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Abstract: This study outlines the preliminary stages of the development of an algorithm to predict
the optimal WQ of the Hwanggujicheon Stream. In the first stages, we used the AdaBoost algorithm
model to predict the state of WQ, using data from the open artificial intelligence (AI) hub. The
AdaBoost algorithm has excellent predictive performance and model suitability and was selected
for random forest and gradient boosting (GB)-based boosting models. To predict the optimized
WQ, we selected pH, SS, water temperature, total nitrogen(TN), dissolved total phosphorus(DTP),
NH3-N, chemical oxygen demand (COD), dissolved total nitrogen (DTN), and NO3-N as the input
variables of the AdaBoost model. Dissolved oxygen (DO) was used as the target variable. Third, an
algorithm showing excellent predictive power was selected by analyzing the prediction accuracy
according to the input variable by using the random forest or GB series algorithm in the initial model.
Finally, the performance evaluation of the ultimately developed predictive model demonstrated that
RMS was 0.015, MAE was 0.009, and R2 was 0.912. The coefficient of the variation of the root mean
square error (CVRMSE) was 17.404. R2 0.912 and CVRMSE were 17.404, indicating that the predictive
model developed meets the criteria of ASHRAE Guideline 14. It is imperative that government and
administrative agencies have access to effective tools to assess WQ and pollution levels in their local
bodies of water.

Keywords: artificial intelligence; prediction; dissolved oxygen; water

1. Introduction

Due to urbanization and population growth in metropolitan areas, water quality (WQ)
changes in urban rivers, including water pollution, because WQ accidents occur frequently
around the globe [1–3]. Despite the river maintenance project, the WQ of downtown
rivers is deteriorating. Dissolved oxygen (DO) is among the WQ elements of downtown
rivers that are worsening due to water pollution [4], and as a result, various WQ accidents
occur frequently. According to the Seoul Institute of Health and Environment (2018), over
the past 13 years (2005–2017), there have been about 50 WQ accidents in Seoul. For this
reason, it is necessary to intensively manage the WQ and aquatic ecosystem of the city’s
urban rivers [5].

The importance of monitoring WQ in urban rivers is only increasing, as WQ deterio-
rates and WQ accidents occur more frequently in urban rivers, due to the concentration
of populations in large cities [6,7]. Since 1990, Seoul has been operating an automatic WQ
measurement network system that measures WQ on an hourly or daily basis in order to
change the WQ of urban rivers [5]. These efforts made it possible to analyze quantitative
and sophisticated predictive model algorithms for WQ changes in urban rivers due to
population concentrations in large cities [8,9].

The current study sought to predict changes in the WQ of urban rivers in large cities
by using traditional time series modeling of data from various automatic WQ measurement
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network systems from the past to the present [10,11]. Recently, the scale of measurement
data has become vast and the measurement period of data has been shortened, due to the
development of internet-of-things (IoT) technology. This makes it difficult to process it
with the existing time series model [12]; it showed a non-linear relationship between the
variables measured first. Additionally, since the covariance between the time series moving
average and the observed value does not change with time, it is difficult to reflect long-term
changes. Finally, there is also a difficulty in learning about discontinuous time series data.

Since prediction is performed based on input data, machine learning algorithms
developed to be universally applied to data analysis and image analysis can be used
flexibly in various fields; the use of machine learning models is also rapidly increasing in
the WQ field. The ensemble model, which uses a method to improve the performance of a
model by combining the results of several models among various machine learning models,
is relatively uncomplicated and has excellent predictive performance compared to deep
learning models. For this reason, it has been used in various fields until recently [13–17].

Recently, however, there has been an increasing number of studies using machine
learning techniques to process and model massive data [17,18]. For efficient WQ manage-
ment, it is necessary to check the current status of WQ and predict changes that are likely
to occur. For this purpose, various WQ prediction models based on WQ, environmental
conditions, hydrometeorological factors, etc. have been developed and utilized [11,19–21].

Therefore, in this study, the accident caused by the deterioration of the WQ of the
above urban rivers, the degree of deterioration of the urban river WQ, and the change
in the water environment data were determined as three tasks to predict the WQ of the
urban river.

2. Materials and Methods

As for the scope of this study, a model was developed to predict dissolved oxygen,
which is a source of water pollution, and the predictive performance evaluation was
investigated. There were three main processes, which are as follows: (i) initial model
development, (ii) model optimization, and (iii) performance evaluation.

This study intends to implement an algorithm for predicting WQ using a machine
learning algorithm based on data provided by a state agency. The machine learning
model can improve the performance of the model by selecting various input variables
in consideration of the characteristics of the items to be predicted, and can increase the
practical applicability. In addition, by utilizing the boosting technique among machine
learning techniques, frequent urban river WQ problems can be prevented by predicting the
deterioration of urban river WQ and changes in water environment data.

