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Abstract: We conducted experiments using an experimental flume with two variable streambed
gradients in the upstream and downstream parts with various debris flows, composition sizes, and
supply flow rates. We investigated the transition processes of sediment transport modes along the
longitudinal distances from the gradient change point using the transition mode indices, ICsx, Ihx,
and IUx; these indices were calculated based on measurements of sediment transport concentrations,
flow depths, and gravel migration velocities in the debris flow’s front in the downstream part. Using
these indices, we postulated that after the debris flow passed the gradient change point, the transition
of the sediment transport modes progressed by changing the measured parameters to those in the
steady-state condition on the gradient of the downstream parts. In addition, these indices suggested
that the gravel migration velocities in the flow front interior changed most rapidly after passing
the gradient change point, and that flow depths tended to change most slowly. Finally, the indices
suggested that as the debris flow material became finer and the supplied flow rates became larger,
the longitudinal transition sections tended to be longer because the momentum needed to transport
the material was less than the total debris flow momentum.

Keywords: debris flow; sediment transport mode; transition process; changing streambed gradient;
sediment transport concentration; flow depth; gravel migration velocity; flume experiment

1. Introduction

In recent years, debris flow disasters have become more frequent in various regions
of East and Southeast Asia [1–5]. To protect lives and property from these disasters, it is
necessary to more precisely understand the characteristics of debris flows reaching flood
plains containing residential and social structures, such as alluvial fans, and to install
effective countermeasures or predict the damage caused by debris flows based on these
characteristics. The important characteristics of debris flows are the flow velocity, flow
depth, and sediment concentration. To investigate these parameters, the sediment transport
mode of debris flow during the downflow in mountain streams must be understood.

Before a debris flow reaches the flood plains, it flows down mountain streams with
continuously changing streambed gradients from steep upstream areas, such as in a valley
head, to gentle downstream areas, such as the top of an alluvial fan. Therefore, the sediment
transport mode changes stepwise during the downflow in mountain streams owing to
the continuously changing streambed gradients. If the streambed gradient is 14–15◦ or
higher, transported materials can be dispersed throughout the entire flow layer by the shear
forces of high-density materials in the flow [6–10]. We consider this sediment transport
mode the “debris flow”. However, if the streambed gradient is below 14–15◦, the materials
cannot be dispersed throughout the flow layer and tend to settle down as the vertical
downward component of gravity increases. Therefore, the flow consists of the lower layer,
which is composed of high-density materials, and the upper layer, which is composed of
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turbulent water flow with suspended loads [11–14]. We consider this sediment transport
mode the “sediment sheet flow” or “immature debris flow”. The thickness of the lower
layer with high-density materials decreases as the streambed gradient becomes gentler.
When the streambed gradient is approximately 1–2◦, the sediment transport mode changes
to individual transportation; that is, bed load transport. The thickness of the lower layer
with high-density materials in this transportation mode is approximately one to two times
the grain diameter [14]. Considering the above, the sediment transport mode of a debris
flow is a sediment sheet flow or bed load transport when the flow reaches the downstream
end of a mountain stream that connects to the top of an alluvial fan, because the streambed
gradient is often less than 15◦. However, the flow front may be considered to maintain the
“debris flow”, with the materials dispersed throughout the entire flow layer, even when
it reaches the stream outlet. Thus, to predict the damage caused by a debris flow on an
alluvial fan more accurately, it is necessary to accurately determine the characteristics of the
debris flow supplied to the fan from mountain streams based on the transition processes of
sediment transport modes owing to the changing streambed gradients.

Previous studies have clarified the sediment transport mechanisms in debris flow and
sediment sheet flow on a flume with a constant gradient [11–16]. However, except for
the recent experimental studies on the changing of the flow characteristics for a granular
sediment flow or soil mass with little moisture at the gradient change points, such as the
bottom of the failure slope [17–19], only a few studies have clarified the sediment transport
mechanisms in flumes with continuously changing gradients [20,21]. These studies focused
only on the process of debris flow generation by a surface runoff on a streambed with
steep gradients (more than 15◦), while few studies have focused on the transition of
sediment transport modes on the gradient changes within 2–15◦, where a sediment sheet
flow or bed load transport would be pronounced. The sediment flow model proposed by
Egashira et al. [10,15] enables the reproduction of various modes using their constitutive
laws for all streambed gradients. However, the experimental results used to verify their
proposed model were also based on a flume with a constant gradient; there has not been
sufficient verification of this model based on the transition processes of sediment transport
modes with changing gradients. Although these conventional constitutive laws are set in
the x-coordinate direction along the flow direction on the riverbed surface, the constitutive
law of bed load transport in the global coordinates, which is not affected by the changing
of the x-coordinate direction due to riverbed deformation, has been proposed [22,23].
These laws can estimate the sediment transport rates under non-negligible transversal
and longitudinal gradients by reducing the effects of the additional laws of the erosion
and deposition processes, considering the separation of the gravity vector component
in the flow and transversal directions. Since these proposed constitutive laws do not
deal with high-density material flow, such as debris flow, it is necessary to construct a
constitutive law based on a global coordinate system for the flow and to examine whether
the transition of sediment transport modes due to changing gradients can be expressed.
Taking a numerical approach to sediment transport mechanisms with changing gradients,
Takahama et al. [24] proposed a numerical model for a two-layer flow composed of a
turbulent water flow in the upper layer and a concentrated sediment flow in the lower
layer, while Suzuki and Hotta [25] proposed a numerical model using the moving particle
semi-implicit (MPS) method. Their models were applied to the debris flow behaviors and
depositions at changing gradient points. Since these models are based on the sediment
transport mechanisms proposed by Egashira et al. [10,15], it is necessary for these models
to sufficient verify the based mechanisms in the transition processes of sediment transport
modes with changing gradients. Few other researchers except them have attempted
numerical modeling for the transition processes of sediment transport modes.

