge (SIGMA,
Germany). The supernatant was collected and assayed for relevant biochemical parameters.
The superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), malondialdehyde
(MDA) contents, monoamine oxidase (MAO), nitric oxide (NO), and acetylcholinesterase
(AChE) were determined with commercial kits by following the manufacturer’s instructions
(Jiancheng Bioengineering Research Institute Co., Ltd., Nanjing, China). Enzyme-linked
immunosorbent assay (ELISA) kits were used to determine the content of triiodothyronine
(T3) and thyroxine (T4) following the manufacturer’s instructions (Uscnlife, Ltd., Wuhan,
China). The details of the method were as described in the previous study [27].

2.4. Integrated Biomarker Response

For several biomarkers (antioxidant enzymes, neurotoxicity enzymes, and THs con-
tent), IBR index values were calculated following our previous description [28].

2.5. Statistical Analysis

The statistical significance of data was analyzed using one-way analysis of variance
(ANOVA) and Duncan’s multiple range test. Data were presented as the mean ± standard
error (SE). A probability score of p < 0.05 had been used to determine significance. All
statistical analysis was performed with SPSS (version 25). Besides, star plots were drawn
using the Origin software (version 9.8).

3. Results
3.1. Antioxidant Ability

Antioxidant enzyme activities of fish exposed to different concentrations of Hg2+ are
shown in Figure 1. The results showed that the SOD activity of fish was significantly
lower than the control after exposure to Hg2+ (p < 0.05; Figure 1A); Significantly lower
GSH activity was found in fish exposed to 10 µg/L Hg2+, relative to the control (p > 0.05;
Figure 1B). The activity of CAT of fish exposed to 10 µg/L Hg2+ was significantly lower than
that exposed to 1 µg/L Hg2+ (p < 0.05; Figure 1C). There was no significant change in MDA
content among all groups (p > 0.05; Figure 1D). Antioxidant enzyme activities are often
used as a biomarker to assess the damage caused by pollutants to aquatic organisms [29].
Under normal conditions, the production of reactive oxygen species (ROS) is in balance
with an organism’s antioxidant defense system. When the organism is under external
pressure, the organism inevitably produces excessive reactive oxygen species, leading to
oxidative stress [30]. Hg exposure induces the production of intracellular ROS, which is a
distinctive feature of heavy metal toxicity [31,32].

As the first line of antioxidant defense, SOD acts as a superoxide radical scavenger,
converting superoxide anion radicals into O2 and H2O2, while CAT decomposes H2O2
into H2O and O2 to eliminate excess radicals [33–35]. GSH is a non-enzymatic antioxidant
that directly eliminates reactive oxygen species under oxidative stress, while MDA is
used as a lipid peroxidation metabolite in response to the lipid peroxidation status in the
organism [36,37]. Several studies have recently reported that Hg toxicity inhibits the activity
of antioxidant enzymes in aquatic animals such as Pelteobagrus fulvidraco [14], Pseudosciaena
crocea [38], and Apostichopus japonicus [39]. Similarly, the study results suggest that the SOD,
GSH, and CAT activities of silver carp larvae exposed to high concentrations of Hg2+ were
significantly decreased. Therefore, it is assumed that Hg exposure disrupts the antioxidant
defense system of fish, causing oxidative stress. However, more research on the molecular
toxicity of Hg exposure for the antioxidant ability of silver carp is required.
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Figure 1. Response to the antioxidant ability of silver carp larvae exposed to Hg2+. (A) SOD activity;
(B) GSH activity; (C) CAT activity; (D) MDA content. Vertical bars represent the mean ± SE (n = 3).
Different letters indicate significant differences between groups (p < 0.05).

3.2. Neurotoxic Related Parameters

The effects of Hg2+ on the neurotoxic-related enzymes of silver carp larvae are shown
in Figure 2. Compared to the control, MAO activity and NO content were significantly
increased exposed to 10 µg/L Hg2+ (p < 0.05; Figure 2A,C). In contrast, the Hg2+ exposure
groups showed a significant decrease in AChE activity in fish compared to the control
(p < 0.05; Figure 2B). Chronic Hg exposure was associated with oxidative damage to
the central nervous system in fish. Hg in the aquatic environment causes neurotoxicity
in aquatic animals through several mechanisms, including oxidative stress, metabolic
abnormalities, and cytoskeleton dysfunction [40,41]. MAO regulates many aspects of the
central nervous system, including neurotransmission and neuronal electrical activity [42,43].
Different inhibitory effects on MAO activity after different concentrations of Hg stress
have been previously reported [44,45]. In this study, 10 µg/L Hg2+ increased the MAO
activity, which contradicted the findings of previous research. This may be partly due
to the small concentration of current Hg or the insensitivity of MAO activity induced by
Hg-toxicity, which instead produced excitotoxic effects on fish. NO is a neuroinformatic
molecule with a wide range of physiological roles [46]. The current results found that
10 µg/L Hg2+ has NO content, which could have toxic effects on fish. AChE is used to
degrade acetylcholine, which blocks neurotransmitter excitatory effects on the postsynaptic
membrane and maintains normal nerve signal transmission in the organism [47]. The
activity of AChE was significantly reduced in the 10 µg/L Hg2+ in this study. The possible
reason for this speculation was that decreased AChE activity was associated with neuronal
damage. Several recent studies have reported the effect of exposure to other heavy metals
contamination on the inhibition of AChE in fish, with results similar to those of the present
study [48,49].
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Figure 2. Response to the neurotoxic related parameters of silver carp larvae exposed to Hg2+