Using machine learning techniques, it is possible to first model a non-linear relation-
ship between variables, and then observe a correlation between the training variables.
Second, the long-term correlation of time series data is reflected in learning. The third
data segment is used for learning, and it has shown good performance in learning and
predicting discontinuous time series data, and is currently being actively used as a WQ
prediction model [22–25].

In this study, we follow the process of first building an initial model centered on the
gradient boosting (GB) model and random forest, which are representative algorithms of
the ensemble model, and then optimizing it as a model with excellent predictive power.
In particular, we attempted to increase the predictive power and learning speed of the
implementation algorithm by using appropriate parameters through Grid Search to build
the optimization model and adjust the loss function and learning rate that the user must
specify. Using AdaBoost, one of the most widely used GB algorithms, a model was built
to predict the WQ concentration of the Hwanggujicheon in Korea. In addition, we tried
to figure out how the input data, used for building the model, affect the outcomes of
the analyses.

Additionally, the scalability of the machine learning-based urban river DO predic-
tion model was also considered by using the commercial computing language Python
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(python 3.6) and the open-source libraries Keras and Orange 3 for model development
and validation. In addition, we proposed a new WQ prediction model by adapting to
the changes in the urban river WQ prediction model technique that changes from the
traditional time series model to a machine learning-based prediction model.

The optimization process for the initial prediction model for each measurement point
to predict the DO amount was carried out; the final prediction model was developed
through the prediction performance evaluation. After that, the driving algorithm was
developed to derive the optimal system control variable set value, and finally, the predictive
power was confirmed by applying the simulation and actual data.

In addition, the predictive performance and reliability are identified through research
evaluation. In order to understand the predictive performance and reliability of the de-
veloped algorithm, R2 was >0.8, which is the correlation standard between the measured
values and the predicted values, presented in ASHRAE (American Society of Heating, Re-
frigeration and Air-Conditioning Engineers) Guideline 14, and the coefficient of variation
of the root mean square error. The prediction accuracy and reliability of the AdaBoost
model algorithm implemented in this study were evaluated using CVRMSE < 30% [21].

2.1. Literature Review
2.1.1. Overview of Gradient Boosting and Research Cases

The GB model is one of the ensemble models of decision trees, and unlike the random
forest bagging algorithm, the tree is created in a way that compensates for the error of the
previous tree. The GB model has no randomness and builds trees, the depth of which does
not exceed five per tree. Therefore, the GB modeling method can be said to connect as
many shallow trees as possible [26]. Friedman’s (2001) GB algorithm is as follows [5,27].

F0(x) = argminγ

n

∑
i=1

L(yi, γ) (1)

γim = −
[

∂L(yi, F(xi))

∂F(xi)

]
(F(x)=Fm−1(x))

(2)

x is an explanatory variable, y is a dependent variable, L(y, F(x)) is a differentiable loss
function, and as in Equation (3), similar residuals are calculated by repeating m times.

Fm(x) = Fm−1(x) + γmhm(x) (3)

After fitting hm(x), the base learner, to the calculated similar residuals, the process
of calculating γm and updating the residuals is repeated m times. The loss function
quantifies the error of the prediction model, and in order to find the parameters in the
model that minimize the loss function value, general machine learning models use the
gradient descent method.

GB performs this parameter loss function minimization process in the model function
( fi) space, and differentiates the loss function into the tree model function learned so
far according to Equation (4), not the model parameter. In Equation (4) below, ρ is the
learning rate.

GB performs this parameter loss function minimization process in the model function
( fi) space. In addition, this differentiates the loss function into the tree model function
trained so far. The process is done via Equation (4). In Equation (4) below, ρ is the
training rate.

fi+1 = fi − ρ
δJ
δ fi

(4)

That is, in the GB model, the tree model function derivative serves to indicate the
weakness of the model trained so far. Furthermore, when fitting the next tree model, the
derivative is used to compensate for the weakness to boost performance [28]. The GB
algorithm was created for classification purposes for different classes of logistic likelihood
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and for the regression of the fewest absolute deviation loss functions, Huber-M, and the
fewest squares [29]. It provides a very powerful and competitive environment for mining
regression and classification problems, especially with fewer clean data sets.

GB makes a forward stepwise additive approach through gradient descent in the
function space. In addition, we sequentially construct various regression trees for each
feature in a fully distributed manner. GB involves the following three basic factors: the loss
function must be adjusted, the weak learner model must produce predictions, and finally,
the additive model must merge all weak learners to reduce the overall loss function value.
The basic structure of the GB machine algorithm is shown in Figure 1 [30].
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Figure 1. Model of gradient boosting.

The advantage is that, as is the case with other tree-based models, it works well on
datasets with a mix of scales between features and nominal and numeric variables. The
disadvantage is that it is sensitive to parameters and the training time is long. In addition,
it is known that the performance is poor on very high-dimensional data sets [28].

Next, looking at AdaBoost, Freund’s AdaBoost algorithm is the most widely used
boosting algorithm [30]. AdaBoost is a high-accuracy model that uses a decision tree as a
base model.