A debris flow is composed of materials of various particle sizes, and these particles
influence each other during the downflow, resulting in the occurrence of particle size segre-
gation in the flow interior. For a stony debris flow with many boulders, the boulders become
concentrated toward the flow front during the downflow in mountain streams [4,26–31].
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Ashida et al. [14] conducted flume experiments on the transport mechanisms of sediment
mixtures with gentle flume bed gradients of 1–8◦. They clarified that although the particle
migration velocities of various sizes in the flow interior are generally consistent, finer
particles fall to the bottom of the flow. Furthermore, it is difficult for finer particles to
migrate because the coarser particles above block them from moving; thus, the coarsening
of the migrating particles becomes more pronounced. This indicates that the migrating
particle size segregation (coarsening of migrating particles) also occurs in the interior of
the sediment sheet flow. This was also evident in the flume experiments on debris flows
composed of sand and gravel mixtures conducted at constant gradients ranging from 3 to
18◦ by Wada et al. [32]. Thus, to predict the damage caused by a stony debris flow on an
alluvial fan more accurately, it is necessary to focus on the transitions of sediment transport
modes for debris flows composed of sand and gravel mixtures resulting from changing
streambed gradients.

Based on the above background, this study focused on the transition processes of
sediment transport modes for the debris flow consisting of uniform-sized and mixed-sized
gravel types resulting from changing streambed gradients from more than 15◦ to less
than 15◦. We conducted the flume experiments using an experimental flume consisting of
two variable gradients in the upstream and downstream parts. Based on these experimental
results, we calculated the transition indices of sediment transport modes and investigated
the corresponding transition processes along the longitudinal distances from the gradient
change point using these indices.

2. Materials and Methods
2.1. Experimental Setup and Conditions

Figure 1 shows the experimental flume and the measurement equipment used in
our study. The experimental flume consisted of two variable streambed gradients in the
upstream and downstream parts, with lengths of 150 cm and widths of 10 cm, with a
fixed bed part for the rectification of the supplied water at the upstream end of the flume.
The gradients of the upstream and downstream parts, θ1, θ2, were set to three types; a
gentle uniform gradient (θ1 = θ2 = 9◦), a steep uniform gradient (θ1 = θ2 = 15◦), and a
changed gradient (θ1 = 15◦, θ2 = 9◦). The connecting point of the upstream and downstream
parts was defined as the gradient change point (at +0 cm; the positive direction was the
downstream side). In addition, the length of the downstream part could be changed to
50 cm, 70 cm, or 100 cm. After the experimental materials were placed at a depth of 5 cm in
the upstream and downstream parts (the total material volume including bulks equaled
15,000 cm3), the material was eroded by the supplied water from the upstream end, resulting
in the generation of debris flow. We measured the sediment transport concentration of the
flow front, Cs, at the downstream end of each length flume (at +50, +80, +100, and +150 cm)
using a movable sediment sampler moving in the transverse direction with respect to the
flow direction. The sampler separated the debris flow front into the four boxes over the
time intervals in the range of 1.0–2.0 s. Measurements were performed to determine the
temporal changes in the sediment transport concentrations of the flow front in each sample.
We also measured the flow front depths, h, using three ultrasonic water level sensors (E4C-
DS30, OMRON Corp., Kyoto, Japan) at +10, +50, and +80 cm points, as well as the gravel
migration velocities, u, in the flow front’s interior using two high-speed video cameras
(EXILIM PRO EX-F1, CASIO COMPUTER Co., Ltd., Tokyo, Japan) at +0 and +30 cm points.

The experimental conditions combined with the particle size compositions of the
debris flow materials and inflow rates of the supplied water are listed in Table 1. The
gravel sizes and debris flow depths of these conditions were set within the gravel size and
gravel-size-to-flow-depth ratio ranges used in the previous experiments on debris flow
with sediment mixtures performed by Wada et al. [32]. Table 1 also shows the averaged
flow depth, flow velocity, Froude number, and particle Reynolds number for the “frontal
part” of the debris flow for all cases. In this study, we focused on the effects of the changing
gradient on the sediment transport mode at the “frontal part” of the debris flow, whereby
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the “frontal part” was defined as the part within 3 s from reaching the flow front at a certain
measuring point. The magnitude orders of the Froude number and particle Reynolds
number were consistent with those of the dimensionless parameters describing previous
field and experimental debris flows, as organized by Turnbull et al. [33]. This indicated
that our experiments replicated the previous field and experimental debris flows in term
of the flow characteristics. The flow velocities on the gentle gradient of the downstream
part were greater than those on the steep gradient of the upstream part in many cases. The
reason for this may be because the debris flow velocity depends on the magnitude relation
regarding the increase or decrease in the streambed gradient and sediment concentration,
as shown in Equation (1) below. Under our experimental conditions, the strongest effect on
the debris flow velocity is the decreasing sediment concentration rather than the decreasing
streambed gradient.
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Figure 1. Experimental setup.

