Flood Management Issues in Hilly Regions of Uttarakhand (India) under Changing Climatic Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area Physiography
2.2. Climatic Characteristics
2.3. Flash-Flood Incidents
2.4. Hydroclimatic and Topographic Dataset
2.5. The Proposed Methodology for Flood Risk Management
2.6. Methodology for Climatic Variation Assessment
2.7. Methodology for Topographic Influence Estimation
3. Results and Discussion
3.1. Part A—Causes of the Flood Disasters in the State
3.1.1. Natural Causes
- (1)
- From the Bay of Bengal, the low-pressure areas rise and migrate through the central part of India and then recurve northwards and north-eastwards and cause high rainfall in the Uttarakhand’s foothill. Furthermore, depressions from the Arabian sea cross north Maharashtra and south Gujarat coasts, reach the Kumaun-Garhwal region and cause severe cloudbursts, flash floods, and landslides.
- (2)
- Flooding due to heavy rainfall occurs in the central and eastern Himalayas when the monsoon’s axis shifts to the Himalayan foothills from the Northern Indian plains in July and August (the setting in the ‘break situation’).
- (3)
- Western/Extra-tropical disturbances, originating from Caspian and the Mediterranean Sea in the far west and moving towards north India through Afghanistan, Iran, and Pakistan, cause snow and rain during the winter season over the western Himalayas. This rainfall from Western disturbances occurs four to five times per month during monsoon and six to seven times during the winters.
Results for Climatic Variation Assessment
- (1)
- In the monsoon season (JJAS), 9 out of 13 districts, namely, Almora, Bageshwar, Chamoli, Champawat, Dehradun, Garhwal, Hardwar, Rudraprayag, and Tehri Garhwal, show an increasing rainfall trend.
- (2)
- In post-monsoon (ON), no significant trend is observed.
- (3)
- In the cold season (DJF), an increasing trend is observed for Chamoli, Pithoragarh, and Rudraprayag districts, while in the other districts, no trend is observed.
- (4)
- In the hot weather season (MAM), all the districts except Uttarkashi show an increasing rainfall trend.
- (5)
- Out of 13 districts, 8 districts, namely Almora, Bageshwar, Chamoli, Champawat, Hardwar, Pithoragarh, Rudraprayag, and Tehri Garhwal, exhibit an increasing annual rainfall trend.
Results for Topographic Influence Assessment
3.1.2. Anthropogenic Causes
3.2. Part B—Issues and Challenges of Flood Management in the State of Uttarakhand
3.2.1. Complex Topography of the Mountainous Terrain
3.2.2. Lack of Comprehensive Policy and Governance on Flood Mitigation
3.2.3. Inadequate Data and Infrastructure
3.2.4. Climate Change and Flood Management Integration
3.3. Part C—Flood Risk Management Plan
3.3.1. Risk Mapping, Modelling, and Vulnerability Analysis
3.3.2. Structural and Non-Structural Measures
3.3.3. Ecosystem-Based Approaches for Flood Management
3.3.4. Effective Hydrological Information System
3.3.5. Flood Forecasting and Early Warning Systems (EWS)
3.3.6. Mitigation, Preparedness, Response, and Recovery
- Land-use planning and management.
- Retrofitting of the existing structures.
- Risk assessment and vulnerability analysis.
- Performance and conceptual design of the structures.
