
Citation: Cartwright, J.H.; Shammi,

S.A.; Rodgers, J.C., III. Use of

Multi-Criteria Decision Analysis

(MCDA) for Mapping Erosion

Potential in Gulf of Mexico

Watersheds. Water 2022, 14, 1923.

https://doi.org/10.3390/w14121923

Academic Editors: S.

Kossi Nouwakpo, Jason Williams

and Frédéric Darboux

Received: 15 April 2022

Accepted: 13 June 2022

Published: 15 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Use of Multi-Criteria Decision Analysis (MCDA) for Mapping
Erosion Potential in Gulf of Mexico Watersheds
John H. Cartwright 1,* , Sadia Alam Shammi 1 and John C. Rodgers III 2

1 Geosystems Research Institute, Mississippi State University, Starkville, MS 39762, USA; ss4445@msstate.edu
2 Department of Geosciences, Mississippi State University, Starkville, MS 39762, USA;

rodgers@geosci.msstate.edu
* Correspondence: johnc@gri.msstate.edu

Abstract: The evaluation of soil erosion is often assessed using traditional soil-loss models such
as the Revised Universal Soil-Loss Equation (RUSLE) and the Soil and Water Assessment Tool
(SWAT). These models provide quantitative outputs for sediment yield and are often integrated
with geographic information systems (GIS). The work described here is focused on transitioning
towards a qualitative assessment of erosion potential using Multi-Criteria Decision Analysis (MCDA),
for improved decision-support and watershed-management prioritization in a northern Gulf of
Mexico coastal watershed. The foundation of this work conceptually defined watershed erosion
potential based on terrain slope, geomorphology, land cover, and soil erodibility (as defined by the
soil K-factor) with precipitation as a driver. These criteria were evaluated using a weighted linear
combination (WLC) model to map generalized erosion potential. The sensitivity of individual criteria
was accessed with the one-at-a-time (OAT) method, which simply removed one criterion and re-
evaluated erosion potential. The soil erodibility and slope were found to have the most influence on
erosion-potential modeling. Expert input was added through MCDA using the Analytical Hierarchy
Process (AHP). The AHP allows for experts to rank criteria, providing a quantitative metric (weight)
for the qualitative data. The individual AHP weights were altered in one-percent increments to help
identify areas of alignment or commonality in erosion potential across the drainage basin. These
areas were used to identify outliers and to develop an analysis mask for watershed management area
prioritization. A comparison of the WLC, AHP, ensembled model (average of WLC and AHP models),
and SWAT output data resulted in visual geographic alignment between the WLC and AHP erosion-
potential output with the SWAT sediment-yield output. These observations yielded similar results
between the qualitative and quantitative erosion-potential assessment approaches, with alignment
in the upper and lower ranks of the mapped erosion potentials and sediment yields. The MCDA,
using the AHP and ensembled modeling for mapping watershed potential, provided the advantage
of more quickly mapping erosion potential in coastal watersheds for improved management of the
environmental resources linked to erosion.

Keywords: watershed; erosion potential; MCDA; WLC; AHP; ensembled model

1. Introduction

Sediment is the largest volumetric nonpoint-source pollutant to surface waters [1–3]
and one of the most important water-quality problems in the United States [4–6]. Upland
watershed erosion is a serious issue for estuaries and the coastal region of the southeastern
United States. During precipitation events, overland and streambank erosion increases in
the watershed, often resulting in degradation to downstream resources in the associated
estuary. Erosive rates are amplified in areas experiencing active land use changes with
agriculture, and increasing urbanization and industrialization [7,8]. The influence of the
growing human population and unrestricted development in coastal watersheds is proving
to be very detrimental to the overall integrity of the fragile, yet highly productive estuarine
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ecosystems. This growth and development have increased pollution inputs, loss of habitat,
and nutrients, and has led to degraded ecologic conditions [1–3]. These trends of degraded
conditions due to human influence will continue to impact estuaries, creating higher
instances of eutrophication, hypoxia, and anoxia.

Coastal watersheds and their estuaries are important to the overall coastal environ-
ment, and are areas of high biologic productivity [9,10]. The high level of productivity is,
in part, due to the transition zone created by the mixing of the upland drainage of fresh
water with saline seawater; these areas are referred to as the nurseries of the sea [11].

Modeling erosion in coastal watersheds is a complex task that involves a wide range of
knowledge from several scientific and engineering disciplines. An effective understanding
of coastal watersheds requires several inputs, such as coupling landscape characterization
and hydrologic processes [12,13]. Developments in geographic information systems (GIS)
and other geospatial technologies have greatly increased the quality and quantity of data
available for hydrologic modeling [13–16]. The coupling of GIS with other models is
an approach that is effective in the management of the resources of coastal watersheds.
Numerous hydrologic, soil-erosion, and landscape-characterization models can couple
with geospatial technologies such as GIS for improved data processing, analysis, and
visualization [13–17].