Therefore, we train based on the updated weights and the aggregated results obtained
from multiple decision trees. In particular, the advantage of AdaBoost is that the number
of predicted parameters is small compared to other learning methods. In addition, when
boosting learning is performed in terms of false positives, a cascade classification model
can be easily constructed in stages, with a positive error rate below a certain standard.
Moreover, by selecting one specific dimension through a weak classifier at each step, it can
be applied to the aspect of feature selection.

AdaBoost is a learning technique that generates a strong classifier by repeatedly
learning a weak classifier using samples from two classes. Figure 2 shows the basic model
of AdaBoost. X is given as an input and output pair (xi, yi), and the weak learner classifier
is given the same weight Wi

m for all the data. When the training of the first classifier
is completed, the weight of the data to be applied to the second classifier is modified
according to the result.
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At this time, the value of the weight decreases if there is no error, and if there is an
error, the value of the weight increases. The AdaBoost algorithm focuses on erroneous
(highly weighted) data. This process is performed m times.

Each classifier is trained using the adjusted weights, and in the final combining step,
the value of ai, which was used for training, is applied so that the classifier with a small
error rate can play a more important role in judgment [31].

The AdaBoost classifier can be obtained using the following steps.
First, we obtain the training data, D = (x1, y1), (x2, y2), . . . , (xn, yn). In the k-th step

(k = 1, 2, . . . , T), probability p(n)(k) is used to restore and extract from the training data Dk
to generate new training data. A classifier Ck is generated using the generated training data,
and if the n-th observation is improperly classified, d(n) = 1, and if the nth observation is
properly classified, d(n) = 0.

The error Ek is defined as the following equation:

Ek = ∑
n

p (5)

γk =
1− Ek

Ek
(6)

The (k + 1)-th probability to be updated is as follows:

p(n)(k+1) =
p(n)(k)γk

d(n)

∑n p(n)(k)γk
d(n)

(7)

Repeat this process m times. After completing the m-th step, C1, C2, . . . , Cm are
combined into one classifier by the classifier Ck with weight log(γm) to create a final
classifier [26].

The advantage is that AdaBoost is adaptive because instances misclassified by previous
classifiers are reconstructed into subsequent classifiers. A disadvantage is that AdaBoost is
sensitive to noise data and outliers [32].

The AdaBoost model optimizes the model to minimize a loss function (L: loss function)
that calculates the difference between the measured value (yi) of the item to be predicted
and the predicted value (ŷi) of the model and an objective function composed of a regulation
function (Ω), which is a function of the individual DT (decision tree) model ( fk) [33–35].

In this study, the optimal prediction algorithm is implemented using the AdaBoost
algorithm. WQ measurement data were used as an independent variable to predict the
dependent variable DO. The grid search method was used to optimize the model, and
cross-validation was performed by dividing the input data into 10 sets. Model construction
and optimization were performed using Python open-source [36].

2.1.2. Prior Research

Changes in river WQ have been predicted through traditional time series modeling
for various forms of water pollution [10,37], and the amount of research being conducted is
on the rise [23,38], as the size of the data has grown and the limitations of the traditional
time series model have been revealed. As an alternative to this, a deep learning-based or
machine-learning-based prediction model is emerging [12].

In the case of WQ prediction based on deep learning, Lim and An (2018) described
recurrent neural networks (RNN) and a long short-term memory (LSTM) algorithm was
used to predict the pollution load [19].

A machine-learning algorithm [11] presented a model for predicting Chl-a concen-
tration using artificial neural networks (ANN) and support vector machine (SVM), which
are representative machine learning algorithms, and Kwon et al. (2018) predicted Chl-a
concentration using ANN and SVM algorithms and satellite image data [39]. Lee et al.
(2020) used random forest (RF) and gradient boosting decision tree (GBDT), which are
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representative ensemble machine-learning algorithms that use a method to improve the
performance of models by combining the results of several models. A model for prediction
was built. In addition, research for predicting WQ changes using a machine-learning
model based on advanced data analysis technology is also active, and until recently, it
has been used in various fields [13,14,19]. In some cases, studies were performed with
LightGBM [16,33,35,40–42].

Looking at previous studies as target variables, PM concentration prediction [22],
Chl-a concentration prediction [11,39], pollution-load prediction [19,43], prediction of other
variables [44], and image recognition [45] can be obtained.

In summary, a number of prior studies on WQ prediction use deep learning techniques.
However, as in this case, no previous study developed a model for predicting unit-DO
concentration in urban rivers using the GB-based boosting algorithm. No concentration
was predicted. There was no algorithm to predict the DO concentration in urban rivers
downstream using the GB series AdaBoost, which shows high predictive power.