- Building bylaws and codes.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munpa, P.; Kittipongvises, S.; Phetrak, A.; Sirichokchatchawan, W.; Taneepanichskul, N.; Lohwacharin, J.; Polprasert, C. Climatic and Hydrological Factors Affecting the Assessment of Flood Hazards and Resilience Using Modified UNDRR Indicators: Ayutthaya, Thailand. Water 2022, 14, 1603. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B.; Change, C. The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-92287-4. [Google Scholar]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Community Health 2012, 66, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, G.D.; Sinha, K.; Deka, P.K.; Kumar, A. Flood Hazard and Risk Assessment in Chamoli District, Uttarakhand Using Satellite Remote Sensing and GIS Techniques. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 15348–15356. [Google Scholar] [CrossRef]
- Ashraf, S.; Luqman, M.; Iftikhar, M.; Ashraf, I.; Hassan, Z.Y. Understanding Flood Risk Management in Asia: Concepts and Challenges. In Flood Risk Management; Hromadka, T., Rao, P., Eds.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Raj, J. Uttarakhand Action Plan on Climate Change: Transforming Crisis into Opportunity; Government of Uttarakhand: Dehradun, India, 2014. [Google Scholar]
- European Commission. INFORM Index for Risk Management. India Country Profile. Available online: https://drmkc.jrc.ec.europa.eu/inform-index (accessed on 6 June 2022).
- Chen, C.; Noble, I.; Hellmann, J.; Coffee, J.; Murillo, M.; Chawla, N. Notre Dame Global Adaptation Initiative. Available online: https://gain.nd.edu/our-work/country-index/rankings/ (accessed on 6 June 2022).
- Lindell, M.K.; Arlikatti, S.; Huang, S.K. Immediate behavioral response to the June 17, 2013 flash floods in Uttarakhand, North India. Int. J. Disaster Risk Reduct. 2019, 34, 129–146. [Google Scholar] [CrossRef]
- Dash, P.; Punia, M. Governance and disaster: Analysis of land use policy with reference to Uttarakhand flood 2013, India. Int. J. Disaster Risk Reduct. 2019, 36, 101090. [Google Scholar] [CrossRef]
- Dimri, A.P.; Kumar, D.; Choudhary, A.; Maharana, P. Future changes over the Himalayas: Maximum and minimum temperature. Glob. Planet. Chang. 2018, 162, 212–234. [Google Scholar] [CrossRef]
- Geneletti, D.; Dawa, D. Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya. Environ. Impact Assess. Rev. 2009, 29, 229–242. [Google Scholar] [CrossRef]
- Mishra, P.K.; Thayyen, R.J.; Singh, H.; Das, S.; Nema, M.K.; Kumar, P. Assessment of cloudbursts, extreme rainfall and vulnerable regions in the Upper Ganga basin, Uttarakhand, India. Int. J. Disaster Risk Reduct. 2021, 69, 102744. [Google Scholar] [CrossRef]
- Das, S.; Ashrit, R.; Moncrieff, M.W. Simulation of a Himalayan cloudburst event. J. Earth Syst. Sci. 2006, 115, 299–313. [Google Scholar] [CrossRef]
- Dimri, A.P.; Chevuturi, A.; Niyogi, D.; Thayyen, R.J.; Ray, K.; Tripathi, S.N.; Pandey, A.K.; Mohanty, U.C. Cloudbursts in Indian Himalayas: A review. Earth Sci. Rev. 2017, 168, 1–23. [Google Scholar] [CrossRef]