Table 1. Experimental cases and conditions.

Case

Debris Flow
Composition Inflow

Rate 2

(cm3/s)

Flume Gradient 2

θ1, θ2 (◦) 3

Measured Representative Values of the “Frontal Part” 4

of a Debris Flow with a Changing Gradient

dL, dS
(mm) 1 PL, PS

1 Condition hf
5

(mm)
Uf

6

(mm/s) Frf
7 Re*f

8

Case 1 19.0, 7.1 20%, 80%

2000
1000

Gentle uniform
gradient

9◦, 9◦

Steep uniform
gradient
15◦, 15◦

Changed gradient
15◦, 9◦

Inflow rate; 2000 cm3/s
Upstream part (15◦) 29.767 545.45 1.028 2651.78

Downstream part (9◦) 51.300 571.43 0.811 2676.44
Inflow rate; 1000 cm3/s

Upstream part (15◦) 30.000 260.87 0.489 2662.13
Downstream part (9◦) 24.533 363.64 0.746 1850.86

Case 2 7.1, non 100%, 0%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 29.567 315.79 0.597 1979.35

Downstream part (9◦) 40.453 615.38 0.983 1780.02
Inflow rate; 1000 cm3/s

Upstream part (15◦) 27.667 321.43 0.628 1914.70
Downstream part (9◦) 29.008 387.10 0.730 1507.33

Case 3 7.1, 3.0 80%, 20%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 36.000 387.10 0.663 1931.84

Downstream part (9◦) 43.250 615.38 0.951 1627.96
Inflow rate; 1000 cm3/s

Upstream part (15◦) 24.000 285.71 0.599 1577.34
Downstream part (9◦) 30.367 390.24 0.719 1364.12
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Table 1. Cont.

Case

Debris Flow
Composition Inflow

Rate 2

(cm3/s)

Flume Gradient 2

θ1, θ2 (◦) 3

Measured Representative Values of the “Frontal Part” 4

of a Debris Flow with a Changing Gradient

dL, dS
(mm) 1 PL, PS

1 Condition hf
5

(mm)
Uf

6

(mm/s) Frf
7 Re*f

8

Case 4 19.0, 3.0 20%, 80%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 28.700 545.45 1.046 1702.92

Downstream part (9◦) 39.767 571.43 0.921 1541.15
Inflow rate; 1000 cm3/s

Upstream part (15◦) 19.867 500.00 1.152 1416.83
Downstream part (9◦) 31.167 363.64 0.662 1364.36

Case 5 7.1, 3.0 20%, 80%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 31.667 375.00 0.685 1102.11

Downstream part (9◦) 38.033 888.89 1.464 928.61
Inflow rate; 1000 cm3/s

Upstream part (15◦) 19.200 181.82 0.426 858.17
Downstream part (9◦) 31.858 545.45 0.982 849.89

Case 6 3.0, non 100%, 0%

Inflow rate; 2000 cm3/s
Upstream part (15◦) 21.333 510.64 1.136 710.41

Downstream part (9◦) 36.747 727.27 1.219 716.84
Inflow rate; 1000 cm3/s

Upstream part (15◦) 23.100 276.92 0.592 739.24
Downstream part (9◦) 28.600 631.58 1.120 632.40

Note: 1 d1 and d2 are the diameters of coarser and finer gravel types, respectively; P1 and P2 are the initial
compositions of coarser and finer gravel types, respectively; 2 common conditions in all cases; 3 θ1 and θ2 are
the gradients of the upstream and downstream parts in the experimental flume, respectively; 4 “frontal part” is
the part within 3 s from reaching the flow front at a certain measuring point; 5 h f is the averaged flow depth
at the “frontal part” of a debris flow; 6 U f is the averaged front velocity of a debris flow in the section from
50 cm upstream from the gradient change point to 50 cm downstream from the point; 7 Frf is the Froude number,

= U f /
(

gh f cos θ
)0.5

, where g is the gravitational acceleration, 9.81 × 102 mm/s2; 8 Re*f is the particle Reynolds

number, =dm

(
gh f tan θ

)0.5
/ν, where dm is the mean diameter of the debris flow material and ν is the kinematic

viscosity coefficient, 1.00 mm2/s.

The particle size compositions were prepared by mixing one or two particles of the
three particles with diameters of 3.0 mm, 7.1 mm, and 19.0 mm according to the ratios
shown in Table 1. The average mass density of these gravel particles (σ) was 2.650 g/cm3,
the average concentration in the static sediment bed (C*) was 0.575, and the average internal
friction angle (φ) was 34.80◦. Here, 80% of the particles in Cases 1–3 were gravel with a
diameter of 7.1 mm, while 80% of the particles in Cases 4–6 were gravel with a diameter
of 3.0 mm. For all conditions, the inflow rates of the supplied water were set to 1000
and 2000 cm3/s. Note that in Cases 2, 5, and 6, the flow front depth measurements at
+10 and +80 cm and the measurements of gravel migration velocities in the flow front
interior at +30 cm were not taken, while in Cases 1 and 4, the measurements of sediment
transport concentrations of the flow front at +50, +80, and +100 cm were also not taken.
This was due to missing or oscillating measurement data caused by a malfunction of the
measurement equipment.

