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Abstract: It is necessary to predict dam inflow in advance for flood prevention and stable dam
operations. Although predictive models using deep learning are increasingly studied, these existing
studies have merely applied the models or adapted the model structure. In this study, data prepro-
cessing and machine learning algorithms were improved to increase the accuracy of the predictive
model. Data preprocessing was divided into two types: The learning method, which distinguishes
between peak and off seasons, and the data normalization method. To search for a global solution,
the model algorithm was improved by adding a random search algorithm to the gradient descent of
the Multi-Layer Perceptron (MLP) method. This revised model was applied to the Soyang Dam Basin
in South Korea, and deep learning-based discharge prediction was performed using historical data
from 2004 to 2021. Data preprocessing improved the accuracy by up to 61.5%, and the revised model
improved the accuracy by up to 40.3%. With the improved algorithm, the accuracy of dam inflow
predictions increased to 89.4%. Based on these results, stable dam operation is possible through more
accurate inflow predictions.

Keywords: multi-layer perceptron; dam inflow prediction; data normalization; seasonal division;
weights update algorithm; machine learning

1. Introduction

To ensure stable dam operation during the peak season, it is necessary to predict
the dam inflow discharge. In the past, the inflow was predicted by approximating the
rainfall-runoff relationship in a watershed based on hydraulic and hydrological models.
However, recent studies have been conducted using deep learning models, such as the
multi-layer perceptron (MLP) model, based on long-term observation data.

Deep learning models use a large amount of data and a specific algorithm to make deci-
sions, predictions, and classifications. Initially, artificial neurons that simulate human brain
neurons were proposed as a one-dimensional response model of inputs and outputs [1].
Based on this artificial neuron theory, a perceptron learning method that outputs a single
result from multiple inputs has been proposed [2]. By adding a hidden layer and an error
backpropagation algorithm to existing models, model learning can solve more complex
nonlinear problems [3]. The MLP model is composed of several layers, which become more
complex and sophisticated as the number of layers and nodes increases, and therefore
requires more computational resources. Various methods to improve the MLP model have
been proposed and can be divided into two main types.

The first type is an improvement of the model structure itself, such as a convolutional
neural network (CNN) model [4]. This model combines effective image analysis while
significantly reducing the amount of data by applying a filtering technique. Similarly,
a recurrent neural network (RNN) model was proposed that can reflect the changes in
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temporal and spatial antecedents by modifying the forward operation direction to a cyclic
structure [3]. Based on the RNN model, a long short-term memory (LSTM) model with a
built-in forget gate was proposed to solve the vanishing gradient problem [5]. In addition,
a gated recurrent unit (GRU) model with improved performance and fewer parameters
than the LSTM model has been suggested [6]. Various methods of model improvement
have been made, including a “drop out” method to increase performance by adjusting the
degree of connection between nodes and omitting unnecessary information [7].

The second type of improvement of the internal algorithms includes the “activation
function” or “optimizer”, which is used during model training. The rectified linear unit
(ReLU) and leaky rectified linear unit (leaky ReLU) are widely known and used in rep-
resentative studies on the improvement of the activation function [8–10]. In the case of
optimizer improvement, a resilient backpropagation (RProp) algorithm that updates each
of the weights in the network by considering only the signs of partial derivatives was
proposed [11]. An adaptive gradient (AdaGrad) algorithm that reflects the past amount
of gradient change was proposed [12]. To solve the problem of poor learning ability in
RProp when learning in mini-batches, the root-mean-square prop (RMSProp) algorithm
was proposed, which takes the gradient into account [13]. Recently, the most widely used
optimizer has been adaptive moment estimation (Adam), which combines the advantages
of both the AdaGrad and RMSProp algorithms [14].

Many researchers have performed mathematical and hydrological predictions using
deep learning models [15]. Water level predictions for the Trinity River located in Texas
were performed using RNN [16]. A rainfall-runoff model was built using artificial neural
network (ANN) and LSTM, and the water level prediction accuracy was superior to
that by the existing physical-based model [17]. An LSTM rainfall-runoff model that can
reflect the retention effect of the watershed [18], as well as an LSTM model for river-level
prediction [19] was suggested. A method for predicting monthly runoff using LSTM and
an ant lion optimizer model was also proposed [20]. For reservoir operation, a decision-
making algorithm using an ANN, support vector regression, and deep learning algorithm
was proposed [21]. Rapid spatiotemporal flood prediction was performed based on the
LSTM model [22]. A method for predicting inflow in a distributed hydrological model
using RNN was proposed [23]. LSTM has been used to predict flooding in a model of the
global hydrological context [24]. LSTM was used to predict the flow of the Brazilianos River
basin in Texas [25]. A rainfall-runoff model that can be used in unmeasured watersheds
was suggested using LSTM [26]. Monthly rainfall was predicted using RNN and LSTM [27].
Several models and algorithms have been applied to predict hydrological data such as
rainfall, water level, and discharge. However, it is necessary to improve the model structure
or algorithm rather than simply apply it.

The deep learning algorithm uses a calculation method that reduces loss through a
gradient descent calculation and thereby aims to find the global optima more effectively.
However, although gradient descent is effective in finding local optima, it lacks the ability
to find global optima in complex nonlinear problems. In water resource management,
which deals with the complex natural phenomena of rainfall-runoff, many parameters
are used to predict flow discharge. Therefore, various studies have been conducted on
predictive models combining the MLP model and meta-heuristic optimization. A combined
model for rainfall-runoff prediction was suggested by combining the MLP and a genetic
algorithm [28]. A rainfall prediction model was developed by combining an ANN with a
genetic algorithm [29]. A daily rainfall-runoff prediction model that combined an ANN
with a genetic algorithm [30] and a water level prediction model using a hybrid ANN model
with a genetic algorithm was suggested [31]. However, as the hidden layer of the model
increases in deep learning, more resources are required for the meta-heuristic algorithm
calculations. Therefore, it is necessary to improve the model to ensure the accuracy of the
existing deep-learning model and simplify the calculation.