- Wheater, H.; Evans, E. Land use, water management and future flood risk. Land Use Policy 2009, 26, 251–264. [Google Scholar] [CrossRef]
- Tullos, D.; Byron, E.; Galloway, G.; Obeysekera, J.; Prakash, O.; Sun, Y.H. Review of challenges of and practices for sustainable management of mountain flood hazards. Nat. Hazards 2016, 83, 1763–1797. [Google Scholar] [CrossRef]
- Li, W.; Lin, K.; Zhao, T.; Lan, T.; Chen, X.; Du, H.; Chen, H. Risk assessment and sensitivity analysis of flash floods in ungauged basins using coupled hydrologic and hydrodynamic models. J. Hydrol. 2019, 572, 108–120. [Google Scholar] [CrossRef]
- Saha, S.K.; Kumar, A.S. Northwest Himalayan Ecosystems: Issues, Challenges and Role of Geospatial Techniques. In Remote Sensing of Northwest Himalayan Ecosystems; Navalgund, R.R., Kumar, A.S., Nandy, S., Eds.; Springer: Singapore, 2019; pp. 3–14. ISBN 978-981-13-2127-6. [Google Scholar]
- Satendra; Gupta, A.K. Uttarakhand Disaster 2013; Naik, V.K., Roy, T.K.S., Sharma, A.K., Dwivedi, M., Eds.; National Institute of Disaster Management: New Delhi, India, 2014; ISBN 9789382571148. [Google Scholar]
- Pandey, V.K.; Mishra, A. Trends of Hydro-Meteorological Disaster in Uttarakhand, India. Int. J. Curr. Res. 2018, 4, 1–7. [Google Scholar]
- Singh, P.; Kumar, N. Effect of orography on precipitation in the western Himalayan region. J. Hydrol. 1997, 199, 183–206. [Google Scholar] [CrossRef]
- Climatological Publication Section. Climate of Uttarakhand; India Meteorological Department: Pune, India, 2014. [Google Scholar]
- Singh, S.; Kansal, M.L. Cloudburst—A Major Disaster in The Indian Himalayan States. In Civil Engineering for Disaster Risk Reduction; Kolathayar, S., Pal, I., Chian, S.C., Mondal, A., Eds.; Springer: Singapore, 2022; pp. 115–126. ISBN 978-981-16-5312-4. [Google Scholar]
- Pandey, P.; Chauhan, P.; Praveen, C.M.B.; Suresh, K.T. Cause and Process Mechanism of Rockslide Triggered Flood Event in Rishiganga and Dhauliganga River Valleys, Chamoli, Uttarakhand, India Using Satellite Remote Sensing and in situ Observations. J. Indian Soc. Remote Sens. 2021, 3, 1011–1024. [Google Scholar] [CrossRef]
- Singh, S.; Kansal, M.L. Chamoli flash-flood mapping and evaluation with a supervised classifier and NDWI thresholding using Sentinel-2 optical data in Google earth engine. Earth Sci. Inform. 2022, 15, 1073–1086. [Google Scholar] [CrossRef]
- Mishra, A.; Srinivasan, J. Did a cloud burst occur in Kedarnath during 16 and 17 June 2013? Curr. Sci. 2013, 105, 1351–1352. [Google Scholar]
- Kumar, A.; Gupta, A.K.; Bhambri, R.; Verma, A.; Tiwari, S.K.; Asthana, A.K.L. Assessment and review of hydro-meteorological aspects for cloudburst and flash flood events in the third pole region (Indian Himalaya). Polar Sci. 2018, 18, 5–20. [Google Scholar] [CrossRef]
- Gupta, V.; Dobhal, D.P.; Vaideswaran, S.C. August 2012 cloudburst and subsequent flash flood in the Asi Ganga, a tributary of the Bhagirathi river, Garhwal Himalaya, India. Curr. Sci. 2013, 105, 249–253. [Google Scholar]
