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Abstract: Currently, many studies have reported that many landslides occur in tea or rubber planta-
tion areas. In these areas, it is important to make a landslide susceptibility map and to take necessary
measures to mitigate landslide damage. However, since historical landslide distribution data and
land use data are not available, quantitative landslide assessment measurements have not been made
in many countries. Therefore, in this study, landslide distribution maps and land use maps are created
with worldwide available satellite imagery and Google Earth imagery, and the relationship between
landslides and land use is analyzed in Rize, Türkiye. The results show that landslides are 1.75 to
5 times more likely to occur in tea gardens than in forests. It was also found that land use has the
highest contribution to landslides among the landslide conditioning factors. The landslide assess-
ment, using a simple landslide detection method and land use classification method with worldwide
available data, enabled us to quantitatively reveal the characteristics of landslides. The results of this
study reveal that quantitative landslide assessments can be applied in any location, where relatively
high resolution satellite imagery and Google Earth imagery, or its alternatives, are available.

Keywords: land use; quantitative landslide assessment; Rize; satellite images; tea garden

1. Introduction

Rainfall-induced landslides occur worldwide, and they cause economic losses and
human casualties every year [1]. Intense or prolonged rainfall induces landslides. Lithology,
slope gradient, slope aspect, elevation, vegetation cover, and proximity to drainage line
are considered to be influential physical parameters in the occurrence of rainfall-induced
landslides [2,3]. Regarding vegetation cover, it is well known that improper land use
change affects the landslide frequency [1,4–6]. Some studies in Türkiye [7,8], India [9], and
Sri Lanka [10,11] have reported that landslides frequently occur in areas where the land
use has converted into tea garden or rubber plantation areas. The contributing factors
for increasing landslide susceptibility are thought to be: (1) shallower roots of tea or
rubber plantations than the original trees [7,9], (2) improper drainage systems around the
plantation garden [12,13], and (3) excessive use of fertilizers [9,14].

Effective land use planning and management based on landslide risk assessment is
necessary to mitigate damages caused by landslides [15]. Landslide susceptibility can be
assessed qualitatively or quantitatively [16]. Qualitative landslide assessment is a subjective
assessment based on experience and the knowledge of the experts employed [16–19]. On
the other hand, quantitative landslide risk assessment is an objective and reproducible
assessment based on comprehensive historical data [16–18,20]. Quantitative landslide risk
assessment is useful because it provides a basis for the prioritization of measurement and
mitigation actions [16]. However, quantitative landslide risk assessment is still inadequate
in many countries [16,17,21–23], because financial resources and personnel for allocating
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baseline information to landslide assessment (e.g., landslide historical data, land use data,
rainfall data, data regarding the distribution of soil properties) are limited [24,25].

Remote sensing information is the best alternative source for collecting these lim-
ited data [26]. Current satellite images make it possible to obtain accurate time-series
information on the earth’s surface over wide areas. If satellite images before and after
landslide occurrence are available, it is a powerful tool for detecting landslide areas for
landslide susceptibility assessment in many countries [26,27]. Detecting landslides using
satellite images has the advantage of reducing the time and cost compared to conventional
methods of using field surveys and aerial photos [27–29]. Recently, high resolution and
highly revisited frequency satellite images have become more easily available, and they are
sometimes available for free. For example, the Education and Research Program of Planet
Labs provides access to the PlanetScope Imagery and the RapidEye Archive to anyone who
belongs to the university [30]. In addition, Google Earth images is a very useful alternative
for any user.

To take effective measures to mitigate landslide damages in the area, where quan-
titative landslide risk assessment is insufficient, it is very important to present an easy
method (without a high level of techniques and knowledge) to generate the data necessary
for landslide risk assessment, even if there is some compromise in the spatial resolution
accuracy of the data obtained.

The objective of this study is to generate the data that is necessary for landslide risk
assessment (such as landslide distribution map and the land use map) using globally
available satellite images and Google Earth images, to quantitatively assess the relationship
between landslide, land use, and topography, and to demonstrate the usefulness of this
series of methods.