2.2. GB Series Prediction Model Development
2.2.1. Data Sources

Data to be used in this study were provided from https://aihub.or.kr (accessed on
23 March 2022). AI Hub is an AI integrated platform operated by the Korea Intelligent In-
formation Society Agency. As part of the 2017 AI learning data building and dissemination
project, it aims to provide one-stop AI data, software, computing resources, and material
information essential for AI technology and service development [46].

The data for AI learning in this study were the WQ measurement data of the water envi-
ronment measurement network, including WQ/automatic/total amount/sediment/radioactive
material/KRF, etc., concerning the related measurement data. Detailed data sources for
water-quality-related fields are the National Institute of Environmental Sciences of the
Ministry of Environment and the Korea Water Resources Corporation [46].

In the pretreatment process, the data corresponding to Hwanggujicheon were ex-
tracted. Hwanggujicheon is a national river that originates in Obongsan in Uiwang-si,
Gyeonggi-do, and joins as Jinwicheon in Seotan-myeon in Pyeongtaek city. Afterward, it
joins the Jinwicheon Stream in Pyeongtaek city, and flows southward, fed by tributaries of
Suwon, such as Osancheon, Homaesilcheon, Seohocheon, Suwoncheon, and Woncheon-
cheon [47]. Figure 3 corresponds to the Cheon (creek), which is the subject of this study.
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In Table 1, latitude 37.23056, longitude 126.9936, CAT_ID is 11011204 as catchment
area ID, and 1.1 × 109 as CAT_DID division area means Hwanggujicheon 1. However,
the WQ measurement network in the Hwanggujicheon-1 appears to be an error, and the

https://aihub.or.kr
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location indicated by the above longitude corresponds to a different area. It was, therefore,
excluded from this study. Figure 3 is the relevant area for the estimation of water pollution
in this study.

Table 1. Latitude and longitude of the area of research.

WQ Network Compound Latitude Longitude Cat_Id Cat_Did

Hwanggujicheon1 Ammonia Nitrogen (NH3-N) 37.23056 126.9936 11011204 1.1 × 109

Hwanggujicheon-1 Ammonia Nitrogen (NH3-N) 37.32086 127.9486 10060601 1.01 × 109

Hwanggujicheon1-1 Ammonia Nitrogen (NH3-N) 37.20347 127.0255 11011304 1.1 × 109

Hwanggujicheon2 Ammonia Nitrogen (NH3-N) 37.18372 127.0093 11011305 1.1 × 109

Hwanggujicheon-2 Ammonia Nitrogen (NH3-N) 37.29789 126.9462 11011201 1.1 × 109

Hwanggujicheon3 Ammonia Nitrogen (NH3-N) 37.11886 127.0014 11011308 1.1 × 109

It also provides the name and value of the data measurement item and whether
the item has been refined. A total of 20 items, such as measurement date, flow rate,
water temperature, flow rate (m3/s), water temperature (◦C), pH, DO (mg/L), BOD
(mg/L), COD (mg/L), SS (mg)/L), EC (µS/cm), T-N (mg/L), DTN (mg/L), NO3-N
(mg/L), NH3-N (mg/L), T-P (mg/L), -DTP (mg/L), PO4-P (mg/L), chlorophyll-a, and
TOC (mg/L), are provided.

In Table 2, electrical conductivity (EC), total phosphorus (T-P), chlorophyll-a, flow
rate, phosphate (PO4-P), and total organic carbon (TOC) were excluded due to missing
values. Monthly data were used from January 2008 to December 2020 for the usage data
period. The data in this study did not show a time series. There is a lack of regularity
in the measurement period of the data, and there are parts where monthly data for a
specific year are omitted. In addition, parts with many missing values were deleted. For
example, measurements of items such as chlorophyll-a only have recent results, and data
prior to 2020 do not have values. Looking at the number of data collection cases, the water
environment field was 264,147,400, and the data related to the WQ of Hwanggujicheon
Stream were extracted from it.

Table 2. Items to check.

Items Index Notation Values

pH pH 7.1

Suspended Solids (SS) SS 35

Mercury Mercury 3

Total Nitrogen (T-N) TN 3.624

Dissolved Total Phosphorus (DTP) DTP

NH3-N NHN

COD COD 42

DO DO 8.6

Dissolved Total Nitrogen (DTN) DTN

NO3-N NON

Electrical Conductivity (EC) EC

BOD BOD 42

Total Phosphorus (T-P) TP 0.837

Chlorophyll-a Chlorophyll-a

Flow Rate Flow Rate

Phosphate Phosphorus (PO4-P) PO4-P

Total Organic Carbon (TOC) TOC
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The data used in this study were source data collected from the National Institute of
Environmental Sciences, Statistics Korea, and the Korea Meteorological Administration,
and the data were primarily refined based on related laws, such as the announcement of
the water environment monitoring network operation plan. As for the type of refinement,
outliers were identified and removed by determining whether they were included within
the confidence interval in the removal of outliers. In addition, cross-validation with
data construction institutions and inspection institutions was performed by designating
a dedicated inspection team among participating institutions, and an expert inspection
was performed by designating a national organization consultative body composed of
water-quality experts from the National Academy of Environmental Sciences [46].