- Joshi, V.; Kumar, K. Extreme rainfall events and associated natural hazards in Alaknanda valley, Indian Himalayan region. J. Mt. Sci. 2006, 3, 228–236. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service. (C3S) ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate; Copernicus Climate Change Service Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 6 June 2022).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- DMMC. State Disaster Management Action Plan for the State of Uttarakhand; Disaster Mitigation & Management Centre Uttarakhand Secretariat: Uttarakhand, India, 2012. [Google Scholar]
- Guhathakurta, P.; Bandgar, A.; Menon, P.; Prasad, A.K.; Sable, S.T.; Sangwan, N. Climate Research and Services Observed Rainfall Variability and Changes over Uttarakhand State; India Meteorological Department: Pune, India, 2020; Volume 52. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Ciupak, M.; Ozga-zieli, B.; Tokarczyk, T.; Adamowski, J. A Probabilistic Model for Maximum Rainfall Frequency. Water 2021, 13, 2688. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J.; Ciobanu, M.; Gabor, A.; Naaji, A.; Hemanth, D.J. Image processing techniques for analysis of satellite images for historical maps classification—An overview. Appl. Sci. 2020, 10, 4207. [Google Scholar] [CrossRef]
- Cho, C.; Li, R.; Wang, S.Y.; Yoon, J.H.; Gillies, R.R. Anthropogenic footprint of climate change in the June 2013 northern India flood. Clim. Dyn. 2016, 46, 797–805. [Google Scholar] [CrossRef]
- Chevuturi, A.; Dimri, A.P. Investigation of Uttarakhand (India) disaster-2013 using weather research and forecasting model. Nat. Hazards 2016, 82, 1703–1726. [Google Scholar] [CrossRef]
- Kansal, M.L.; Shukla, S.; Tyagi, A. Probable Role of Anthropogenic Activities in 2013 Flood Disaster in Uttarakhand, India. In Proceedings of the World Environmental Water Resources Congress Water without Borders, Portland, Oregon, 1–5 June 2014; pp. 924–937. [Google Scholar] [CrossRef]
- Das, P.K. ‘The Himalayan Tsunami’—Cloudburst, Flash Flood & Death Toll: A Geographical Postmortem. IOSR J. Environ. Sci. Toxicol. Food Technol. 2013, 7, 33–45. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Steiner, J.; Nepal, S.; Maharjan, S.B.; Jackson, M.; Rasul, G.; Bajracharya, B. Understanding the Chamoli Cause, process, impacts, context of rapid infrastructure development. Cryosphere 2021, 1–15. Available online: https://www.icimod.org/article/understanding-the-chamoli-flood-cause-process-impacts-and-context-of-rapid-infrastructure-development/ (accessed on 6 June 2022).
- Sene, K. Hydrometeorology Forecasting and Applications; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-3402-1. [Google Scholar]
- Kumar, A.; Negi, M.S. Physiographic study of Mandakini valley (Rudraprayag District) Garhwal Himalaya by morphometric analysis and Geospatial Techniques. Int. J. Geomat. Geosci. 2016, 7, 285–298. [Google Scholar]
- Thayyen, R.J.; Mishra, P.K.; Jain, S.K.; Wani, J.M.; Singh, H. Hanging glacier avalanche (Raunthigad-Rishiganga) and debris flow disaster of 7th February 2021, Uttarakhand, India: A Preliminary assessment. Nat. Hazards 2021, 1–37. [Google Scholar] [CrossRef]