2. Study Area and Data

The Black Sea region of Türkiye is a highly landslide-prone area, due to its steep
topography and heavy annual precipitation [3]. Many rainfall-induced landslides cause
damage in the Rize region, which is located in the Eastern Black Sea region, and there have
been 1 to 32 casualties every year from 1973 to 2010 [8]. A significant upward trend of
fatal landslides was observed in Rize from 1952 to 2019 [31]. Rize is a very famous area
for tea production, and tea is an economically valuable plant and essential for farmers [32].
The alder forests were converted to tea gardens, especially in the last 50 years, and the tea
plantation area has increased by 32 times between 1940 and 2010 [4,7,33]. Many studies have
reported that landslide incidents increase as tea garden areas increase [4,7,8,13]. Although
Karsli et al. [7] studied the effect of land use changes on landslides, studies quantitatively
evaluating the relationship between land use and landslide in Rize are rather limited.

The study area covers 683.1 km2 in Guneysu district, Derepazari district, Merkez
district, and a part of Cayeli district in Rize city, which is between a latitude of 40◦82′66′′

and 41◦08′38′′ N, and a longitude of 40◦38′86′′ and 40◦79′67′′ E (Figure 1). The altitude of
the study area ranges from 0 to 2453 m above the mean sea level. The terrain is steep and
mountainous, except for the coastal area (Figure 2). The flat coastal areas are populated
with houses, while villages and tea gardens spread out in the mountainous areas despite
the steep slopes. The geological map of the study area is shown in Figure 3.
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Figure 2. Distribution of the slope angle in the study area.

Heavy rainfall on 14 July 2021 triggered many landslides, mainly in Guneysu district
(Figure 4), which resulted in six casualties [34]. The average July monthly rainfall was
152 mm according to the Turkish State Meteorological Service (TSMS) of the Ministry of
Agriculture and Forestry [35]. However, 220 mm of rainfall was received only in 7 h [36]
and it caused these landslides.

In addition, heavy rainfall on 26 August 2010 also triggered many landslides in
Gundogdu town (Figure 4), which resulted in 14 casualties [37]. The average monthly
rainfall in August is 197 mm [35]. However, 219 mm of rainfall was received within the day
and on the day before the disaster [8], causing these landslides. For these landslides, only
the concentrated area concerning the landslide, covering 10.6 km2 and located between
a latitude of 41◦02′40′′ and 41◦05′64′′ N, and a longitude of 40◦59′39′′ and 40◦63′48′′ E, is
used for analysis (Figure 1).
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Figure 4. Heavy rainfall-induced landslides in Rize city in Türkiye. (a) Landslide in 2010 (photo from
Turkish Disaster and Emergency Management Directorate [39]). (b) Landslide in 2021 (photo from
Turkish Disaster and Emergency Management Directorate [34]).

3. Methodology

RapidEye imagery, PlanetScope imagery [30], and Google Earth imagery were used in
order to detect the landslide area and classify the land use. The details of the satellite images
used in this study are shown in Table 1. In addition, the Shuttle Radar Topography Mission
(SRTM) DEM with a 30 m resolution was used to obtain topographic parameters such as
slope gradient. The image analysis tool in ArcGIS Pro 2.6 was used for creating landslide
distribution maps and land use, and for analyzing the relationship between landslide,
land use, and other landslide-contributing factors. The rainfall data were acquired at
17 rainfall stations in Rize, and these were provided by TSMS [40]. The spatial variation
of the cumulative daily rainfall the day before and the day of the landslide in 2021 (06:00,
13 July 2021–06:00, 15 July 2021 (UTC)) were interpolated using ordinary kriging.
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Table 1. Satellite data used for landslide detection and land use classification.