The accuracy of the prediction model is calculated based on the difference between
the actual value and the predicted value. In addition, it is an important factor because this
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error is used as an objective function in the learning process of the model. Studies have
been conducted to measure the accuracy of the model in various subjects. An evolutionary
model of drag coefficient using genetic programming was developed, and its accuracy was
comparatively analyzed [32]. An algorithm to optimize the shape of labyrinth spillways
using meta-heuristic algorithms is presented [33]. Based on the Muskingum model, reverse
flood routing was performed in rivers, and the accuracy was analyzed [34]. Bayesian
network was used to predict the longitudinal dispersion coefficient in natural rivers, and
the accuracy was reviewed [35]. To predict the performance of tunnel boring machines,
multi-gene genetic programming was proposed [36]. In this study, the model accuracy was
quantitatively expressed by referring to these papers.

This study aimed to develop a deep learning model to predict inflow into the dam basin
from upstream water gauge data. To improve the prediction accuracy of the model, the time
series data were divided into “peak season” and “off season”. Then, data normalization
was applied to reduce the error due to seasonal discharge fluctuations and the deviation of
the measured values. In addition, the revised MLP (RMLP) model, which includes a new
learning algorithm, was proposed to improve prediction accuracy. This algorithm adds two
random search components, “boundary random (BR)” and “proportional random (PR)”, in
the weight update step. This prevents the MLP model from being fixed on the local solution
and allows the global optima to be obtained simply and effectively. In this study, a daily
inflow prediction model was developed for the Soyang Dam Basin. To increase the accuracy
of the model, data preprocessing was performed, and an RMLP model with an improved
learning algorithm was suggested. For accuracy analysis, test data were applied to the
trained model, and the preprocessing and model improvement effects were compared.

2. Methodologies

The study comprised four major stages. The first stage was the data-acquisition stage.
The status of the target watershed was analyzed, and the required data point and period
were selected. The second stage was data preprocessing. The acquired data were divided
into training, validation, and test datasets, according to the measurement year. In this
stage, two preprocessing steps were performed to improve the performance of the model.
(1) Input data were divided into peak and off seasons and above- and below-average based
on the water level gauge; (2) Input data were normalized to have a value between zero and
one. Seasonal division and normalization were also performed. The third stage involved
the construction of the MLP model to predict dam inflow. The analysis was performed
for four scenarios: without preprocessing, seasonal division, normalization, and applying
combined seasonal division and normalization. Next, an RMLP model with a random
search algorithm was developed and analyzed in the same manner. Finally, the prediction
results of the test datasets for the preprocessing and model improvement effects were
compared. Figure 1 is a graphical overview representing the methodology of the study.

Figure 1. Methodology of the study.
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2.1. Data Preprocessing: Seasonal Division

The water level and flow discharge were characterized by significant differences
between the peak and off seasons. When rainfall occurred, the water level and flow
discharge increased rapidly and then decreased over time. However, when no rainfall
occurred, the water level and flow discharge were low because of the small base runoff.
In South Korea, rainfall events are concentrated during the rainy season. Therefore, batch
training the entire dataset results in a high possibility of decreased prediction accuracy
during the peak season. To solve this problem, 1© the input data were divided according
to the upstream water level. The separation criterion was the average water level at the
level gauge. In this study, two data points were used for the upstream water level. Peak
season was defined when both water levels exceeded their average height, and all other
conditions were defined as the off season, 2© Model training was performed in the peak
and off seasons, respectively, and 3© the two models were combined after the learning
phase was completed. To verify the accuracy of the model, the discharge was predicted
by dividing it into peak and off seasons based on the water level of the input data, and
the model error and accuracy were calculated by combining the two results. The seasonal
division process is briefly represented in Figure 2.

Figure 2. Seasonal division process.

2.2. Data Preprocessing: Normalization

The data used for model training had different ranges and deviations, depending on
the measurement point and type. When biased data were used as inputs to the model,
biased results can be obtained during the training process of the model. To prevent this,
all water level and discharge data were normalized between zero and one. This process
was performed individually for the training, validation, and testing datasets. The data
normalization process, called min-max scaling, was calculated using Equation (1).

Xscaled =
(

Xoriginal − Xmin

)
/ (Xmax − Xmin) (1)

where Xscaled is the normalized data, Xoriginal is the original data without preprocessing,
Xmin and Xmax are the minimum and maximum values, respectively, among the input data
X. This process made it possible to remove the bias due to the deviation of the data point
characteristics.

2.3. Model Composition

Except for their respective learning algorithm, the MLP and RMLP models have the
same model and structure. The MLP model consisted of a dense structure, four hidden
layers, and ten nodes per layer. There were two input nodes and one output node because
the input data were the water level data of two locations, and the output datum was the
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predicted dam inflow. The activation function and optimizer of the model were the ReLu
and Adam, respectively. The goal of the model training was to predict the average daily
inflow of the dam through the upstream water level. Therefore, the daily average data
were the temporal resolution. The model was written using Spyder (version 5.1.5), an
open-source platform development environment based on the Python (version 3.8.12 64-bit)
programming language. The structure of the model is shown in Figure 3.

Figure 3. Structure of the model.

Because the goal of this model was to approximate the inflow discharge, the mean
squared error (MSE) was selected to calculate the error between the predicted model and
the observed data. MSE is the average of the squares of the difference between the predicted
and actual values. In general hydrology, the peak discharge during the peak season is more
important than that during the off season. Therefore, an MSE that exaggerated the error in
the peak discharge was selected. However, it depends on the scale of the data and has a
weakness against data noise which is a disadvantage. Therefore, it is necessary to remove
noise through data normalization.