In this study, MinMaxScaler() was used for scaling after data preprocessing. The
normalization method used in the DO prediction model used min-max scaling as a method
to make the range the same for all input variable characteristics. The min–max scaling
method of normalizing used variables to values between 0 and 1. The smallest value is
converted to 0, the largest value is converted to 1, and all properties have the range (0–1).
Many missing values were deleted.

In this study, the number of instances extracted through preprocessing to build a
model for predicting DO in Hwanggujicheon, the research target area, is 761. The measured
period is from 2008 to 2020. It corresponds to the number in which the part due to missing
values or data errors is removed.

Each element and sub-item were selected through the literature search and prior
research, and unused sub-items were those that were not properly learned or parts with
many missing values and were removed when constructing the DO prediction model. As
the modeling optimization factor, nine features of the DO prediction model were used.
Looking at the model variables used in this study, the data of DO, a WQ item of the
WQ measurement network, is used as the dependent variable of the boosting-based DO
prediction model. The data of nine WQ items from the automatic WQ measurement
network were used for the independent variable (input variable) of the boosting-based DO
prediction model.

The criteria for selecting the learning data in this study were the literature search,
previous studies, and the living environment criteria items of rivers and lakes. This
was based on Article 12 (2) of the Framework Act on Environmental Policy (setting of
environmental standards) and the environmental standards of the enforcement decree of
the same law. However, the total organic carbon content (TOC) was excluded from the
study because there were many missing values and there were too many unmeasured
areas. Biochemical oxygen demand (BOD) was excluded because it was measured from the
amount of DO.

In the boosting-based DO prediction model, an algorithm was applied to each mea-
surement point, but sufficient results were not obtained due to limited regional data.
Therefore, the current study used the whole part of Hwanggujicheon. Data partitioning
was set to 80:20. A 10-fold cross-validation method was used. In addition, a simulation
was performed using the latest data to evaluate the prediction algorithm, but the number
of instances was insufficient and the predictive power was minimal.

2.2.2. Statistical Data and Its Visualization

The correlations of the data used in this study are as follows.
Figure 4 below shows the plot for the data in Table 3.
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Table 3. Correlations among the water quality parameters.

pH SS Mercury TN DTP NHN COD DO DTN NON

pH 1.0000

SS 0.4781 1.0000

Mercury 0.7187 0.3104 1.0000

TN 0.6999 0.1503 0.3872 1.0000

DTP 0.3592 0.0716 0.3543 0.4999 1.0000

NHN 0.3518 0.1091 0.1433 0.7730 0.4423 1.0000

COD 0.8200 0.5641 0.6100 0.7058 0.4478 0.5544 1.0000

DO 0.8077 0.4119 0.3071 0.4867 0.0890 0.1481 0.5707 1.0000

DTN 0.7034 0.1382 0.3859 0.9964 0.4953 0.7670 0.6959 0.4967 1.0000

NON 0.6140 0.0582 0.3638 0.5360 0.1813 −0.0601 0.3282 0.5824 0.5503 1.0000

The following Table 4 shows the statistics of the data.

Table 4. Statistics of the data.

pH SS Mercury TN DTP NHN COD DO DTN NON

Mean value 0.0836 0.2053 0.2068 0.0947 0.0041 0.0284 0.1235 0.0964 0.0895 0.0423

Median 0.0520 0.1453 0.1551 0.0675 0.0025 0.0142 0.0984 0.0734 0.0643 0.0328

Standard
deviation 0.0423 0.1840 0.1450 0.0649 0.0054 0.0409 0.0722 0.0548 0.0612 0.0312

Minimum 0.0352 0.0117 0.0000 0.0229 0.0000 0.0000 0.0262 0.0207 0.0180 0.0032

Maximum 0.1491 1.0000 0.5860 0.4210 0.0890 0.3090 0.4773 0.2526 0.3988 0.1594

No. of
observations 761 761 761 761 761 761 761 761 761 761

Confidence
(95.0%) 0.0030 0.0131 0.0103 0.0046 0.0004 0.0029 0.0051 0.0039 0.0044 0.0022

Visualization of individual data is performed based on the index and each region has
a similar shape (Figure 5).
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3. Results
3.1. Initial Model and Results

First, we designed a bagging-based random forest. As a parameter of the model, the
number of trees was set to nine, and the maximal number of considered features was set to
five. Replicable training was not set, maximal tree depth was set to five, and stop-splitting
nodes with maximum instances were set to two.

There are 609 train-data instances, and the features are pH, SS, water temperature, TN,
DTP, NHN, COD, DTN, and NON. The index is used as meta-attributes, and DO is used as
the target variable.