In our experiments, no significant topographic changes due to the deposition of debris
flow at the gradient change point (+0 cm) occurred during the “frontal part” passing at the
point. Therefore, the effects of topographic changes on the transition of sediment transport
modes for the “frontal part” were minor.

2.2. Transition Index of Sediment Transport Modes

Using the measurement results, the averaged sediment transport concentration, Cs,
the averaged flow depth, h, and the vertical averaged gravel migration velocity, U, at
the “frontal part” of the debris flow were calculated. Cs is calculated using the following
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equation, using the volumes of water and sediment included in the samples of debris flow
fronts obtained by the four boxes in the movable sampler:

Cs =
4

∑
i=1

(VsLi + VsSi)/
4

∑
i=1

(VsLi + VsSi + Vwi) (1)

where VsLi and VsSi are the coarser and finer sediment volumes included in the samples
obtained by the i-th boxes, respectively; Vwi is the water volume included in the samples
obtained by the i-th boxes; and i is the number of each box (i = 1–4). Note that in the cases
with the debris flow consisting of uniform-sized gravel, VsSi is zero. In the following, Cs,
h, and U in the cases of uniform gradients of 15◦ and 9◦ are denoted as Cs15◦ , Cs9◦ , h15◦ ,
h9◦ , U15◦ , and U9◦ , respectively; and Cs, h, and U in the cases of changing gradients are
denoted as Csx, hx, and Ux at x cm downstream from the gradient change point (+0 cm),
respectively. Cs15◦ , Cs9◦ , and Csx were calculated by averaging the sediment transport
concentrations of debris flows obtained by the four samplers. Here, h15◦ and h9◦ were the
theoretical debris flow depths on the uniform gradients of 15◦ and 9◦, respectively, obtained
using the theoretical averaged velocity equation for a stony debris flow as proposed
by Takahashi [6] (Equation (2)) and the continuity equation of the flow (Equation (3)).
We applied Equation (2) to the consideration of our experimental results because the
scales of our experimental conditions were equivalent to Takahashi’s experiments, which
were conducted to confirm the equation’s validity [6]. The streambed surface (i.e., the
x-coordinate direction that is the basis of Equation (2)) did not change significantly at the
gradient change point during the passing point of the “frontal part” in our experiments:

Um =
2

5dm

[
g sin θ

αi sin φ
{C∞ + (1− C∞)}

(ρm

σ

)]1/2
{(

C∗
C∞

)1/3
− 1

}
h

3/2
(2)

q = Umh (3)

where Um is the vertical averaged velocity of the debris flow, dm is the mean diameter
of the material, g is the gravitational acceleration, θ is the streambed gradient, αi is the
coefficient (= 0.042), and ρm is the mass density of the interstitial fluid (= 1.0 g/cm3). C∞
is the equilibrium sediment concentration from Equation (4), which is derived from the
equilibrium of the riverbed shear stress and the body forces of the debris flow on the
riverbed in the dynamic equilibrium state of the flow [6]:

C∞ =
ρm tan θ

(σ− ρm)(tan φ− tan θ)
(4)

where hx is the averaged measurement value of the flow front depth within 3 s from the time
at which the flow front reaches the measuring point; U15◦ and U9◦ are the averaged gravel
migration velocities within the “median depth” for the theoretical velocity distribution, as
suggested by Takahashi et al. [34], for uniform gradients of 15◦ and 9◦, respectively. We
defined the “median depth” as the vertical range from 1/3h to 2/3h in the interior of the
“frontal part”. The theoretical velocity distribution used in this study can be adopted for
the velocity distributions of both stony debris and sediment sheet flows (see [34] for details
on the theoretical distribution). Note that the internal friction angles (ø) for calculating the
theoretical distribution were adjusted according to the experimental results based on the
uniform gradients of 15◦ and 9◦. Here, Ux is the averaged measurement value within the
“median depth” of the “frontal part”.

Based on the values of the uniform gradients, Cs15◦ , Cs9◦ , h15◦ , h9◦ , U15◦ , and U9◦ , and
the measurement results for the changing gradient, Csx, hx, and Ux, the transition indices
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of sediment transport modes at x cm downstream from the gradient change point (+0 cm
point), ICsx, Ihx, and IUx, were obtained using the following equations:

ICsx =
Csx − Csθ1

Csθ2 − Csθ1
(5)

Ihx =
hx − hθ1

hθ2 − hθ1
(6)

IUx =
Ux −Uθ1

Uθ2 −Uθ1
(7)

where Csθ1, hθ1, and Uθ1 are the averaged sediment transport concentration, the theoretical
flow depth, and the averaged gravel migration velocities within the “median depth” for the
Takahashi’s theoretical velocity distribution [34] at the “frontal part” of the debris flow on a
uniform gradient of upstream parts, θ1, respectively. Similarly, Csθ2, hθ2, and Uθ2 are the
same indicators on a uniform gradient of downstream parts, θ2, respectively. Using these
indices helps us to simply estimate the transition processes of sediment transport modes
for any pattern of changed gradients from θ1 to θ2. In this study, we defined θ1 = 15◦ and
θ2 = 9◦, and the transition process of the modes on the changed gradients from 15◦ to 9◦

were discussed using these indices.