2.4. Random Search Algorithm

The current MLP model calculates the gradient and performs weight updates using
an optimizer. However, in this study, a new algorithm for updating the model weights is
proposed. It adds two random searches (boundary and proportional random) to obtain
smaller errors compared to the basic MLP model. The first step of the random search was
“boundary random (BR)”, which was randomly changed within the range of the initial
value of the weight. The random change was performed independently with the probability
of the BR parameter for all weights in the model. The BR was calculated using Equation (2).

Boundary Random : wk = R0 × w0 (when Rk ≤ BR) (2)

where wk is kth weight of the model, R0 is random value between -one and one, w0 is
an initial boundary of model weight, Rk is random value between zero and one for kth
weight, and BR is the boundary random parameter and a preset value when constructing
the model.

The second step was “proportional random (PR)”, which changed in proportion to the
current weight value. In the PR method, the intensity of the weight change was assigned
as a learning rate parameter (α). The PR was calculated using Equation (3).

Proportional Random : wk = wk(αR0 + 1) (when BR < Rk ≤ PR) (3)
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where α is the learning rate, PR is the proportional random parameter. Both were deter-
mined when constructing the model.

A random search was performed with an independent probability for all the weights.
If neither BR nor PR was selected, the original values were maintained. The sum of the
probabilities of the two parameters did not exceed one. Setting the parameter value was
important because it affected the analysis results. In this study, parametric sensitivity
analysis was performed and BR = 0.05, PR = 0.01, and α = 0.01 were set as optimal values.

2.5. Model Training Process

In the model training process, the MLP and RMLP followed a similar framework.
First, the data were divided into training, validation, and testing datasets. In this study,
daily data from 2004 to 2021 were used. Data from 2004 up to 2015 were classified as the
training dataset, data from 2016 to 2018 as the validation dataset, and data from 2019 to
2021 as the test dataset. In the data preprocessing stage, based on the value of the upstream
water level gauge, the dataset was (1) constructed by dividing it into above-average (peak
season) and below-average (off season), (2) normalized to have a value between zero and
one through min-max scaling, and (3) analyzed when preprocessing (seasonal division
and normalization) was applied. The initial weight of the model also affected the learning
performance. In this study, the initial boundary was set to 0.8 through sensitivity analysis.
Accordingly, the initial weight of the model was randomly configured within the range
of ±0.8. The initial loss for the original model without preprocessing was calculated as
MSE, and the weight update was performed by calculating the gradient of the loss. For the
weight update, the current method (MLP) and the new algorithm (RMLP) were applied.
In RMLP, before updating the weights, the results derived from the random search were
compared with the results of MLP using the current optimizer, and the more accurate
weights were transferred to the next epoch. If the random search result was worse than the
current optimizer result, the next epoch was performed using the current optimizer result.
Thus, better alternatives were selected, resulting in more effective results compared to the
existing model. This process was repeated from the MSE calculation until the number of
epochs exceeded 100,000. The learning process of the model is illustrated in Figure 4.

Figure 4. Learning process of the model.



Water 2022, 14, 1878 7 of 22

In general, the training error continuously decreased as the epoch progressed. How-
ever, the validation error may show a different pattern. This problem called overfitting
occurred because the model training data are limited. To solve the overfitting problem, the
validation error was continuously tracked during the learning process, and the result with
the smallest validation error was selected as the final model. In the learning process, the
validation error was analyzed by repeating 20 epochs up to 100,000 times.

3. Application and Results
3.1. Target Area

The target watershed was the Soyang Dam Basin, located in Gangwon-do, South
Korea, as shown in Figure 5. The area of the basin was 2694.4 km2, the basin circumference
was 383.6 km2, the average width of the basin was 16.5 km, and the average watershed
slope was 46.0% [37]. The flow discharge into the Soyang Dam was generated from the
Inbukcheon and Soyang rivers. The Soyang Dam was built at the exit of the basin with
a storage capacity of 2.9 billion tons. Daily average water level data from 2004 to 2021
were acquired from two water gauges (Wontong and Wondae) installed in Inbukcheon and
Soyang rivers, respectively. The daily average dam inflow data for the same period was
investigated to determine the water level-inflow discharge time series data.

Figure 5. Target area.

3.2. Preparation of Input Data

Data from two water gauges located in the middle and upstream of the Soyang
Dam Basin and the dam inflow were used as training data for the prediction model. The
daily average data from 2004 to 2021 were provided by the Water Resource Management
Information System (WAMIS) [38]. Data preprocessing was performed to build the training,
validation, and test models. A total of 4383 data points from 2004 to 2015 were used as the
training dataset, 1096 data points from 2016 to 2018 were used as the validation dataset, and
the remaining 1096 data points from 2019 to 2021 were used as the test dataset. The cases
where both the Wondae and Wontong water levels were above average were classified as
the peak season, and the other cases were classified as the off season. The total number
of days corresponding to the peak season was 1717, including the 1183 days of training
data, 240 days of validation data, and 294 days of test data. The off season was 4858 days
long, comprising 3200 days of training data, 856 days of validation data, and 802 days of
test data. The number of each dataset and its maximum and minimum values are listed in
Tables 1 and 2.
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Table 1. Number of data for each dataset.

Index Training Validation Test Total

Peak season 1183 240 294 1717

Off season 3200 856 802 4858

Total 4383 1096 1096 6575

Table 2. Maximum and minimum values of each dataset.

Index Location
Training Validation Test

Max. Min. Max. Min. Max. Min.