- Pandey, V.K.; Kumar, R.; Singh, R.; Kumar, R.; Rai, S.C.; Singh, R.P.; Tripathi, A.K.; Soni, V.K.; Ali, S.N.; Tamang, D.; et al. Catastrophic ice-debris flow in the Rishiganga River, Chamoli, Uttarakhand (India). Geomat. Nat. Hazards Risk 2022, 13, 289–309. [Google Scholar] [CrossRef]
- Singh, S.; Kansal, M.L. Flash Flood Hazard mapping using Satellite Images and GIS: A Case Study of Alaknanda River Basin. In Flash Floods: Challenges and its Management; The Institution of Engineers Centenary Publication: Kolkata, India, 2020; pp. 77–83. [Google Scholar]
- Thadani, R.; Singh, V.; Chauhan, D.; Dwivedi, V.; Pandey, A. Climate Change in Uttarakhand: Current State of Knowledge and Way Forward; Bishen Singh Mahendra Pal Singh: Dehradun, India, 2015; pp. 1–66. [Google Scholar]
- Wang, H.; Easter, R.C.; Zhang, R.; Ma, P.L.; Singh, B.; Zhang, K.; Ganguly, D.; Rasch, P.J.; Burrows, S.M.; Ghan, S.J.; et al. Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing. J. Adv. Model. Earth Syst. 2020, 12, 1–36. [Google Scholar] [CrossRef]
- D’Errico, M.; Cagnazzo, C.; Fogli, P.G.; Lau, W.K.M.; Hardenberg, J.; Fierli, F.; Cherchi, A. Indian monsoon and the elevated-heat-pump mechanism in a coupled aerosol-climate model. J. Geophys. Res. Atmos. 2015, 120, 8712–8723. [Google Scholar] [CrossRef]
- Prasad, A.S.; Pandey, B.W.; Leimgruber, W.; Kunwar, R.M. Mountain hazard susceptibility and livelihood security in the upper catchment area of the river Beas, Kullu Valley, Himachal Pradesh, India. Geoenviron. Disasters 2016, 3, 1. [Google Scholar] [CrossRef]
- Joshi, L.M.; Singh, A.K.; Kotlia, B.S. Rivers of Uttarakhand Himalaya: Impact of Floods in the Pindar and Saryu Valleys. In The Indian Rivers; Scientific and Socio-Economic Aspects; Singh, D.S., Ed.; Springer: Singapore, 2018; pp. 413–427. ISBN 978-981-10-2984-4. [Google Scholar]
- Haeberli, W.; Beniston, M. Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 1998, 27, 258–265. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Advances in Global Change Research; Diaz, H.F., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 15, pp. 5–31. [Google Scholar] [CrossRef]
- Ziersen, J.; Clauson-Kaas, J.; Rasmussen, J. The role of Greater Copenhagen utility in implementing the city’s Cloudburst Management Plan. Water Pract. Technol. 2017, 12, 338–343. [Google Scholar] [CrossRef]
- Mergili, M.; Emmer, A.; Juřicová, A.; Cochachin, A.; Fischer, J.T.; Huggel, C.; Pudasaini, S.P. How well can we simulate complex hydro-geomorphic process chains? The 2012 multi-lake outburst flood in the Santa Cruz Valley (Cordillera Blanca, Perú). Earth Surf. Process. Landf. 2018, 43, 1373–1389. [Google Scholar] [CrossRef]
- Thayyen, R.J.; Dimri, A.P.; Kumar, P.; Agnihotri, G. Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010. Nat. Hazards 2013, 65, 2175–2204. [Google Scholar] [CrossRef]
- Anders, A.M.; Roe, G.H.; Hallet, B.; Montgomery, D.R.; Finnegan, N.J.; Putkonen, J. Spatial patterns of precipitation and topography in the Himalaya. Spec. Pap. Geol. Soc. Am. 2006, 398, 39–53. [Google Scholar] [CrossRef]