Landslide Event Mission Resolution after
Processing

Sensor Type Spectral Bands
(nm)

Acquisition Date

Pre-Event Post-Event

26 August 2010 RapidEye 5 m MS B (440–510) 22 Jun 2010 16 May 2011
G (520–590)
R (630–685)
Red Edge
(690–730)

NIR (760–860)

14 July 2021 PlanetScope 4.1 m MS B (455–515) 3 July 2021 19 July 2021
G (500–590) 27 August 2021
R (590–670)

NIR (780–860)

3.1. Landslide Detection

Landslides were detected by visual interpolation or semi-automatic extraction using
Google Earth images and satellite images. Although visual interpolation is the most com-
mon method for landslide mapping, it requires experience and time, since the landslides
are mapped manually by experts [28]. Therefore, semi-automatic landslide detection is
important for quick and easy-to-implement analysis. A change detection method, which is
a semi-automatic method, was used. This method is the most common landslide detection
method since it is simple and easy to apply [41].

In this study, landslides were detected using the change detection method from
satellite images once, and then each landslide area was checked visually using Google
Earth images or other satellite images. This method reduces the required skill needed
compared with the conventional visual interpolation method. It also improves the accuracy
of the change detection method. Therefore, it improved the efficiency of landslide detection.
Only landslides of more than 100 m2 in area were targeted for detection, since it is relatively
difficult to identify small landslide areas.

The supervised classification method of the maximum likelihood classification algo-
rithm was used to detect landslides in 2010. Training samples were gathered from Google
Earth imagery. The landslide distribution map was created after visual checking using
Google Earth images.

The GSI (Grain Size Index) is the index that has a positive correlation with fine sand
content, and the GSI analysis was originally used for detecting desertification [42]. However,
in this study, GSI was used to detect landslides in 2021. GSI is calculated as follows:

GSI = (R − B)/(R + B + G) (1)

where, R, B, and G are the reflectance of the red, blue, and green bands of the satellite
images. The GSI value was close to 0 in vegetated and water areas, and high in bare soil
surfaces [42]. In this study, the landslide area was defined as GSI < 0.2 in the satellite image
before the landslide, and GSI ≥ 0.2 in the satellite image after the landslide. The landslide
distribution map was created after visual checking with satellite images that were taken
after the landslide.

3.2. Land Use Classification

In this study, three land use classes were established: tea garden, forest, and road/house/
stream. Land use before the 2010 landslide and the 2021 landslide were classified using a
Random Forest (RF) machine learning technique using satellite images. RF is an ensemble
learning algorithm that generates multiple decision trees based on random subsets of
training data [43], and it is one of the most accurate machine learning algorithms for
land use classification [44,45]. The accuracy of land use classification in a landslide area
immediately before a landslide occurs has a significant impact on the reliability of the



Water 2022, 14, 1811 6 of 15

quantitative landslide risk assessment. Therefore, after land use classification by the RF
method, land use in a landslide area was checked visually using Google Earth images.

The landslide spreading area in the 2010 rainfall event was relatively small (approxi-
mately 10 km2) and covered the coastal area, while the landslide spreading area in the 2021
rainfall event was large (approximately 370 km2) and covered coastal and steep mountain-
ous areas. It is difficult to classify land use in large and heterogeneous landscape areas [46].
Furthermore, the shadows effect on rugged terrain can lead to classification errors [47,48].
Thus, the satellite images were divided into inland and coastal areas when classifying
land use in 2021. In addition, each divided image was divided again into sunny parts and
shaded parts, using the slope aspect and the azimuth of the sun at the time that satellite
image was taken. The land use of each image was classified individually.

3.3. Analysis of the Relationship between Landslide, Land Use, and Other Landslide
Contributing Factors

The relationship between landslide and land use was analyzed statistically using a
created landslide distribution map and a land use map. The landslide area ratio, which
is the ratio of landslide area to the total area, was used for quantitative assessment. (e.g.,
Landslide area ratio in tea gardens = Landslide area in tea gardens (m2)/Total area of
tea gardens (m2) × 100). In general, the ground surface of the ground that experienced
landslides was disturbed. For the 2021 landslides, previous landslides could be detected
because Google Earth images from before the landslides are available. Therefore, follow-up
landslides were excluded from the analysis.