3. Results and Discussion
3.1. Transition of Sediment Transport Modes Based on Changes in Sediment Transport
Concentrations of the “Frontal Part” Resulting from Changing Streambed Gradient

Figure 2 shows the sediment transport concentrations of the “frontal part” of the debris
flow, Cs, for all gradient conditions in Cases 2, 5, and 6, respectively. The dotted lines in
these figures show the averaged value, Cs, for the sediment transport concentrations of the
debris flow obtained by the four samplers. The sediment transport concentrations in the
debris flow front, which were obtained by the first sampler, were significant for some cases.
This reason for this was that the volumes of gravel in the debris flow front increased more
than the interstitial fluid because sufficient clearance between the coarser gravel types in
the flow front’s interior was not enough to concentrate the coarser gravel types in the flow
front. In the cases with a changing gradient, as the distance between the measuring point
and the gradient change point (+0 cm) increased, the sediment transport concentrations
became closer to the uniform gradient (9◦) for the downstream part. Comparing the results
with different inflow rates for each case, although Cs+50cm decreased significantly with
both inflow rates, these rates were less changed at more than 50 cm downstream from the
+0 cm point in the cases where the inflow rates were higher. On the other hand, in the
cases where the inflow rates were lower, Cs decreased gradually as the distance from the
+0 cm point increased more, and Cs+150cm was almost consistent with Cs9◦ on the uniform
gradient of the downstream part. However, in Case 6 with the finest debris flow material,
Cs+150cm was larger than Cs9◦ , even in the case where the inflow rate was lower. Therefore,
in the cases where the inflow rates were higher and the debris flow materials were finer,
although Cs decreased significantly over a short distance from the gradient change point
(+0 cm), these rates were less changed thereafter. Conversely, in the cases where the inflow
rates were lower and the materials were coarser, Cs decreased more as the distance from
the gradient change point (+0 cm) increased and was closer to the uniform gradient for the
downstream part at +150 cm. These tendencies were confirmed by the averaged sediment
transport concentrations of the “frontal part”, Csx, for all cases, as shown in Table 2. This
indicates that when the kinetic energy of a debris flow is larger, although some of the flow
causes a sudden stoppage (sedimentation) by consuming the kinetic energy because the
flow collides with the riverbed near the gradient change point, most of the transported
sediment flows downstream because the consumed momentum is less than the total debris
flow momentum. Conversely, when the kinetic energy of a debris flow is smaller, although
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the collision of the flow with the riverbed at the gradient change point is not significant, a
firm transition in the sediment transport mode is caused because the materials are unable
to maintain their dispersion in the flow’s interior owing to the significant increase in the
downward component of gravity on the downstream part.
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Figure 2. Time variations in sediment transport concentrations of the “frontal part” of the debris flow,
Cs, for all gradient conditions in Cases 2, 5, and 6.

Table 2. Averaged sediment transport concentrations of the “frontal part” of the debris flow, Cs, for
all cases with two inflow rates.

Case Inflow Rate
(cm3/s) Cs15◦ Cs50cm Cs70cm Cs100cm Cs150cm Cs9◦

Case 1

2000

0.260 - - - 0.124 0.124
Case 2 0.275 0.156 0.144 0.154 0.124 0.096
Case 3 0.250 0.164 0.156 0.148 0.127 0.110
Case 4 0.272 - - - 0.170 0.138
Case 5 0.302 0.200 0.157 0.149 0.163 0.129
Case 6 0.261 0.163 0.159 0.158 0.158 0.132

Case 1

1000

0.256 - - - 0.013 0.060
Case 2 0.253 0.132 0.135 0.109 0.060 0.070
Case 3 0.256 0.161 0.131 0.120 0.073 0.061
Case 4 0.318 - - - 0.130 0.060
Case 5 0.310 0.222 0.183 0.176 0.135 0.136
Case 6 0.330 0.206 0.191 0.181 0.154 0.125
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Figure 3 shows the transition indices of sediment transport modes based on the
sediment transport concentrations of the “frontal part” of the debris flows, ICsx, for all cases
at the two inflow rates. Considering that ICsx = 0 represents the sediment transport mode
at the uniform gradient for the upstream part (15◦) and ICsx = 1 represents the mode at the
uniform gradient for the downstream part (9◦), it is considered that as ICsx is the closer to 1,
the transition to the mode for the downstream parts becomes more significant. The lower
the inflow rate, the larger the change in ICsx with respect to the increase in the longitudinal
distance from the gradient change point (that is, the linear slope of ICsx).
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Figure 3. Transition indices of sediment transport modes based on sediment transport concentrations
of the “frontal part” of the debris flow, ICsx, for all cases with two inflow rates.