- Bookhagen, B. Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya. Geomat. Nat. Hazards Risk 2010, 1, 37–50. [Google Scholar] [CrossRef]
- Shrestha, D.; Singh, P.; Nakamura, K. Spatiotemporal variation of rainfall over the central Himalayan region revealed by TRMM Precipitation Radar. J. Geophys. Res. Atmos. 2012, 117, 1–14. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, A.; Vellore, R.; Xu, Y.; You, Q.; et al. Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains and Increasing Extremes. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; p. 41. ISBN 9783319922881. [Google Scholar]
- Huggel, C. Assessment of Glacial Hazards based on Remote Sensing and GIS Modeling. Schriftenr. Phys. Geogr. Glaziologie Geomorphodynamik 2004, 44, 87. [Google Scholar]
- Terzi, S.; Torresan, S.; Schneiderbauer, S.; Critto, A.; Zebisch, M.; Marcomini, A. Multi-risk assessment in mountain regions: A review of modelling approaches for climate change adaptation. J. Environ. Manag. 2019, 232, 759–771. [Google Scholar] [CrossRef] [PubMed]
- de Jong, C. Challenges for mountain hydrology in the third millennium. Front. Environ. Sci. 2015, 3, 1–13. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Chuah, C.J.; Ziegler, A.D.; Dąbrowski, M.; Varis, O. Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod. 2018, 187, 576–589. [Google Scholar] [CrossRef]
- Vojinovic, Z.; Alves, A.; Gómez, J.P.; Weesakul, S.; Keerakamolchai, W.; Meesuk, V.; Sanchez, A. Effectiveness of small- and large-scale Nature-Based Solutions for flood mitigation: The case of Ayutthaya, Thailand. Sci. Total Environ. 2021, 789, 147725. [Google Scholar] [CrossRef]
- Gallay, I.; Olah, B.; Gallayová, Z.; Lepeška, T. Monetary valuation of flood protection ecosystem service based on hydrological modelling and avoided damage costs. An example from the Čierny hron river basin, Slovakia. Water 2021, 13, 198. [Google Scholar] [CrossRef]
- Hillard, U.; Sridhar, V.; Lettenmaier, D.P.; McDonald, K.C. Assessing snowmelt dynamics with NASA scatterometer (NSCAT) data and a hydrologic process model. Remote Sens. Environ. 2003, 86, 52–69. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Jaramillo, F.; Jawitz, J.W.; Manzoni, S.; Basu, N.B.; Chalov, S.R.; Cohen, M.J.; Creed, I.F.; Goldenberg, R.; et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 2017, 108, 489–497. [Google Scholar] [CrossRef]
- Sridhar, V.; Jin, X.; Jaksa, W.T.A. Explaining the hydroclimatic variability and change in the Salmon River basin. Clim. Dyn. 2013, 40, 1921–1937. [Google Scholar] [CrossRef]
- Sridhar, V.; Kang, H.; Ali, S.A. Human-induced alterations to land use and climate and their responses for hydrology and water management in the Mekong River Basin. Water 2019, 11, 1307. [Google Scholar] [CrossRef]
- Seong, C.; Sridhar, V.; Billah, M.M. Implications of potential evapotranspiration methods for streamflow estimations under changing climatic conditions. Int. J. Climatol. 2018, 914, 896–914. [Google Scholar] [CrossRef]