In the case of boosting-based gradient boosting, the number of trees was 13 as the model
parameters, the learning rate was 0.464, and replica training was set. Maximum tree depth
was set to 5, and regularization strength was set to 1. The fraction of training instances was
set to 0.899, the fraction of features for each tree was set to 0.899, the fraction of features for
each level was set to 0.849, and the fraction of features for each split was set to 0.499.

Looking at the test scores of the training data in Table 5, R2 and CVRMSE, and
AdaBoost, 0.998 and 2.199, show the best learning ability. On the other hand, the random
forest is 0.925 and 15.372, which lacks explanatory power. However, in all three models,



Water 2022, 14, 1899 11 of 19

MSE is 0.000, but there is a difference between RMSE and MAE, as well as a difference in
running time.

Table 5. Score in training data.

Score on Training Data

Model Train Time (s) Test Time (s) MSE RMSE MAE R2 CVRMSE

Random Forest 0.432 0.005 0.000 0.015 0.011 0.925 15.372

Gradient Boosting 0.076 0.007 0.000 0.022 0.015 0.845 22.157

AdaBoost 0.202 0.019 0.000 0.002 0.001 0.998 2.199

Table 6 is the result value that is learned by 10-fold cross-validation. R2 and CVRMSE,
AdaBoost, 0.896 and 18.082, show the best learning ability. On the other hand, random
forest has relatively poor explanatory power with 0.887 and 18.874. In addition, although
MSE is 0.000, there is a difference between RMSE and MAE.

Table 6. 10-fold cross-validation.

10-Fold Cross-Validation

Model Train Time (s) Test Time (s) MSE RMSE MAE R2 CVRMSE

Random Forest 0.871 0.062 0.000 0.019 0.013 0.887 18.874

Gradient Boosting 0.825 0.169 0.001 0.025 0.018 0.790 25.770

AdaBoost 0.709 0.040 0.000 0.018 0.011 0.896 18.082

Looking at the predictions of the initial modeling, the data include 152 instances,
11 variables, and 9 features (no missing values), and the target variable is DO. The 3 models
used were gradient boosting, AdaBoost, and random forest (Figure 6).
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Table 7 corresponds to the prediction results. It also shows the same predictive power
as the previous results. In the overall evaluation index, AdaBoost is excellent. Similar to
the results of the training process, the MSE is the same, but there are differences in RMSE,
MAE, R2, and CVRMSE. AdaBoost’s RMSE is 0.016, which is relatively close to 0, and R2 is
0.901, which is closer to 1. CVRMSE is relatively low at 18.435, which satisfies all evaluation
criteria of R2 and CVRMSE.

Table 7. Prediction by models.

Prediction Scores

Model Train Time (s) Test Time (s) MSE RMSE MAE R2 CVRMSE

Gradient Boosting N/A N/A 0.001 0.024 0.016 0.79 26.824

AdaBoost N/A N/A 0 0.016 0.009 0.901 18.4354

Random Forest N/A N/A 0 0.017 0.012 0.886 19.752

3.2. Optimal Model and Design

While designing an optimized model, AdaBoost’s learning ability and predictive
ability were superior to that of random forest of bagging or GB-based XGBoost, so it was
selected as an optimized model. In addition, we want to design a design that improves
prediction performance by adjusting the basic parameters.

AdaBoosting is used as the model parameters, the base estimator is tree and the
number of estimators is seven. The learning rate is 0.500. The reproducibility of the
experiment was set as the fixed seed for the random generator was set to 155. There are
609 data instances of data, and the features are pH, SS, water temperature, TN, DTP, NHN,
COD, DTN, and NON. As meta-attributes, they are indexed as Feature 1. The target was
set to DO.

In Table 8, there is a difference in the evaluation index according to the shape of the
loss function. Comparing R2 and CVRMSE, R2 shows 0.999 in the same way for linear
and exponential functions. However, in CVRMSE, linear is 2.066 and exponential is 1.463,
which is close to 0, indicating good learning ability. In this study, the exponential function
was first selected as the loss function and the same parameters were set to estimate the
predictive ability. Next, the predictive ability was compared by applying the linear and
square loss functions.

Table 8. Optimal model.

Model Train Time (s) Test Time (s) MSE RMSE MAE R2 CVRMSE

Random Forest 0.111 0.004 0.000 0.015 0.011 0.923 15.636

Gradient Boosting 0.246 0.006 0.000 0.022 0.015 0.845 22.157

AdaBoost
0.074 0.003 0.000 0.002 0.001 0.998 2.199

Loss: Square

AdaBoost
0.081 0.006 0.000 0.002 0.000 0.999 2.066

Loss: Linear

AdaBoost
0.076 0.008 0.000 0.001 0.000 0.999 1.463

Loss: Exponential

3.3. Predictive Performance Evaluation

Considering the indices for evaluating the performance prediction of machine learning
models, various indices, including RMSE (root mean square error), MAE (mean absolute
error), MSE, R2, and CVRMSE, are used. For the evaluation of DO prediction performance
using the AdaBoost model constructed in this study, root mean square error (RMSE),
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MSE, MAE, CVRMSE, R2, and running time were used. The latter two indices, R2 and
CVRMSE, were mainly used in this paper. MAE and MSE often show the same value,
and predictive performance cannot be properly evaluated in many cases. Meanwhile,
RMSE is an index that compares the absolute value of the difference between the predicted
value and the measured value. Among the evaluation indicators, the closer to 0, the
better the performance of MSE, MAE, RMSE, and CVRMSE. The closer to 1, the better the
performance of R2.