Thus, by using the transition indices, ICsx, we can explicitly describe the tendencies
mentioned above on sediment transport concentrations of the “frontal part” of the debris
flow. However, by using ICsx, the similar transition tendencies for all cases (all particle
size compositions of debris flow materials) also suggest that the effect of the particle size
composition on the transition for sediment transport concentration is relatively small.

3.2. Transition of Sediment Transport Mode Based on Changes in Debris Flow Depths of the
“Frontal Part” Resulting from Changing Streambed Gradient

Figure 4 shows the debris flow depths of the “frontal part”, h, and the theoretical debris
flow depths on the uniform gradients of 15◦ and 9◦, h15◦ and h9◦ , for all gradient conditions
in Cases 1, 3, and 4, respectively. Even though the sediment transport concentrations of the
“frontal part” were significant, the debris flow depths of the “frontal part” did not show
remarkable increases for all cases. This may be due to the larger gravel sizes relative to the
debris flow depth, whereby the supplied gravel sizes from the subsequent part by riding
over the frontal part were few. The measurements of the debris flow depths for several
runs in Case 3 generally showed the same trend. This suggested that our experimental
results were reproducible.

At 10 cm downstream of the gradient change point, h was equal to or greater than
the theoretical debris flow depth on the uniform gradient for the upstream part (15◦), h15◦ ,
with both inflow rates. More than 50 cm downstream from the point, as the distance from
the gradient change point to the measuring point increased, h was the closer to that on
the uniform gradient for the downstream part (9◦), h9◦ . Comparing h+80cm values for
different inflow rates for each case, the h+80cm values in the cases with the lower inflow
rates were closer to h9◦ than that in the cases with the higher inflow rates. In addition,
comparing h+50cm values in the cases with lower inflow rates, h+50cm in Case 1 with the
coarsest debris flow material was close to h9◦ , but the h+50cm values in other cases were
close to h15◦ . Therefore, in the cases where the inflow rates were lower and the debris
flow materials were coarser, the closeness of the debris flow depth to the theoretical depth
on the uniform gradient for the downstream part was more pronounced as the distance
from the gradient change point increased. When flowing at shorter distances from the
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gradient change point in these cases, the debris flow depths of the “frontal part” were
close to h9◦ . When the kinetic energy of a debris flow is smaller, a firm transition in
the sediment transport mode is caused for reasons similar to those for the transitions of
sediment transport concentrations by changing gradients; that is, this transition occurs
because the materials are unable to maintain their dispersion in the flow’s interior owing to
the significant increase in the downward component of gravity on the downstream part.
These tendencies were confirmed in the averaged debris flow depths of the “frontal part”,
hx, for all cases, as shown in Table 3.
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Figure 4. Time variations in debris flow depths of the “frontal part” of the debris flow, h, for all
gradient conditions in Cases 1, 3, and 4.

Table 3. Averaged debris flow depths of the “frontal part”, h, and theoretical debris flow depths on
the uniform gradients, h15◦ and h9◦ , for all cases with two inflow rates (unit; mm).

Case Inflow Rate
(cm3/s) h15◦ h10cm h50cm h80cm h9◦

Case 1

2000

46.670 48.800 51.300 35.429 33.198
Case 2 45.871 48.217 40.453 — 30.446
Case 3 44.104 50.458 43.250 41.000 29.008
Case 4 40.589 35.917 39.767 35.846 28.078
Case 5 37.428 41.100 38.033 — 23.845
Case 6 34.447 37.100 36.747 — 21.674

Case 1

1000

35.369 39.633 24.533 18.967 25.159
Case 2 34.764 40.022 29.008 — 23.074
Case 3 33.424 37.042 30.367 19.600 21.984
Case 4 30.760 35.933 31.167 18.800 21.279
Case 5 28.365 30.878 31.858 — 18.071
Case 6 26.106 31.133 28.600 — 16.426
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Figure 5 shows the transition indices of sediment transport modes based on debris
flow depths of the “frontal part”, Ihx, for all cases at the two inflow rates. The lower the
inflow rate, the larger the change in Ihx with respect to the increase in the longitudinal
distance from the gradient change point (that is, the linear slope of Ihx). In addition, in the
cases where the inflow rates were lower, as the debris flow materials became coarser, the
linear slope of Ihx had a greater positive value. Thus, by using the transition indices, Ihx, we
can explicitly determine the effect of debris flow magnitudes and particle size compositions
on the transition for debris flow depths of the “frontal part” by changing the gradient.
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Figure 5. Transition indices of sediment transport modes based on flow depths of the “frontal part”
of the debris flow, Ihx, for all cases with two inflow rates.