Peak season

Wondae
(El.m.) 7.33 2.61 6.55 2.66 6.11 2.61

Wontong
(El.m.) 4.13 0.67 3.75 0.67 4.43 0.67

Soyang Dam
(m3/s) 4208.2 18.9 3918.5 26.5 3373.1 27.1

Off season

Wondae
(El.m.) 5.24 0.84 4.14 1.23 3.51 1.43

Wontong
(El.m.) 1.15 0.34 0.69 0.34 0.91 0.26

Soyang Dam
(m3/s) 223.8 0.0 198.7 0.0 98.6 0.0

The entire dataset had two sets of water level data and one set of dam inflow data. This
was further divided into training, validation, and test data according to the measurement
year. The peak season (blue line) and off season (black line) were differentiated according
to the water level. Seasonal changes in the water level and inflow discharge were clearly
visible. The inflow discharge was closer to zero during the off season and showed a large
difference between annual peak seasons. Therefore, more accurate prediction results could
be obtained by training the model and dividing the peak and off seasons. The entire input
dataset is presented as a time-series graph, as shown in Figure 6.

Figure 6. Entire input dataset.
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Figure 7 shows the input data separated according to the type of preprocessing, using
the Wondae gauge dataset as an example.

Figure 7. Data separation according to the type of preprocessing.

Four types of preprocessing methods were applied to the MLP and RMLP models.
Figure 7a shows the original data without preprocessing. The blue line corresponds to the
peak season, and the black line corresponds to the off season, which was used as learning
data, as shown in Figure 7b. Figure 7c shows the data normalized to between zero and one,
and Figure 7d shows the data that applies both seasonal division and normalization.

In this study, eight cases were classified according to the model and preprocessing
types. In the MLP model, Case 1 (without preprocessing), Case 2 (seasonal division), Case 3
(data normalization), and Case 4 (both seasonal division and normalization) were applied.
Similarly, the RMLP model was classified from Cases 5 to 8. The total cases are presented
in Table 3.

Table 3. Model number according to data preprocessing.

Type Input Data
Model Number

MLP RMLP

A Original data Case 1 Case 5

B Seasonal division Case 2 Case 6

C Normalization Case 3 Case 7

D Seasonal division & normalization Case 4 Case 8

3.3. Model Parameter Estimations for MLP and RMLP

Because model parameters affected the performance of the MLP and RMLP models,
it was important to set appropriate values. Each model required different parameters. In
the MLP model, the range of the initial weights (W0) should be set. This value was used
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when building the model initially and was not involved in the subsequent learning process.
However, in the gradient descent, the initial value was important because it affected the overall
learning result. In this study, the model parameters were determined through parameter
sensitivity analysis. The results were compared by setting the range of the initial weight in
four steps: 0.2, 0.4, 0.6, and 0.8. After training the model, the test dataset was used to compare
the MSE with the smallest value. The analysis was repeated ten times, and 10,000 epochs were
analyzed during each analysis cycle. The average and minimum values of the test error for
each parameter were analyzed, as shown in Table 4. Finally, the MLP model parameter was
determined to be W0 = 0.8 with the smallest mean and minimum errors.

Table 4. Sensitivity analysis of MLP model parameters.

Model Parameter Value Epochs Number of Trials Avg. MSE
(m3/s)2

Min. MSE
(m3/s)2

MLP Range of initial weight [W0]

0.2 10,000 10 26,650 23,557

0.4 10,000 10 24,435 15,339

0.6 10,000 10 23,589 13,844

0.8 10,000 10 19,533 11,168

In the RMLP model, four parameters were set. The BR and PR parameters represented
the probability of performing each random search with a value between zero and one. The sum
of these two probabilities did not exceed one. A sensitivity analysis of the two parameters was
performed for four cases: 0.0, 0.01, 0.05, and 0.1. The learning rate (α) indicated the strength of
the existing weight values when PR was applied. Sensitivity analysis was performed using
four values: 0.01, 0.04, 0.07, and 0.1. Finally, the range of the initial weight was analyzed using
four values: 0.2, 0.4, 0.6, and 0.8. Unlike that in MLP, when applying BR, the range of the initial
weight must be considered continuously. In this study, assuming a small learning rate effect, α
was fixed at 0.01, and then the analysis was performed ten times for all 64 cases configurable
with the remaining three parameters: BR, PR, and W0. The test error had minimum values
at BR = 0.05, PR = 0.01, and W0 = 0.8. Subsequently, the three parameters were fixed, and
sensitivity analysis of the learning rate was performed to obtain a minimum error at α = 0.01.
Finally, the RMLP model parameters were determined as BR = 0.05, PR = 0.01, α = 0.01, and
W0 = 0.8. Table 5 presents the sensitivity analysis results for the RMLP model parameters.

Table 5. Sensitivity analysis of RMLP model parameters.

Model Parameter Value Epochs Number of Trials Avg. MSE
(m3/s)2

Min. MSE
(m3/s)2

RMLP

Boundary
random
(BR)

0.0 10,000 10 23,046 12,185
0.01 10,000 10 23,463 20,213
0.05 10,000 10 17,844 11,167
0.1 10,000 10 21,857 12,617

Proportional
random
(PR)

0.0 10,000 10 22,645 12,454
0.01 10,000 10 17,844 11,167
0.05 10,000 10 23,806 18,173
0.1 10,000 10 23,716 13,165

Learning rate
(α)

0.01 10,000 10 17,844 11,167
0.04 10,000 10 23,059 12,798
0.07 10,000 10 19,058 12,443
0.1 10,000 10 21,796 11,274

Range of
initial weight

(W0)

0.2 10,000 10 25,028 14,444
0.4 10,000 10 24,538 14,203
0.6 10,000 10 23,680 12,909
0.8 10,000 10 17,844 11,167
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As a result, except for the case of zero (without BR), the error decreased and then
increased in a concave shape and was the smallest at BR = 0.05. Conversely, PR showed a
convex shape and had the highest accuracy at PR = 0.01, the minimum value excluding
zero (without PR). The learning rate showed a convex shape, with a minimum error at
α = 0.1. In both MLP and RMLP, the model accuracy improved as the range of initial
weight increased. The model accuracy according to the change of each parameter is shown
in Figure 8.