RSME =

√
∑n

i=1 (yi − ŷi)
2

n

It is a value rooted in the MSE, and the error-index is converted back to a unit similar
to the actual value, which makes interpretation somewhat easier.

MSE =
1
n

n

∑
i=1

(yi − ŷi )
2

MSE is the main loss function of the regression model, and it is defined as the mean
square of the errors, which is the difference between the predicted value and the actual
value. Because it is squared, it is sensitive to outliers. MAE is the mean of the absolute
values of errors, which is the difference between the actual value and the predicted value
and is less sensitive to outliers than the MSE.

MAE =
1
n

n

∑
i=1

( |yi − ŷi| )2

R2 (coefficient of determination) is a variance-based prediction performance evaluation
index. Other indicators, such as MAE and MSE, have different values depending on the
scale of the data, but R2 can intuitively judge the relative performance. That is, the R2 score
coefficient of determination is an index that measures the accuracy performance of data
prediction by calculating the variance in the predicted value compared to the variance in
the actual observation.

It is expressed as a number from 0 to 1; the better the linear regression fits the data,
the closer the value of R2 is to 1. The R2 value is obtained by dividing the sum of squares of
residuals by the sum of squared residuals with respect to the average value as follows:

R 2 = 1 − ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − y̌)2

where ŷi is the fitted value and y̌ is the mean value.
The coefficient of variation of the standard error (CVRMSE: coefficient of variation

of the RMSE) is a measured value suggested by ASHRAE (American Society of Heating,
Refrigeration and Air-Conditioning Engineers) Guideline 14 to understand the predictive
performance and reliability of the optimized AdaBoost model.

CVRMSE =
1
y̌
[
∑n

i=1 ( yi − ŷi )
2

n − p
]
0.5

The prediction accuracy of the AdaBoost model was evaluated using the correlation
criterion (R2 > 0.8) and the root mean square error coefficient of variation (CVRMSE) [21].

To analyze the predictive performance and reliability of the AdaBoost model, actual
water pollution data and predicted results were compared. At this time, ASHRAE provides
statistical criteria for comparing and evaluating the measured data and simulation results,
and the predictive performance of the AdaBoost model was mainly evaluated with the R2

value and CVRMSE. R2, representing the model explanatory diagram, is a measure of the
magnitude of the explanatory power of the input variables for the variation in the output
variables of data, and the correlation was judged to be appropriate when the ASHRAE
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standard was 0.8 or higher. CVRMSE is the coefficient of variation (CV) of the root mean
square error (RMSE), and was used as a measure to determine the difference between the
actual value and the predicted value.

4. Discussion

It shows the learning power according to the loss function by setting the hyperparam-
eter obtained by Grid Search. Train time is 0.074–0.081, and test time is 0.003–0.008. MSE
shows the same value according to the loss function.

For RMSE, loss: square is 0.002, loss: exponential is 0.001, and the exponential loss
function is close to 0. In addition, MAE is 0.001 and 0.000, so loss: exponential is close to 0.
Similarly for R2, loss: exponential is 0.999 and 0.998, which is closer to 1 than loss: square.
In addition, since R2 is 80% or more, all loss functions are suitable for the determination
of fitness. In CVRMSE, 2.199 has the highest loss: square, 2.066, and 1.463, all suggesting
appropriate values of less than 30%.

Figure 7 corresponds to the part learned by AdaBoost’s loss function loss: square. As
shown in Table 9, the learning ability is close to 1. The reason that the loss function was
selected as loss: square in this study is because it shows better predictive power than the
other loss functions in the prediction output of Table 10.
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Table 9. Training output.

Model Train Time (s) Test Time (s) MSE RMSE MAE R2 CVRMSE

AdaBoost
0.074 0.003 0.000 0.002 0.001 0.998 2.199

Loss: Square

AdaBoost
0.081 0.006 0.000 0.002 0.000 0.999 2.066

Loss: Linear

AdaBoost
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Table 10. Prediction output.

Model Train Time (s) Test Time (s) MSE RMSE MAE R2 CVRMSE

AdaBoost
N/A N/A 0 0.015 0.009 0.912 17.404

Loss: Square

AdaBoost
N/A N/A 0 0.016 0.009 0.901 18.435

Loss: Linear

AdaBoost
N/A N/A 0 0.017 0.01 0.889 19.501

Loss: Exponential
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Figure 8 corresponds to a line plot of the training output and shows the distribution of
values for each variable.
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Table 10 shows the performance evaluation according to the loss function. It can be
found that the loss functions loss: linear and loss: exponential have relative overfitting in
comparison to loss: square. The MSE of all loss functions is equally 0, and in RMASE and
MAE, loss: square is the closest to 0. However, in MAE, loss: exponential is relatively closer
to 0 than the two loss functions.