3.3. Transition of Sediment Transport Mode Based on Changes in Gravel Migration Velocities in
the Interior of the “Frontal Part” Resulting from Changing Streambed Gradient

Figure 6 shows the gravel migration velocity distributions in the interior of the “frontal
part” of the debris flow in the cases of changing gradients and the theoretical velocity
distributions on the uniform gradients of 15◦ and 9◦ in Case 3. The flow depths used to
obtain these theoretical velocity distributions were the averaged measurement values in the
cases of changing gradient. The main parameters used to obtain these distributions, such
as the mass density of gravel types (σ), the average concentration in the static sediment bed
(C*), and the average internal friction angle (φ), were identified by trial and error so that
the distributions were consistent with the measured distributions on the uniform gradients
of 15◦ and 9◦ in Case 2 (see Figure 7). This figure also shows the averaged measured
velocities within the “median depth” of the “frontal part”, Ux, and the averaged theoretical
velocities within the “median depth”, U15◦ and U9◦ . As the debris flows flowed over longer
distances from the gradient change point, Ux became closer to the theoretical velocities
on the uniform gradient of the downstream part, U9◦ . In the cases where the inflow rates
were lower, these tendencies were more pronounced. These trends were the similar to the
aforementioned transition trends of the sediment transport concentrations and flow depths.
Therefore, the transition mechanisms of the gravel migration velocities resulting from the
changing gradient were estimated to be similar to the aforementioned mechanism. These
tendencies were confirmed in the averaged measurement velocities within the “median
depth” of the “frontal part”, Ux, for all cases where the inflow rates were lower, as shown
in Table 4. However, in the cases where the inflow rates were higher, these tendencies
were not pronounced for all cases, and in some cases there was a significant decrease in Ux
near the gradient change point. The reason for this was the same as the aforementioned
reason for the transition of the sediment transport concentrations. In other words, these
tendencies indicated that although a part of the flow causes a sudden stop (sedimentation)
by consuming the kinetic energy when the flow collides with the riverbed near the gradient
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change point, most of the transported sediment flows downstream because the consumed
momentum is less than the total debris flow momentum.
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Figure 6. Measured gravel velocity distributions in the interior of the “frontal part” of the debris flow
in the cases involving a changing gradient and theoretical velocity distributions on uniform gradients
of 9◦and 15◦ for Case 3.

Figure 8 shows the transition indices of sediment transport modes based on the
averaged gravel migration velocities within the “median depth” of the “frontal part”, IUx,
for all cases at the two inflow rates. In the case with the lower inflow rate, the linear slope
of IUx was significantly positive. This demonstrates that as the debris flows flowed greater
distances from the gradient change point, the front velocities were closer to the theoretical
velocities on the uniform gradient of the downstream part for all cases. Conversely, in the
cases with the higher inflow rate, no clear trend common to all cases is observed because
the linear slope of IUx is not monotonic. The possible reason for this is that a part of the
flow causes a sudden stop (sedimentation) by consuming of their kinetic energy because
the flow collides with the riverbed near the gradient change point. Thus, by using the
transition indices, IUx, we can explicitly determine the effect of debris flow magnitudes on
the transition for migration velocities in the interior of the “frontal part” by changing the
gradient. However, it is necessary to confirm the validity of the transition indices for other
pattern of changed gradients, except for the changed gradients from 15◦ to 9◦.
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Figure 7. Comparison of theoretical velocity distribution as suggested by Takahashi et al. [34] and
measured migration velocities for case 2 on uniform gradients of 15◦ and 9◦. The main parameters
used to obtain the theoretical velocity distribution were the mass density of gravel (σ) = 2650 kg/m3,
internal friction angle (ø) = 32◦, and concentration in the static sediment bed (C*) = 0.650.

Table 4. Averaged gravel migration velocities within the “median depth” in the interior of the “frontal
part”, U, and theoretical migration velocities of gravel within the “median depth” on the uniform
gradients, U15◦ , U9◦ , for all cases with two supplied water rates (unit; cm/s).

Case Inflow Rate
(cm3/s)

Measuring
Point U15◦ U0cm U30cm U9◦

Case 1

2000

+0 cm
+30 cm

38.128
44.759

60.098
-

-
60.463

76.188
89.439

Case 2 +0 cm 39.877 65.593 - 79.701

Case 3 +0 cm
+30 cm

45.467
41.461

52.318
-

-
68.171

90.860
82.790

Case 4 +0 cm
+30 cm 72.187 91.512

-
-

79.083 131.031

Case 5 +0 cm 103.931 83.615 - 188.748
Case 6 +0 cm 65.018 95.179 - 118.020

Case 1

1000

+0 cm
+30 cm

22.102
55.757

38.424
-

-
42.395

15.992
40.344

Case 2 +0 cm 22.000 42.999 - 55.472

Case 3 +0 cm
+30 cm

20.534
16.269

36.847
-

-
35.514

51.802
41.021

Case 4 +0 cm
+30 cm

47.604
44.788

70.068
-

-
69.550

86.410
81.298

Case 5 +0 cm 75.530 50.318 - 18.071
Case 6 +0 cm 60.641 61.651 - 16.426
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Figure 8. Transition indices of sediment transport modes based on averaged gravel migration
velocities within the “median depth” in the interior of the “frontal part” of the debris flow, IUx, for all
cases with two inflow rates.