(A) MAO activity; (B) AChE content; (C) NO content. Vertical bars represent the mean ± SE (n = 3).
Different letters indicate significant differences between groups (p < 0.05).

3.3. Thyroid Hormones (THs) Content

THs content was quantified as shown in Figure 3. Compared to the control, T3
content was significantly increased in the 1 µg/L Hg2+ and significantly decreased in the
10 µg/L Hg2+ (p < 0.05; Figure 3A); T4 content of fish in the 1 µg/L and 5 µg/L Hg2+

groups were significantly higher than that in other groups (p < 0.05; Figure 3B). THs are
important regulators in the early growth and development of animals [50]. Environmental
contaminants that interfere with THs synthesis have been the subject of interest in aquatic
toxicology studies [50–52]. T3 and T4 are the main forms of thyroid production and are
essential for fish growth and development, osmotic pressure regulation, and nutrient
metabolism [53,54].

Figure 3. Response to the thyroid hormones levels of silver carp larvae exposed to Hg2+. (A) T3
content; (B) T4 content. Vertical bars represent the mean ± SE (n = 3). Different letters indicate
significant differences between groups (p < 0.05).

In this study, T3 content was significantly decreased in fish exposed to high concentra-
tions of Hg2+ and T4 content was significantly increased after exposure to low concentra-
tions of Hg2+, suggesting that the toxicity of Hg induces thyroid dysfunction. In a previous
study, low concentrations of Hg exposure had increased the content of whole-body THs in
zebrafish larvae [55]. This variation reflects the fact that Hg-induced thyroid dysfunction
varies depending on fish species, developmental stage, and treatment dosage.

3.4. Integrated Biomarker Response

The IBR index values were calculated by integrating the measured nine biomarker
responses, and the results for each experimental group were shown in Figure 4. The IBR
index values showed that the highest pressure was caused in the 1 µg/L Hg2+ (13.2661) and
the lowest pressure was caused in the 5 µg/L Hg2+ (8.1793). The IBR is a novel index that
integrates biomarker responses. It is an effective tool for assessing pollutant sensitivity us-
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ing multiple biomarker responses [56,57]. The IBR index values standardize biomarkers to
represent environmental stresses, thus providing a concise and comprehensive assessment
of the health of organisms under various stress situations [58]. The IBR index showed the
highest value in the 5 µg/L Hg2+, indicating that the 5 µg/L Hg2+ is at the highest stress.
In general, high concentrations of Hg2+ stress should have higher overall stress of toxicity.
The IBR results of this study did not match the expected results. It is speculated that the
reason for this may be the higher overall stress on fish due to excitotoxicity produced by a
low concentration of Hg2+.

Figure 4. Star plot and IBR index values of normalized biomarker data in different groups. (A) 0 µg/L;
(B) 1 µg/L Hg2+; (C) 5 µg/L Hg2+; (D) 10 µg/L Hg2+.

Although IBR index values can reflect the biotoxicity effects of mercury exposure and
contribute to assessing the effects of toxic contaminants on aquatic animals, relatively few
reports have used the IBR index to evaluate the toxicity of heavy metals. Furthermore, the
type and number of biomarkers selected are also crucial for the calculation of IBR index
values [59,60]. Therefore, the IBR index as a quantitative tool to assess the effects of heavy
metal toxicity stress on fish still needs more research.

4. Conclusions

Overall, this study indicates that chronic waterborne Hg exposure could decrease the
antioxidant capacity of silver carp larvae and cause changes in neurotoxic parameters. At
the same time, waterborne Hg exposure could lead to abnormal levels of THs in silver carp
larvae and may induce thyroid dysfunction. Furthermore, the IBR index value indicated
that a low concentration of Hg2+ (1 µg/L) exposure generated stronger stress than Hg2+

exposure under the highest concentration (10 µg/L). This study provides current biochemi-
cal data on the toxicity of Hg, which will be essential for understanding the risk of Hg in
aquatic environments.
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