Figure 8. Change in model accuracy with parameter sizes.

The parameters of the MLP and RMLP models were determined through parameter
sensitivity analysis, as shown in Table 6.

Table 6. Result of model parameter determination.

Model Parameters Value

MLP Range of initial weight (W0) 0.8

RMLP

Boundary random (BR) 0.05
Proportional random (PR) 0.01

Learning rate (α) 0.01
Range of initial weight (W0) 0.8

In the MLP model, the range of the initial weight value (W0) was set to 0.8. In the
RMLP model, the BR parameter was 0.05, PR parameter was 0.01, learning rate (α) was
0.01, and the range of initial weight (W0) was set to 0.8, the same as in the MLP model.

3.4. Data Preprocessing Results

For the analysis of the preprocessing effect of the input data in the MLP and RMLP
models, learning for eight cases was performed using four types of input data and two mod-
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els. The analysis was repeated 20 times and was performed for up to 10,000 epochs during
each cycle. Training and validation errors were calculated for each epoch, and the model
with the smallest validation error was selected as the final model. The performance of the
model is shown in Table 7 as MSE for the test data.

Table 7. Model performance and error analysis by case.

Model Index Input Data Epochs Number
of Trials

Test Error
(MSE)
(m3/s)2

Error
Difference

(m3/s)2

MLP

Case 1 (a) Original data 10,000 20 11,006 -

Case 2 (b) Seasonal division 10,000 20 14,370 +3364
(+30.6%)

Case 3 (c) Normalization 10,000 20 8985 −2021
(−18.4%)

Case 4 (d) Seasonal division
and normalization 10,000 20 4511 −6495

(−59.0%)

RMLP

Case 5 (a) Original data 10,000 20 11,344 -

Case 6 (b) Seasonal division 10,000 20 12,251 +907
(+8.0%)

Case 7 (c) Normalization 10,000 20 5366 −5978
(−52.7%)

Case 8 (d) Seasonal division
and normalization 10,000 20 4368 −6976

(−61.5%)

In the MLP model, the test error of the inflow prediction result without preprocessing
(Case 1) was 11,006. When dividing the peak season and off season (Case 2), it was 14,370,
which was an increase of 3364 (30.6%). When data normalization was performed (Case 3),
MSE was 8985, which was reduced by 2021 (18.4%) compared to that of Case 1. The result
of applying both preprocessing steps (Case 4) was 4511, which decreased by 6495 (59.0%)
compared to that of Case 1. All results with normalization showed better results than
those of Case 1 because normalization reduced the error caused by the deviation of the
training data. In contrast, when only seasonal division was applied, the error increased
compared to the original results without preprocessing. Owing to flood characteristics
in South Korea, the difference between the peak and off seasons was large, and the low
discharge was close to zero. When the discharge was small, the MSE was relatively small,
even if an error occurred. When the discharge was large, MSE became large because the
square of the deviation increased, while the amount of data was small. The error was the
smallest when both preprocessing techniques were applied. Therefore, normalization must
be applied with seasonal division. The instability that occurred in the peak season model
was reduced through the normalization process. Consequently, the prediction accuracy of
the combined peak and off seasons was significantly improved when both preprocessing
methods were applied.

The results of the RMLP model analysis showed similar patterns. For the discharge
prediction without preprocessing (Case 5), the test error was 11,344. When analyzed by
dividing the peak and off seasons (Case 6), the MSE was 12,251, which increased by 907
(8.0%) compared to that in Case 5. After data normalization (Case 7), the MSE decreased
from 5978 (52.7%) to 5366. When both preprocessing steps were applied, the MSE was 4368,
which is 6976 (61.5%) less than the MSE of Case 5. As with the MLP results, applying both
preprocessing methods was more effective than only applying the normalization method.

The difference between the measured flow rate and the predicted value was compared
using a diagram. The analysis was centered on July–September 2020, when the largest flow
occurred among the test datasets. Figure 9 shows the measured flow discharge and the
prediction results of Cases 1–4 using the MLP and Cases 5–8 using the RMLP models.
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Figure 9. Inflow prediction results of the MLP (Cases 1–4) and RMLP (Cases 5–8) models. The black
line means observed discharge, and the blue triangle indicates predicted discharge with the original
data, the purple circle is the seasonal division, the red diamond is the normalization, and the green
square is the result when all preprocessing was used.

This graph indicates that three major flood events occurred in 2020. There was a single
peak event at (1), multiple smaller peak events, the largest event at (2), and two more peak
events at (3). In case (1), the peak discharge was small, and the hydrograph only changed
slightly. The preprocessing and model improvement results were not significantly different,
and both were predicted relatively accurately. When data preprocessing was not used
(Case 1), or only seasonal division was used (Case 2), the peak was underestimated, and
the accuracy of the flow reduction curve was poor. The results with normalization (Case 3)
predicted a relatively accurate peak discharge, and there was a minor improvement in
the low discharge. When applying both seasonal division and normalization (Case 4),
peak discharge, flow reduction patterns, and subsequent peaks were predicted accurately.
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Although the peak discharge was underestimated, the accuracy of the flow-reduction curve
was significantly improved. A hydrograph with a rapid increase was observed, with two
peaks at (3). Similar to the previous results, there was a slight improvement in the peak
prediction for Case 3, and the most accurate peak was the result for Case 4.

The RMLP model predicted the peak and flow reduction curve as well as the MLP at
(1). However, it showed a noticeable accuracy improvement at (2), especially in Case 7,
compared to Case 3. When only data normalization was applied in Case 7, there was a
significant improvement in the prediction accuracy of the flow reduction curve. Conse-
quently, the MSE was smaller in Case 7 than in Case 3. Peak and low discharge predictions
were significantly improved in Case 8 in which seasonal division and data preprocessing
were applied together. (3) is a hydrograph with a rapid increase and two peaks. Similar to
previous results, Case 8 was the most accurate prediction.