To clarify the difference in landslide characteristics between the tea gardens and the
forests, the relationship between landslides and the other factors (such as rainfall amount,
geology, elevation, slope aspect, slope angle, plane curvature, profile curvature, flow
accumulation, distance to the road, distance to stream, distance to first- or second-order
drainage lines) were analyzed in tea gardens and forests, individually.

To reveal the dependency of land use on the occurrence of landslides, the dependence
of each landslide conditioning factor on the occurrence of landslides was analyzed using
Hayashi’s quantification theory type II. Approximately 680,000 points were extracted from
10 km2 of landslide concentrated area, and Hayashi’s quantification theory type II was
applied. Hayashi’s quantification theory type II is a method of multivariate discrimination
analysis [49]. Except for rainfall amount, four major landslide conditioning factors (items)
that were revealed from preliminary analysis were adopted as landslide contributing
factors. Each item is divided into some categories, and the contribution of each item is
expressed as category scores and item range. A positive value of category score indicates
that the corresponding category will promote occurrences of landslides. On the other
hands, negative values indicate that the corresponding category will restrain landslides.
The order of contribution to landslide occurrence was judged from the item range. The
larger the item range, the more contribution to occurrences of landslides.

4. Result
4.1. Landslides

The landslides detected in 2010 and 2021 are shown in Figure 5. Landslides were
concentrated in a small area during the 2010 landslides, while landslides were spread over
a large area in the 2021 landslides.

In the 2010 landslides, 415 landslides were detected using the maximum likelihood
method, and 348 landslides, after visual checking. In the 2021 landslides, 13,409 landslides
were detected using GSI analysis, and 910 landslides, after visual checking (Table 2). It took
one person 15 days to visually check the landslide areas. A total of 240 landslides were
follow-up landslides, and 670 landslides were new ones. The number of actual landslides
was less than 7% of the detected landslides when using GSI analysis in the 2021 landslides,
because satellite images were taken immediately (5 days) after landslide occurrences, and
sediment flowed areas were also recognized as landslide areas.
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Table 2. Landslides that occurred in 2010 and 2021.

26 August 2010 14 July 2021

Number of landslides
Before visual check 415 13,409

After visual check 348 910

Landslide area (m2) 291,556 648,229
Minimum landslide area (m2) 104.9 104.1
Maximum landslide area (m2) 15,720.7 8378.2

Study area (km2) 10.65 683.06

4.2. Land Use

The classified land use in 2010 and 2021 is shown in Figure 6. The land use classification
accuracy assessment was performed in the multiple test area. Google Earth images were
used for creating the ground truth data. To verify the land use classification accuracy,
the homologous points in the land use map and in Google Earth images were compared
directly. Confusion matrices were created to calculate the overall accuracy, user’s accuracy,
producer’s accuracy, and kappa coefficient (Tables 3 and 4). These statistical accuracy
assessments provide a measure of confidence in the satellite image classification. Each
column of the confusion matrix represents a ground truth data, and the values in the
column correspond to the land use classification of the ground truth points. The results
indicated overall accuracies of 78.6% and 75.1%, and a kappa coefficient of 0.61 and 0.53 for
the classified images of 2010 and 2021, respectively. Although the accuracies were lower
than the recommended level [50], it was considered sufficiently accuracy to determine the
percentages of each land use type in a large area.
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Figure 6. Land use map (a) in 2010 and (b) 2021.

Table 3. Confusion matrix between ground truth and classified land use in 2010.

Ground Truth Data
SUM User’s Accuracy

Classified Tea Garden Forest Road/House/Stream

Tea garden 3663 589 205 4457 82.2%
Forest 371 1246 8 1625 76.7%

Road/House/Stream 287 84 747 1118 66.8%

SUM 4321 1919 960 7200
Producer’s accuracy 84.8% 64.9% 77.8%

Overall accuracy 78.6%
Kappa coefficient 0.61

Table 4. Confusion matrix between ground truth and classified land use in 2021.