3.4. Estimation of Transition Processes of Sediment Transport Modes Resulting from Changing
Streambed Gradient Based on Transition Indices

Based on the transition indices at all measurement points in all cases and shown in
Section 3.1 to Section 3.3, the transition processes of sediment transport modes for all cases
were estimated, as shown in Figure 9. The transitions of sediment transport modes of the
“frontal part” occurred in the section from the gradient change point (+0 cm) to +150 cm in all
cases. In the cases where the inflow rates were higher or the debris flow materials were finer
(i.e., the kinetic energies of the debris flow were larger), the transition was not completed
at +150 cm. The materials of the debris flow with larger kinetic energy were considered to
be able to maintain their dispersion in the flow interior after passing the gradient change
point owing to sufficient debris flow momentum. Conversely, when the kinetic energies
were smaller, the transition was completed in the shorter longitudinal transition sections.
Therefore, it is important to investigate the major gravel sizes and flow magnitudes of debris
flows to understand the transition processes of sediment transport modes of debris flow with
various particle size compositions owing to the changes in gradient.

Comparing the longitudinal trends of the three transition indices based on the sediment
transport concentrations, flow depths, and gravel migration velocities of the “frontal part”,
with ICsx, Ihx, and IUx at the downstream part, it is suggested that ICsx significantly increases
immediately after passing the gradient change point. On the other hand, Ihx changes most
slowly. Therefore, it is inferred that the transition process of sediment transport modes resulting
from changing streambed gradients is as follows. First, the changing streambed gradient causes
a rapid decrease in the migration velocities for some of the gravel in the interior of the debris flow.
This leads to a decrease in the sediment transport concentration. This decreases opportunities
for collisions and decreases the friction of the debris flow materials in the flow interior, leading
to a decrease in energy dissipation; therefore, the debris flow depth decreases. These stepwise
order of the changes in hydraulic quantities is not considered in the theoretical laws of the
conventional debris flow [6–16]. Therefore, the transition indices provide important findings
regarding the transition of sediment transport modes due to changing gradients. However,
as Zordan et al. [35] suggested, the stepwise order depends on the interaction between the
changing debris flow mechanism and the streambed changes at the gradient change point.
Therefore, future studies are required that focus on this interaction at the gradient change
point using experimental measurements of the changing hydrodynamic quantities, such as the
streambed shear stress measurements [35], as well as studies on the mechanistic approaches
using the constitutive laws of the debris flow with a gradient-independent global coordinate
system [22,23] or numerical approaches with the two-layer flow model or moving particle
semi-implicit (MPS) method [24,25].
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Figure 9. Estimated longitudinal transition processes of sediment transport modes of the “frontal part”
of the debris flow for all cases, based on the transition indices. Red, blue, and green values in the figure
are the transition indices of sediment transport modes at x cm downstream from the gradient change
point for the sediment transport concentration, the averaged flow depth, and the vertical averaged
gravel migration velocities at the “frontal part” of the debris flow, i.e., ICsx, Ihx, and IUx.
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4. Conclusions

In this study, using an experimental flume with two variable gradients in the upstream
and downstream parts, we investigated the transition processes of sediment transport
modes in debris flows composed of materials of various particle sizes owing to the changes
in streambed gradients. In our discussion of the transition processes along the longitudinal
distances from the gradient change point, the transition indices ICsx, Ihx, and IUx were used.
These were calculated based on measurements of sediment transport concentrations, flow
depths, and gravel migration velocities in debris flow fronts in the downstream part. The
findings of this study are as follows:

1. After a debris flow passes the gradient change point, the transition of the sediment
transport modes progresses by changing the sediment transport concentrations, flow
depths, and gravel migration velocities to those in the steady-state condition on the
gradient of the downstream part;

2. In the cases where the debris flow magnitudes are higher and the materials are finer—
that is, the kinetic energies are larger—a part of the flow will cause a sudden stop
(sedimentation) because the flow will collide with the riverbed near the gradient
change point. However, the transition of the sediment transport modes is less pro-
nounced because the dispersion of the debris flow material in the flow interior is
maintained after passing the gradient change point owing to the sufficient debris
flow momentum. Conversely, in the cases where the inflow rates are lower and the
materials are coarser, the transition is more pronounced when flowing at shorter
distances from the gradient change point. Therefore, it is important to investigate the
major gravel sizes and flow magnitudes of debris flows to understand the transition
processes caused by the changing streambed gradient;

3. By using the three transition indices, ICsx, Ihx, and IUx, we can explicitly determine the
effects of debris flow magnitudes and their particle size compositions on the transition
processes by changing the gradient. However, it is necessary to confirm the validity of
the transition indices for other patterns of changed gradients, except for the gradients
that change from 15◦ to 9◦;

4. ICsx increases significantly immediately after passing the gradient change point. In
contrast, Ihx changes most slowly. Therefore, the transition process of sediment trans-
port modes resulting from changing streambed gradients occurs as follows. First, the
changed streambed gradient causes a rapid decrease in the migration velocities of
some gravel types in the interior of the debris flow. This leads to a decrease in the
sediment transport concentration. This decreases opportunities for collisions and
decreases the friction of the debris flow materials in the flow interior, leading to a
decrease in energy dissipation. Therefore, the debris flow depth decreases.

Our future tasks include applying the proposed concept and indices for the transition
of the modes under the various conditions in terms of gradient change patterns, the flow
magnitudes, and the particle size compositions of the debris flow to investigate the validity
of the three transition indices, as well as to consider a general transition index that is
suitable for assessing the transition under various conditions.
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