As a result of data preprocessing, there was a tendency to underestimate the peak
discharge. The reason for this error is the limitation of the error calculation algorithm.
Owing to the relatively short duration of peak flooding, the amount of high-flow data
was small. In this study, the amount of off season data was more than twice that of the
peak season. Therefore, the learning direction was focused on abandoning the peak error
and reducing the low flow error, which is a common problem in algorithms that calculate
average error. To reduce this error, the peak and off seasons were separated. However,
if the discharge were simply separated, the fluctuation in the peak season would still be
high. As a result, the error increased, as in Cases 2 and 6. Because the variation in the peak
season was larger than that in the off season, data normalization was necessary to improve
the accuracy. Data normalization converted the discharge to a value between zero and one,
to limit the fluctuation range of the peak season and improve the learning accuracy. Both
high and low discharges can be accurately predicted by performing both preprocesses.

3.5. Model Comparison

In this study, the RMLP model was proposed for accurate discharge prediction, which
improved the learning algorithm and data preprocessing methods of the model. The RMLP
model was more accurate than the MLP model. When using existing data without data
preprocessing (a), the test error increased by 338 (3.1%) from 11,006 to 11,344 in the MLP
model. However, the difference was not significant because the basic error value was large.
Seasonal division (b) decreased by 2119 (14.7%) from 14,370 to 12,251. In both cases, the
error increased. This problem occurred because the increase in MSE at high flow was larger
than the decrease in MSE at low flow. Because the amount of high flow data was small
and the data deviation was large, the MSE result was larger than that of (a). Nevertheless,
the error increase rate was relatively small in the case of the RMLP model. To solve this
problem, data normalization was required. As a result of data normalization, the MSE
decreased by 3619 (40.3%) from 8985 to 5366. There was a relatively low error in Case 7
when only data normalization was used in RMLP, and the model improvement was the
most prominent. When both preprocessing steps were performed, the MSE decreased by
142 (3.1%) from 4511 to 4368. Except for Cases 1 and 5, RMLP exhibited better results than
MLP. The model improvement effect is quantitatively expressed in Table 8.

Table 8. Model test error comparison.

Input Data
Test Error (MSE) (m3/s)2

Improvement of Error (1)–(2)
(1) MLP (2) RMLP

(a) Original data (Case 1) 11,006 (Case 5) 11,344 −338 (−3.1%)

(b) Seasonal division (Case 2) 14,370 (Case 6) 12,251 2119 (14.7%)

(c) Normalization (Case 3) 8985 (Case 7) 5366 3619 (40.3%)

(d) Seasonal division and normalization (Case 4) 4511 (Case 8) 4368 142 (3.2%)
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Note that a small test error does not always mean the performance of the learning
algorithm is good. In this study, the model showed that the minimum validation MSE
was selected during the epochs, as explained in Section 2.5. Because the RMLP model had
a better learning performance than the MLP model, the minimum validation MSE was
smaller among the results which were repeated 20 times. However, the training caused an
overfitting problem because it only considered the validation data. As new data are input,
prediction accuracy may decrease. To solve this problem, prediction performance should
be measured using new data. The final MLP and RMLP models were chosen to have the
smallest test MSE among the 20 results. However, the test MSE only demonstrated the
prediction accuracy of the model and had no effect on the model training performance.
Even if the global minimum of the validation MSE was found using a new algorithm with
excellent learning ability, the test MSE may be worse than that of the basic MLP model.
Therefore, the overall test error can be smaller in RMLP but not always.

To analyze the model improvement effect, the final MLP and RMLP models (Cases
4 and 8, respectively) were compared using a time series graph. Preprocessing method
(d) was applied to both models, and the test data were predicted. Figure 10 compares the
measured discharge for the entire test dataset with the predicted values of the two models.
During the entire period, major flood events by year are indicated as Events (1) to (3) and
expanded using a higher resolution. Event (1) displayed a tendency to overestimate MLP
and partially underestimate RMLP in the peak flood forecast based on the 2019 inflow
hydrograph analysis. At a low discharge in Event (1), both models provided similar results.
Event (2) showed the largest peak value of the hydrologic curve in 2020. The peak prediction
tended to be underestimated, and MLP was closest to the observation data, showing a
larger peak than RMLP. Event (3) was the case in which low volume rainfall occurred
continuously. Again, MLP was overestimated compared to RMLP and showed an unstable
overestimation at mid-low discharges. RMLP predicted a more accurate hydrograph at low
and medium discharges. Overall, MLP showed a tendency to overestimate discharge, and
the accuracy of RMLP was confirmed to be better in the overall hydrograph prediction.

Figure 10. Model inflow prediction results.
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To quantify the difference in peak discharge, the three largest peaks were selected for
each year, and the discharge error was compared. In 2020, the largest peak was 3373.1 m3/s.
The MLP model predicted 2862.9 m3/s, which was underestimated by 510.2 m3/s (15.1%),
and the RMLP model predicted 2752.0 m3/s, which was 620.7 m3/s (18.4%). MLP was
more accurate when only considering the largest peak value. However, when considering
all nine peaks, RMLP showed a smaller error. MLP showed a mean deviation of 237.6 m3/s
(26.3%), and RMLP showed 187.4 m3/s (12.1%). Again, the MLP tended to overestimate the
peak value. In conclusion, the RMLP model can predict the amount of dam inflow more
accurately in most cases. Table 9 shows the forecast results for major peak events by year.

Table 9. Peak discharge error comparison.