Ground Truth Data
SUM User’s Accuracy

Classified Tea Garden Forest Road/House/Stream

Tea garden 16,051 5110 1403 22,564 71.1%
Forest 7780 35,244 921 43,945 80.2%

Road/House/Stream 1809 806 2419 5034 48.1%

SUM 25,640 41,160 4743 71,543
Producer’s accuracy 62.6% 85.6% 51.0%

Overall accuracy 75.1%
Kappa coefficient 0.53

4.3. Relationship between Landslide, Land Use, and Other Landslide Contributing Factors

The landslide area ratio in the tea gardens was 1.75 times higher than in forests in
the 2010 landslides, and five times higher than in forests, in the 2021 landslides (Table 5).
Landslides were more likely to occur in the tea gardens than in the forests, regardless of
rainfall events.
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Table 5. Landslides in each land use area in 2010 and in 2021.

Total Area (ha) Landslide Area (ha) Landslide Area Ratio (%)

2010 Tea garden 366.08 13.57 3.71
Forest 223.20 4.73 2.12

Road/House/Stream 94.11 0.41 0.43

2021 Tea garden 17,748.30 29.11 0.16
Forest 42,879.02 14.23 0.03

Road/House/Stream 9647.04 2.58 0.03

The relationship between the slope angle and landslides was analyzed in the tea
gardens and forest (Table 6). In the tea garden, the landslide area ratio increased as the
slope angle increased. The landslide area ratio reached a peak value at a slope angle of
20–30◦ in the 2010 landslide, and 30–40◦ in the 2021 landslide. This result was the same
as Yalcin [51], which indicated that almost all of the landslides occurred at angles ranging
over 10–40◦ in the eastern part of Rize. However, in the forest, there was no relation
between the slope angle and the landslide area ratio. Therefore, in the slope range of
30–40◦, the landslide area ratio in the tea gardens was 3.5 times more than in the forest in
the 2010 landslide, and 9.1 times more than in the forest in the 2021 landslide.

Table 6. Landslides and slope angles in each land use area in 2010 and in 2021.

Area (ha) Landslide Area (ha) Landslide Area Ratio (%)

Slope Angle (◦) Tea Garden Forest Tea Garden Forest Tea Garden Forest

2010 0–10 52.6 12.2 1.36 0.40 2.584 3.303
10–20 222.5 93.1 7.18 2.08 3.226 2.236
20–30 236.8 173.5 10.39 4.11 4.386 2.367
30–40 57.4 67.9 2.22 0.75 3.875 1.109

40– 1.30 1.30 0.02 0.02 1.566 1.793

2021 0–10 3197.3 2767.3 1.28 0.93 0.040 0.034
10–20 10,505.3 13,170.5 9.59 4.23 0.091 0.032
20–30 9925.1 27060.3 23.61 10.09 0.238 0.037
30–40 3698.8 21283 10.15 6.40 0.274 0.030

40– 336.1 2550.3 0.75 0.54 0.222 0.021

Landslide distribution and two-days rainfall distribution in the 2021 landslides are
shown in Figure 7. Rainfall data were lacking in the western part of the study area, so it
was not possible to interpolate the accumulated rainfall. Figure 7 shows that the landslide
concentrated area and the rainfall concentrated area were almost the same. With less
than 120 mm 48-hr rainfall, the landslide area ratio in both the tea gardens and the forest
was very low (<0.02%; Table 7). It is only in the tea gardens that the landslide area ratio
increased significantly when 48-hr rainfall exceeded 120 mm, and the landslide area ratio
increased with increasing rainfall. On the other hand, in the forest, the landslide area ratio
increased significantly when the 48-hr rainfall exceeded 160 mm. There was a smaller
number of rainfall-induced landslides in the tea gardens compared with the forest.
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Table 7. Landslide area ratio and cumulative rainfall in 2021 (data from TSMS).