- Yang, S.N.; Chang, L.C. Regional inundation forecasting using machine learning techniques with the internet of things. Water 2020, 12, 1578. [Google Scholar] [CrossRef]
- Chang, L.C.; Chang, F.J.; Yang, S.N.; Tsai, F.H.; Chang, T.H.; Herricks, E.E. Self-organizing maps of typhoon tracks allow for flood forecasts up to two days in advance. Nat. Commun. 2020, 11, 1983. [Google Scholar] [CrossRef]
- Chang, F.; Hsu, K.; Chang, L. Flood Forecasting Using Machine Learning Methods; MDPI: Basel, Switzerland, 2019; ISBN 978-3-03897-549-6. [Google Scholar]
S. No. | Name | Area (sq. km.) | Mean Annual Rainfall (mm) | Mean Slope (Degrees) | Mean Elevation (m) | Elevation Range (m) | River Length (km) |
---|---|---|---|---|---|---|---|
1 | Alaknanda | 11,083 | 1035 | 28 | 3402 | 459–7785 | 195 |
2 | Bhagirathi | 7323 | 1011 | 27 | 3451 | 459–7054 | 190 |
3 | Yamuna | 5462 | 1175 | 24 | 2182 | 360–6278 | 170 |
4 | Ganga | 7282 | 1240 | 14 | 936 | 217–3076 | 125 |
5 | Ramganga | 11,319 | 1354 | 13 | 939 | 190–3089 | 185 |
6 | Kali | 11,014 | 1193 | 26 | 2552 | 185–7070 | 252 |
District | Area (sq. km.) | Temperature (°C) | Normal Rainfall (mm) | Elevation (m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. Temp. | Max. Temp. | ON | DJF | MAM | JJAS | Annual | Min. | Max. | ||||||
Min. | Max. | Mean | Min. | Max. | Mean | |||||||||
Almora | 3088 | 1.9 | 19.2 | 11.0 | 13.7 | 26.7 | 21.6 | 32 | 118 | 188 | 1238 | 1576 | 519 | 2619 |
Bageshwar | 2267 | −4.8 | 14.5 | 4.9 | 6.4 | 20.3 | 14.8 | 37 | 128 | 192 | 1515 | 1872 | 714 | 6513 |
Chamoli | 7821 | −13.3 | 8.5 | −2.8 | −3.0 | 15.1 | 7.1 | 40 | 150 | 229 | 1286 | 1705 | 714 | 7619 |
Champawat | 1634 | 4.2 | 20.5 | 12.9 | 15.5 | 28.1 | 23.1 | 28 | 92 | 116 | 1114 | 1351 | 268 | 2199 |
Dehradun | 3055 | 2.1 | 20.9 | 12.0 | 14.6 | 29.6 | 23.4 | 25 | 127 | 170 | 931 | 1253 | 283 | 2962 |
Garhwal | 5444 | 4.4 | 22.0 | 14.0 | 16.3 | 31.3 | 24.9 | 29 | 107 | 156 | 1070 | 1361 | 254 | 3049 |
Hardwar | 2372 | 6.6 | 25.6 | 17.0 | 19.0 | 36.8 | 28.8 | 19 | 93 | 91 | 904 | 1107 | 214 | 874 |
Nainital | 4124 | 5.0 | 22.0 | 14.3 | 16.5 | 31.2 | 24.9 | 31 | 101 | 124 | 1099 | 1355 | 212 | 2522 |
Pithoragarh | 7228 | −4.2 | 8.6 | 3.0 | −2.9 | 15.1 | 7.1 | 27 | 122 | 134 | 1184 | 1467 | 428 | 6985 |
Rudraprayag | 1821 | −7.8 | 12.8 | 2.2 | 3.9 | 18.8 | 12.6 | 44 | 144 | 262 | 1400 | 1851 | 584 | 6869 |
Tehri Garhwal | 3854 | −0.6 | 18.4 | 9.2 | 11.7 | 25.7 | 20.2 | 30 | 131 | 204 | 1031 | 1396 | 339 | 6392 |
Udham Singh Nagar | 2737 | 7.3 | 24.8 | 17.2 | 19.1 | 35.6 | 28.3 | 32 | 78 | 81 | 1209 | 1400 | 186 | 421 |
Uttarkashi | 8039 | −7.0 | 8.6 | −4.0 | −3.5 | 15.9 | 7.3 | 30 | 144 | 203 | 875 | 1252 | 711 | 6990 |
Overall | 53,483 | − | − | − | − | − | − | 31 | 123 | 172 | 1120 | 1446 | 186 | 7619 |
S. No. | Date | Region | District | Damage | Reference |
---|---|---|---|---|---|
1 | 7 February 2021 | Tapovan | Chamoli | More than 200 people were killed or missing, and several hydel plants suffered | [25,26] |
2 | 18 August 2019 | Makudi | Uttarkashi | 17 people died | https://sandrp.in/ (accessed on 25 January 2022) |