Date
Observed

Inflow
(m3/s)

MLP (Case 4) RMLP (Case 8)

Predict Inflow
(m3/s)

Error
(m3/s)

Predict Inflow
(m3/s)

Error
(m3/s)

27 Jul. 2019 350.1 635.8 285.7 (+81.6%) 419.9 69.8 (+19.9%)

7 Aug. 2019 696.1 840.1 144.0 (+20.7%) 620.2 −75.9 (−10.9%)

11 Sep. 2019 581.7 464.1 −117.6 (−20.2%) 313.7 −268.0 (−46.1%)

5 Aug. 2020 3373.1 2862.9 −510.2 (−15.1%) 2752.0 −620.7 (−18.4%)

3 Sep. 2020 2660.6 2278.1 −382.5 (−14.4%) 2243.0 −417.3 (−15.7%)

7 Sep. 2020 1436.2 1151.1 −285.1 (−19.8%) 1044.0 −392.3 (−27.3%)

4 Apr. 2021 388.8 459.8 71.0 (+18.3%) 282.8 −106.0 (−27.3%)

17 May 2021 522.4 701.4 179.0 (+34.3%) 492.1 −30.3 (−5.8%)

4 Jul. 2021 437.7 544.3 106.6 (+24.4%) 354.6 −83.1 (−19.0%)

Absolute deviation 237.6 (+26.3%) 187.4 (+12.1%)

In this study, the model was trained to minimize the validation MSE, and the final
model was selected to minimize the test MSE. Because MSE reflects the error of the entire
time series, the accuracy of the model cannot be judged only through the difference in
several peak flood errors. In Table 9, the RMLP shows a smaller error when averaging the
error of nine peaks, but the MLP shows more accurate results in the largest peak discharge.
A decision based on the purpose of the predictive model is necessary. If the model is
required to predict the peak flow close to the existing maximum flood, a suitable model
learning algorithm is needed. This study only considered the MSE of the model, but results
may be derived by additionally considering the error of the peak flow in learning. Future
studies may consider multi-purpose model learning, however, the current study focused
on improving the model’s learning algorithm and analyzing the preprocessing effect.

4. Discussion

In this study, MSE was used for error calculation in model training. MSE computes the
square of the error difference. Therefore, the errors at large values tend to be overestimated.
This phenomenon caused a larger error when the model was trained by dividing it into
high discharge and low discharge in Cases 2 and 6. As shown in Table 10, the basic MSE of
the RMLP model (Case 5) was 11,344, but the MSE of the seasonal division model during
the peak season was 45,417, which increased significantly by 33,773 (297.1%). In the off
season, MSE significantly decreased by 11,248 (99.2%) to 96 combined with relatively small
fluctuations in discharge. Combining these results, the final MSE was 12,251, which was 907
(8.0%) larger than the original data value. The phenomenon when the error significantly
depends on the size of the value can occur even after normalization. The normalization
(Case 6) MSE increased by 10,700 (199.4%) from 5366 to 16,066 during the peak season and
decreased by 5286 (98.5%) from 5366 to 80 during the off season, resulting in a final MSE of
4368, which decreased by 998 (18.6%). In both cases, the MSE in the peak season increased
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and the MSE in the off season decreased significantly. However, the error increase without
normalization was greater than that of the error-reduction effect. To confirm this difference
more intuitively, the mean absolute error (MAE) was calculated and displayed. Similarly,
for MAE, it was confirmed that the error in the peak season was large, and the error in the
off season was small.

Table 10. Comparison of seasonal division effect.

Index Input Data Number of Data

Error

MSE
(m3/s)2

MAE
(m3/s)

Case 5 (a) Original data 1096 11,344 43.0

Case 6 (b) Seasonal division
Peak season 294 45,417 139.4
Off season 802 96 7.2

Total 1096 12,251 42.5

Case 7 (c) Normalization 1096 5366 26.1

Case 8 (d) Seasonal division and normalization
Peak season 294 16,066 64.1
Off season 802 80 6.4

Total 1096 4368 21.9

The discharge prediction results in Cases 6 and 8 in which seasonal division was
performed, were compared, as shown in Figure 11. It shows the measured discharge and
predicted values on a log scale during the peak (a) and off (b) seasons.

Figure 11. Results of applying both normalization and seasonal division (Case 8) and seasonal
division only (Case 6).
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Compared to the measured values, the predicted values in (a) Case 6 were overes-
timated, and Case 8 was relatively accurate. (b) was the discharge prediction result in
the off season and was predicted almost accurately at 10 m3/s or more. There were some
inconsistencies in the low discharge values of 10 m3/s or less. However, the MSE was also
small because the discharge values and differences were small. As a result, there was still
an underestimation error, the MSE of Case 8 in the off season was 80, which was smaller
by 16 compared to that of Case 6. When applying seasonal separation, improvement in
the prediction accuracy of medium to high flow is important. However, there was no
significant difference in the accuracy at low flow rates, even with some errors. Therefore, to
improve the accuracy of the high flow prediction model, further study to separate the high
flow into two or more stages, such as high, medium high, and low, should be conducted.

Finally, the MSE, root mean squared error (RMSE), MAE, sum of absolute difference
(SAD), mean absolute percentage error (MAPE), coefficient of determination (R2), and
coefficient of efficiency (E) were analyzed. Each of the equations is given in Appendix A. In
this study, MSE was used as an error calculation method, but MAE also showed a similar
tendency to MSE. However, MAE was not suitable for use as an evaluation index for model
learning because it showed fewer error values compared to MSE. In addition, because there
was no error weight for the high and low flows, it was easy to obtain a result that was biased
toward low flow with a large amount of data. Therefore, for discharge prediction, the MSE
is more appropriate than the MAE. The results for all the cases are shown in Table 11.

Table 11. Error analyses for all the cases.