Landslide Area Ratio (%)

48-hr Rainfall (mm) Tea Garden Forest

–100 0.003 0.000
100–120 0.006 0.009
120–140 0.050 0.011
140–160 0.062 0.009
160–180 0.188 0.045
180–200 0.346 0.096
200–220 0.561 0.162

The dependence of each landslide conditioning factor on the occurrence of landslides
was analyzed in the area shown in Figure 8. Our preliminary analysis revealed that land
use, slope angle, distance to the first- or second-order drainage line, and flow accumulation
(i.e., how much area drains water to a given point) are major factors for landslide occurrence.
Therefore, these four factors were chosen as items (landslide contributing factor) for analysis
using quantification theory type II. The result of quantification theory type II is shown in
Table 8. Each landslide conditioning factor can be quantified on the basis of the category
score and the item range.

The discriminative ratio was 58.3%. Judging from the range of the category scores, it
is clear that land use was the most critical factor for landslide occurrence.
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Table 8. Result of quantification theory type II analysis.

Item Category Category Score Range

Land use Tea garden 1.066
1.602Forest −0.536

Road/House/Stream −0.511

Slope angle 0◦–10◦ −0.847

1.276
10◦–20◦ −0.454
20◦–30◦ 0.429

30◦– −0.010

Flow accumulation 0 −0.162

0.924

0–5 −0.076
5–10 0.036

10–20 −0.062
20–100 0.227

100– 0.762

Distance to first or
second drainage line –20 m 0.308

0.423
20–40 m −0.115
40–60 m −0.110
60–80 m −0.070

80–100 m −0.051
100 m– 0.008

5. Discussion
5.1. Landslide Detection and Land Use Classification

Regarding landslide detection, landslide detection using the maximum likelihood
method gave much fewer mis-detections than GSI analysis. However, it is necessary to
provide training data of the landslide area to detect landslides when using the maximum
likelihood method. Immediately after a landslide occurs, it is not possible to obtain Google
Earth images that clearly show the landslide area that are necessary for creating training
data. Therefore, to detect landslides soon after a disaster, it is a more effective method to
detect landslides using GSI analysis and then to select actual landslide areas using visual
checking with another satellite image.
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In this study, landslide assessment was conducted without a field survey. The accuracy
of landslide detection using the change detection method and land use classification using
the RF method were not high. However, visual verification after these measurements
enabled us to efficiently generate the landslide distribution map and the land use map.

In countries where quantitative landslide assessment is still inadequate, it is important
to objectively reveal the characteristics of landslides, even while using a less accurate
method. In addition, to develop studies on landslides, it is essential to accumulate landslide
historical data, land use data, and rainfall distribution data, and to make them available to
the public [52].

5.2. Landslides and Tea Gardens

It is clear that in tea gardens landslides are more likely to occur in Rize. Some
differences might relate to landslide occurrences between tea gardens and forests:

• Tea roots are approximately 50 cm in depth [53]. On the other hand, field research on
rainfall-triggered landslides in another district of Rize (Kaptanpasa) with a similar
geology as that of this study revealed that the mean depth of landslides is 1.05 m, and
98% of the landslides were less than 3 m in depth [54]. The depth of the slip surface of
typical landslides around the study area tends to be deeper than the depth of the tea
roots. Even if the tea roots penetrate the slip surface of a landslide, they would have
little effect on retaining the landslide occurrence.

• Yüksek et al. [33] indicates that the average saturated hydraulic conductivity from the
surface to 50 cm depth is 8.5 mm/h in the tea garden, and 24.7 mm/h in the forest [33].
Üyetürk [55] indicates that the saturated hydraulic conductivity in the tea gardens are
in range of 0.54 to 3.96 mm/h. Therefore, it is easy to saturate the surface soil layer in
the tea gardens, and greater surface flow can occur in the tea gardens than in the the
forest. Yalcin [56] mentions that surface runoff is one of the primary factors leading to
a landslide. In addition, some studies have reported that in order to reduce landslide
incidences in tea gardens, it is important to make a proper drainage system that can
collect rainfall and prevent its infiltration into the soil [8,13,14,56].