3 | 16 July 2018 | Tharali | Chamoli | 55 houses, 10 vehicles, 2 ropeways, 1 road bridge washed, 2 cattle died, mini-hydro projects affected | https://sandrp.in/ (accessed on 25 January 2022) |
4 | 14 August 2017 | Dharchula | Pithoragarh | 16 people | https://www.skymetweather.com (accessed on 25 January 2022) |
5 | 28 May 2016 | Kemra | Tehri | 120 houses, 100 animals | Millennium post, 28 May 2016 |
6 | 15 August 2014 | Purala | Pauri Gharwal | 16 people reported dead | [13] |
7 | 16 June 2013 | Kedarnath | Rudraprayag | 10,000 people, 365 houses | [27,28] |
8 | 13 September 2012 | Ukhimath | Chamoli | 66 people | [15] |
9 | 3 August 2012 | Pandrasu ridge | Uttarkashi | 35 people, 436 livestock lost, 591 houses | [29] |
10 | 11 August 2001 | Phata | Rudraprayag | 27 people, 64 animals, 22 houses | [30] |
District | Season | Annual | |||
---|---|---|---|---|---|
JJAS | ON | DJF | MAM | ||
Trend, p-Value, z Value | |||||
Almora | +ve, 0.003, 2.98 | 0, 0.652, 0.45 | 0, 0.733, 0.34 | +ve, 0.004, 2.85 | +ve, 0.09, 1.7 |
Bageshwar | +ve, 0.01, 2.57 | 0, 0.084, 1.73 | 0, 0.266, 1.11 | +ve, 0.001, 3.23 | +ve, 0.048, 1.97 |
Chamoli | +ve, 0.021, 2.31 | 0, 0.077, 1.77 | +ve, 0.01, 2.59 | +ve, 0, 4.13 | +ve, 0.049, 1.97 |
Champawat | +ve, 0.011, 2.53 | 0, 1, 0 | 0, 0.967, 0.04 | +ve, 0.008, 2.67 | +ve, 0.001, 3.18 |
Dehradun | +ve, 0.021, 2.31 | 0, 0.363, 0.91 | 0, 0.119, 1.56 | +ve, 0, 3.6 | 0, 0.034, 2.12 |
Garhwal | +ve, 0.01, 2.57 | 0, 0.375, 0.89 | 0, 0.586, 0.55 | +ve, 0.007, 2.72 | 0, 0.055, 1.92 |
Hardwar | +ve, 0.049, 1.97 | 0, 0.719, −0.36 | 0, 0.182, 1.34 | +ve, 0.004, 2.85 | +ve, 0.119, 1.56 |
Nainital | 0, 0.058, 1.89 | 0, 1, 0 | 0, 0.965, −0.04 | +ve, 0.021, 2.3 | 0, 0.043, 2.02 |
Pithoragarh | 0, 0.075, 1.78 | 0, 0.132, 1.51 | +ve, 0.046, 2 | +ve, 0.027, 2.21 | +ve, 0.048, 1.98 |
Rudraprayag | +ve, 0.011, 2.53 | 0, 0.076, 1.77 | +ve, 0.038, 2.08 | +ve, 0, 3.83 | +ve, 0.033, 2.13 |
Tehri Garhwal | +ve, 0.011, 2.53 | 0, 0.163, 1.39 | 0, 0.125, 1.53 | +ve, 0.001, 3.3 | +ve, 0.013, 2.49 |
Udham Singh Nagar | 0, 0.095, 1.67 | 0, 0.824, 0.22 | 0, 1, 0 | +ve, 0.003, 2.99 | 0, 0.002, 3.09 |
Uttarkashi | 0, 0.058, 1.89 | 0, 0.103, 1.63 | 0, 0.08, 1.75 | 0, 0.091, 1.69 | 0, 0.067, 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansal, M.L.; Singh, S. Flood Management Issues in Hilly Regions of Uttarakhand (India) under Changing Climatic Conditions. Water 2022, 14, 1879. https://doi.org/10.3390/w14121879
Kansal ML, Singh S. Flood Management Issues in Hilly Regions of Uttarakhand (India) under Changing Climatic Conditions. Water. 2022; 14(12):1879. https://doi.org/10.3390/w14121879
Chicago/Turabian StyleKansal, Mitthan Lal, and Sachchidanand Singh. 2022. "Flood Management Issues in Hilly Regions of Uttarakhand (India) under Changing Climatic Conditions" Water 14, no. 12: 1879. https://doi.org/10.3390/w14121879
APA StyleKansal, M. L., & Singh, S. (2022). Flood Management Issues in Hilly Regions of Uttarakhand (India) under Changing Climatic Conditions. Water, 14(12), 1879. https://doi.org/10.3390/w14121879