This is probably because the MAE is calculated as the average of the absolute values
of the errors, which is the difference between the actual value and the predicted value,
and it is less sensitive to outliers. For R2, loss: square is 0.912, loss: linear is 0.901, loss:
exponential is 0.889, and loss: square is closer to 1. Unlike train score, loss: linear and loss:
exponential are closer to loss: square than 1, and it shows that the model predictive power
is high. Loss: linear also shows better explanatory power than loss: exponential.

In CVRMSE, loss: square is 17.404, loss: linear is 18.435, loss: exponential is 19.501,
loss: square is closer to 0, the reliability of the model is high, and the model evaluation is
more valid.

Therefore, when the model is evaluated based on R2 and CVRMSE, loss: square shows
a higher model fit and predictive power than loss: linear and loss: exponential. All cases
where R2 is 0.8 or more and CVRMSE is less than 30 are accepted. AdaBoost’s loss function
loss: square showed higher predictive power than other loss functions loss: linear and loss:
exponential.

Figure 9 shows the distribution of the results as a line plot of the prediction output.
The line plot of the prediction output has a shape similar to that of the training output.
Because the train data and test data are divided, there is a difference in the depth.
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Figure 10 shows the result predicted by AdaBoost’s loss function loss: square.
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To summarize the results of the experiment, the AdaBoost algorithm showed the best
predictive power in this research model as a result of the random forest, XgBoost, and
AdaBoost predicted by Grid Search. The AdaBoost algorithm, which showed excellent
predictive power, showed higher predictive power as a result of adjusting hyperparameters
to increase the higher optimal predictive power.

In other words, the results predicted by AdaBoost’s loss function loss: square had
relatively little lower learning power compared to the loss functions loss: linear and
loss: exponential, but showed better predictive power in the predictive power of the
verification data.

Therefore, in this study, AdaBoost’s loss function loss: square was selected and the
prediction algorithm was implemented. The implemented prediction result was closer to
1 with R2 0.912, and the model predictive power was high. In addition, the CVRMSE was
17.404, which is closer to 0 than other loss functions; the reliability of the model is high and it
is more valid in model evaluation. Therefore, if the model of the implementation algorithm
of this study is evaluated based on R2 and CVRMSE, all cases where R2 is 0.8 or more and
CVRMSE is less than 30 are accepted, showing high model fit and predictive power.

5. Conclusions

This study is a prior research stage in the development of an algorithm to predict the
optimal WQ of Hwanggujicheon based on the data of the open AI hub and implemented
an algorithm to predict the WQ using AdaBoost.

The conclusion is summarized as follows.
First, a WQ prediction model for Hwanggujicheon was implemented using a model

called AdaBoost, and this prediction model can be used to predict and utilize WQ by
selecting representative points of the four major rivers’ water source protection areas and
applying them as a pilot.

Second, to implement a WQ prediction algorithm based on boosting, the AdaBoost
algorithm, which has excellent predictive performance and model suitability, was selected
for random forest and GB-based boosting models. In order to predict the optimized WQ,
the input variables of the AdaBoost model were pH, SS, water temperature, TN, DTP, NHN,
COD, DTN, and NON. DO was used as the target variable.

Third, by using a random forest or GB-series algorithm in the initial model, it is
possible to analyze the prediction accuracy according to the input variable.
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Algorithms with excellent predictive power were selected. After the optimization
process, when the loss function was square, the model evaluation and reliability criteria of
the training data, R2 and CVRMSE, were low, but R2 and CVRMSE were selected as the
criteria in the predict score.

Fourth, as a result of the performance evaluation of the finally developed predictive
model, RMSE was 0.015, MAE was 0.009, and R2 was 0.912. CVRMSE was 17.404. R2 0.912
and CVRMSE were 17.404, indicating that the predictive model that was developed meets
the criteria of ASHRAE Guideline 14.

The WQ measurement algorithm of this study can be used as a policy suggestion. In the
policy field, WQ prediction can be carried out by referring to data and models for WQ mea-
surement and pollution source prediction of environmental pollution artificial intelligence
data during WQ prediction model evaluation and development by national/administrative
agencies, such as the Environmental Technology Institute and Korea Water Resources Cor-
poration. It can also support decision-making regarding environmental and urban policy.

Future directions for this study include developing an operating algorithm for the WQ
prediction system, controlling the set values and variables of each system, and applying it
to simulation and actual WQ prediction. In addition, it is necessary to predict WQ so that
WQ accidents, such as fish death, can be prevented in advance.
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