• In terms of the soil properties of the tea gardens and the forest, Yüksek et al. [33]
indicates that saturated hydraulic conductivity, porosity, soil organic matter, plant
available water, and total N are significantly different. The introduction of cultivation
techniques using fertilizers has affected soil properties.

However, it is still not comprehensively clear how these differences affect landslide
occurrence in the tea gardens. Clarification on the mechanism of landslides in tea gardens
is required for future studies.

5.3. Landslides in Tea Gardens in Rize and Other Regions

Japan is also a tea-producing country, and one of the most landslide-prone countries
in the world. Heavy rainfalls occur frequently and induce landslides. Heavy rainfall over
11 August 2021–15 August 2021 induced more than 80 landslides in tea gardens in Ureshino
city, Saga prefecture (33◦06′2′′ N and 130◦03′31′′ E). The accumulated rainfall was 1178
mm, which was four times higher than the average August monthly precipitation [57].
In addition, heavy rainfall on 14 July 2012 induced some landslides in the tea gardens,
and more than 40 ha of tea gardens were damaged in Yame city, Fukuoka prefecture
(33◦21′19′′ N latitude and 130◦55′79′′) [58]. The daily rainfall was 415 mm, which was the
highest record in Yame city [59]. However, landslides in forests have been reported much
more frequently than in tea gardens in Japan [60,61]. Some differences might relate to the
landslide occurrence between the tea gardens in Rize and in Japan:

• A total of 72% of tea gardens were on ground that was inclined more than 15◦ in
Rize. On the other hand, only 32% of tea gardens were on slopes steeper than 15◦ in
Japan [62]. In short, many more tea gardens are on a steep slope in Rize. In addition,
the steeper the slope angle, the higher the landslide area ratio, both for Rize and for
Japan. However, the landslide area ratio achieves a peak value of around 25–30◦ in
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tea gardens in Rize, while it is generally 30–35◦ in Japan [63]. This means that more
landslides tend to occur on smaller slope angle in Rize, as compared to Japan. The
synergistic effects of these two differences between Rize and Japan might be the reason
for why a collapse is more likely to occur in tea gardens in Rize than in Japanese
tea gardens.

• In Japan, it is common practice to pile up stone walls in tea gardens with steep slopes
to prevent soil erosion and to stabilize slopes. However, in Türkiye, it seems that such
landslide prevention measures are not thoroughly implemented in tea gardens.

However, it is still not clear how the tea gardens in Rize differ from those in Japan, and
what the crucial difference are for landslide occurrence. It would be useful, in considering
effective landslide mitigation measures in Türkiye, to clarify the differences between tea
gardens in Rize and in Japan.

6. Conclusions

This study aimed to quantitatively assess the relationships between land use and
landslides, using globally available data. The landslide distribution map and land use map
in Rize were prepared using globally available satellite images and Google Earth images.
Additionally, it was found that landslides were 1.75 to 5 times more likely to occur in the
tea gardens than in the forest. In addition, less rainfall triggers landslides in the tea gardens
than in the forest. In addition, the landslide area ratio dramatically increases when the
48-hr rainfall exceeds 120 mm in the tea gardens and 160 mm in the forest. Additionally, in
steep sloped areas (where the slope angle is 30–40◦), landslides were 3.5 to 9.1 times more
likely to occur in the tea gardens than in the forest.