Index
MLP RMLP

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

MSE (m3/s)2 11,006 14,370 8985 4511 11,344 12,251 5366 4368
RMSE (m3/s) 104.9 119.9 94.8 67.2 106.5 110.7 73.3 66.1
MAE (m3/s) 40.1 49.1 45.5 29.7 43.0 42.5 26.1 21.9
SAD (m3/s) 43,966 53,759 49,838 32,519 47,093 46,553 28,561 24,011

MAPE 0.887 1.106 3.044 0.771 1.023 0.967 1.512 0.789
R2 0.732 0.673 0.811 0.902 0.720 0.729 0.867 0.894
E 0.704 0.613 0.758 0.879 0.695 0.670 0.856 0.882

Additionally, without preprocessing or seasonal division alone, R2 showed an accuracy
of approximately 0.7, and the high discharge was underestimated. In cases where only
normalization preprocessing was performed, such as in Cases 3 and 7, R2 was significantly
improved. In MLP (Case 3), the medium-low discharge was overestimated, but in RMLP
(Case 7), it was significantly improved, and the R2 also increased from 0.811 to 0.867. Finally,
when all preprocessing steps were applied, both MLP (Case 4) and RMLP (Case 8) showed
an accuracy close to 90%. The R2 for the measured and predicted discharges for each model
are shown in Figure 12.

With the dam inflow prediction model developed in this study, it is possible to predict
in advance the dam inflow according to the change in the upstream water level. By
measuring water stored in the dam and the predicted inflow, it is possible to set an operation
rule to secure the water storage during the dry season or to secure the dam reserve by
discharging it in advance during the flood season.
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Figure 12. Coefficient of determination (R2) for each model.

5. Conclusions

This study aimed to develop an inflow prediction model for stable dam operation
in the Soyang Dam Basin. Inflow prediction was performed using an MLP model. Two
approaches were used to increase prediction accuracy. First, the learning accuracy was
increased by preprocessing the input data. For preprocessing, two methods were used:
Dividing the learning data into the peak and off seasons and normalizing the input data
to reduce the deviation of the data. Second, the learning algorithm of the MLP model
was improved. A previous MLP used gradient descent to train the model. In this study, a
random search algorithm was applied to the existing MLP model such that a wider range
of alternatives could be found when the model weight was updated.

The MLP model of the dense structure was used for model construction. Four hidden
layers were used with ten nodes per layer. ReLu was used as the activation function, and
Adam was used as the optimizer. MSE was used for the error calculation for model training,
and MAE and R2 analyses were performed. The input data for model learning were the
water level and dam inflow data provided by WAMIS. The study area was the Soyang Dam
Basin, and time series data were used for 6575 data points from 2004 to 2021. Training was
repeated 20 times every 10,000 epochs to determine the final model weights.
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As a result of the model training, it was possible to reduce the error by up to 6976
(61.5%) from MSE of 11,344 to 4368 through data preprocessing. During model training, the
error increased when learning by dividing the peak and off seasons. This error occurred
excessively owing to the large deviation in the peak data. However, when seasonal division
was performed with data normalization, the error owing to the size of the deviation
was reduced, enabling high-accuracy learning. The RMLP model showed the greatest
improvement effect compared to the MLP model in Case 7, which was reduced by 3619
(40.3%) from 8985 MSE to 5366 MSE. When all preprocessing steps were performed (Case 8),
the error reduction rate was small, but an error of 4368 was obtained, which was improved
by 142 (3.2%) compared to the MLP error of 4511. Comparing the hydrographs of both
models, MLP showed a tendency to overestimate high and intermediate flows, but RMLP
predicted the overall hydrograph more accurately. The prediction accuracy of the final
RMLP model was MSE 4368, MAE 21.9, peak discharge error 12.1%, and R2 = 0.894.

This model enables high-accuracy inflow forecasting throughout the peak and off
seasons and will help in the efficient operation of the dam and ensure safety by predicting
the inflow through the upstream water level. A limitation of this study is that it is difficult
to guarantee the accuracy of the model when the flooding is greater than the past maximum
peak. Therefore, it is essential to continuously measure the data and supplement the
model to improve the prediction accuracy, even after the model is derived. In addition,
this study was limited to the Soyang dam basin. It is necessary to apply the learning
model to different watersheds or apply the learning model to various objects such as the
groundwater level, storm water pipe system, and other time series data. In follow-up
studies, seasonal divisions will be further subdivided to improve the prediction accuracy
at high discharge. In addition, a study to improve the learning algorithm of time-series
prediction models such as RNN or LSTM and compare it with MLP will be conducted.
It is expected that more accurate prediction models and algorithms can be developed by
continuously improving hydraulic and hydrologic prediction models.
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Appendix A

To compare the accuracy of MLP and RMLP models, mean squared error (MSE), root
mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), sum of the relative error (SRE), coefficient of determination (R2), and coefficient of
efficiency (E) were applied. The MSE equation is given by Equation (A1).

MSE =
1
n

n

∑
i=1

(
Qo − Qp

)2 (A1)

http://www.wamis.go.kr/
https://doi.org/10.24433/CO.7415800.v1
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where Qo is the observed inflow, QP is the predicted inflow, and n is the number of data.
The RMSE equation is shown in Equation (A2) [33].

RMSE =

√
∑n

i=1
(
Qo − Qp

)2

n
(A2)

The MAE equation is shown in Equation (A3).

MAE =
1
n

n

∑
i=1

∣∣Qo − Qp
∣∣ (A3)

The SAD equation is shown in Equation (A4) [35].

SAD =
n

∑
i=1

∣∣Qo − Qp
∣∣ (A4)

The MAPE equation is shown in Equation (A5) [36].

MAPE =
1
n

n

∑
i=1

∣∣Qo − Qp
∣∣

Qo
(A5)

The R2 equation is shown in Equation (A6).

R2 =
1
n

∑n
i=1

(
QP − Q

)2

∑n
i=1

(
Qo − Q

)2 (A6)

where Q is the average observed inflow. The E equation is shown in Equation (A7) [34].

E = 1 − ∑n
i=1
(
Qo − Qp

)2

∑n
i=1

(
Qo − Q

)2 (A7)
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