Even if there are no landslide historical records, it is possible to create a landslide
distribution map and to quantitatively assess landslide susceptibility using rather high
resolution satellite images and Google Earth images, or alternative images. Therefore, there
is a possibility for conducting landslide assessments quantitatively in any location, where
those images mentioned above are available.
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Acad. Eng. Sci. 2011, 6, 1200–1211. (In Turkish)

http://doi.org/10.5194/nhess-18-2161-2018
http://doi.org/10.1007/s002540000163
http://doi.org/10.1007/s00254-001-0454-2
http://doi.org/10.3390/s8106188
http://doi.org/10.1007/s10661-012-2855-y
http://doi.org/10.3390/ijerph18189445
http://doi.org/10.1007/s10661-008-0481-5


Water 2022, 14, 1811 14 of 15

9. Yunus, A.P.; Fan, X.; Subramanian, S.S.; Jie, D.; Xu, Q. Unraveling the Drivers of Intensified Landslide Regimes in Western Ghats,
India. Sci. Total Environ. 2021, 770, 145357. [CrossRef]

10. Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. Assessing Soil Erosion Hazards Using Land-Use Change and Landslide
Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka. Remote Sens. 2020, 12, 1483. [CrossRef]

11. Perera, E.N.C.; Jayawardana, D.T.; Ranagalage, M.; Jayasinghe, P. Spatial Multi Criteria Evaluation (SMCE) Model for Landslide
Hazard Zonation in Tropical Hilly Environment: A Case Study from Kegalle. Geoinfor. Geostat. Overv. 2018, S3. [CrossRef]

12. Vasantha Kumar, S.; Bhagavanulu, D.V.S. Effect of Deforestation on Landslides in Nilgiris District—A Case Study. J. Indian Soc.
Remote Sens. 2008, 36, 105–108. [CrossRef]

13. Hacisalihoglu, S.; Gumus, S.; Kezik, U. Land Use Conversion Effects Triggered by Tea Plantation on Landslide Occurence and
Soil Loss. Fresenius Environ. Bull. 2018, 27, 2933–2942.

14. Yalcin, A. Environmental Impacts of Landslides: A Case Study from East Black Sea Region, Türkiye. Environ. Eng. Sci. 2007, 24,
821–833. [CrossRef]

15. Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide Risk Assessment and Management: An Overview. Eng. Geol. 2002, 64, 65–87. [CrossRef]
16. Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.;

Agliardi, F.; et al. Recommendations for the Quantitative Analysis of Landslide Risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263.
[CrossRef]

17. Lee, E.M. Landslide Risk Assessment: The Challenge of Estimating the Probability of Landsliding. Q. J. Eng. Geol. Hydrogeol.
2009, 42, 445–458. [CrossRef]

18. Aleotti, P.; Chowdhury, R. Landslide Hazard Assessment: Summary Review and New Perspectives. Bull. Eng. Geol. Environ.
1999, 58, 21–44. [CrossRef]

19. Quesada Román, A. Landslides and Floods Zonation Using Geomorphological Analyses in a Dynamic Basin of Costa Rica. Rev.
Cart. 2021, 102, 125–138. [CrossRef]

20. Quesada-Román, A. Landslide Risk Index Map at the Municipal Scale for Costa Rica. Int. J. Disaster Risk Reduct. 2021, 56, 102144.
[CrossRef]

21. van Westen, C.J.; van Asch, T.W.J.; Soeters, R. Landslide Hazard and Risk Zonation—Why Is It Still so Difficult? Bull. Eng. Geol.
Environ. 2006, 65, 167–184. [CrossRef]

22. Castellanos Abella, E.A.; Van Westen, C.J. Qualitative Landslide Susceptibility Assessment by Multicriteria Analysis: A Case
Study from San Antonio Del Sur, Guantánamo, Cuba. Geomorphology 2008, 94, 453–466. [CrossRef]

23. Gaprindashvili, G.; Guo, J.; Daorueang, P.; Xin, T.; Rahimy, P. A New Statistic Approach towards Landslide Hazard Risk
Assessment. Int. J. Geosci. 2014, 5, 38–49. [CrossRef]

24. Harp, E.L.; Reid, M.E.; McKenna, J.P.; Michael, J.A. Mapping of Hazard from Rainfall-Triggered Landslides in Developing
Countries: Examples from Honduras and Micronesia. Eng. Geol. 2009, 104, 295–311. [CrossRef]
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