The design of soil-erosion models allows them to work in conjunction with GIS and
other geospatial applications. Examples include the Water Erosion Prediction Project
(WEPP), Soil and Water Assessment Tool (SWAT), and the open-source version of the Non-
point Source Pollution and Erosion Comparison Tool (OpenNSPECT). These models are
often described as traditional soil-loss models and are either mechanistic (i.e., SWAT) or em-
pirical, such as the Revised Universal Soil-Loss Equation (RUSLE) and Modified Soil-Loss
Equation [18]. Soil erosion across the landscape has traditionally been characterized using
models such as the RUSLE [19,20] and the WEPP [21–23]. The combination of many of these
models with GIS helps with the transition from models to decision-support and analysis.
Modeling approaches are typically either classified as qualitative or quantitative [24]. A
quantitative model is data driven, and it is difficult to apply this model in data-poor regions.
Additionally, a quantitative model is not enough to determine erosion potential when there
are several factors influencing the erosion of the zone [25]. On the other hand, a quali-
tative model has fewer data requirements. It can easily identify the primary factors that
are responsible for erosion potential [25]. Additionally, the use of quantitative models in
decision-support and analysis is beneficial; however, the execution and data requirements
of the models often limit updated assessments for specific management needs. These
limitations are increased, as many of the managers lack the resources needed to readily
execute the models.

Geospatial technologies have provided several contributions to watershed modeling
through their ability to utilize large temporal datasets from monitoring/sampling locations
(e.g., hydrometric, and climatic stations) [16]. Remote sensing has created a pathway for the
classification of land-use/land-cover changes in coastal watersheds, which help to visualize
landscape changes arising from the increasing population and developments [26]. These
types of classifications, coupled with GIS and spatial analyses, are allowing environmental
decision-makers to identify and rank land-use patterns for the implementation of best
management practices for nonpoint-source pollutants and other related issues [27]. These
GIS and spatial analysis methods allow relationships to be established between sediment
loading and the watershed landscape to help identify and prioritize management areas
efficiently [28,29]. The mapping of watershed erosion potential, focused on watershed
landscape characterizations, provides a needed measure of assessment and aids in the
identification of sediment sources contributing to degraded conditions within a watershed
and the associated estuarine environment. These characterizations are derived from land-
use/land-cover changes and practices (i.e., land disturbance), terrain analyses, physical
properties of soils, and other geomorphologic features such as surface drainage density.
Previously, factors such as slope gradient, precipitation, NDVI (normalized difference
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vegetation index), land use, soil texture and slope aspect were studied for soil-erosion
risk assessment [25]; additionally, drainage density, slope, land use/cover, and runoff
measurement were used for identifying potential zones for rainwater harvesting [30], etc.
Therefore, based on the availability of data in the specified zone, the number of factors may
be varied as an input to the models.

Multi-criteria decision analysis (MCDA) methods have become very popular for spatial
planning and management issues and are a significant tool for decision makers, especially
for multicriteria assessment [31]. The applications of MCDA are wide. It is applied
to identify priority areas for soil-erosion risk measurement [25], to calculate landscape
deformation index [31], to identify potential zones for rainwater harvesting [30], in the field
of transport for determining suitable management [32], to generate the ranking of green
bonds in corporate office management [33], etc.

Hence, expanding GIS utilization for MCDA has improved decision-support models
for land-based suitability evaluations. These expanding efforts have increased the need
for ways to evaluate the performance of the models and tools utilized, as well as the
sensitivity of the variables or layers used [34,35]. There are numerous procedures that
are used with GIS for MCDA; examples include Boolean overlay, weighted linear combi-
nation (WLC), ordered weighted averaging (OWA), and the analytical hierarchy process
(AHP) [36]. The WLC is one of the most commonly used decision-support tools in the
GIS environment [37,38]. Additionally, GIS coupled with the AHP [39] is proving to be
an important tool for MCDA [40,41]. GIS utilizing AHP is an established and credited ap-
proach to MCDA for land-resource-management decisions [42,43], and is an important part
of sustainable land-planning approaches [44,45]. The AHP has been found to be a robust
method for determining criteria weights based on expert input [46] and works well with
MCDA in the GIS environment. Additionally, the combination of GIS and AHP is useful
for MCDA in the management of natural resources related to soil-erosion mapping [47].
While models and tools of this type do not allow for the quantification of sediment yields
or soil-loss rates due to erosion, they do offer resource managers and decision makers the
necessary information to better manage and prioritize watersheds and the related resources.

Therefore, qualitative modeling approaches are often driven by MCDA, typically with
expert input. This makes them very useful in the decision-making process, specifically for
tasks such as vulnerability assessments and other methods [48]. The qualitative nature
of MCDA often requires nontraditional methods of uncertainty assessment. Sensitivity
analysis is one of the common methods used to reduce uncertainty in the variable weights,
which can assist with identifying stability in model performance with changing criteria
weights [34]. Sensitivity analysis with GIS-based MCDA can also provide insights into
the spatial aspects of the changing criteria weights. Feick and Hall suggested that efforts
to analyze criteria weight sensitivity can help to geographically visualize the sensitivity
of the results [49]. Another approach to reducing uncertainty in the modeling approach
is the combination of different models using the average, which is termed as ensembled
model [50,51]. The ensembled model is a useful combinational approach and can enhance
the strength of prediction mapping while reducing the weakness of each source map [51].
Studies showed better/improved prediction in clay content mapping for soil-quality as-
sessment and decision making in land use [50], and for combining digital soil-property
maps derived from disaggregated legacy soil-class maps and scorpan-kriging (using soil
pan data) [51] from the ensembled model, respectively.

The primary aim of this research is to develop a qualitative assessment to map erosion
potential using WLC, AHP, and ensembled modeling approaches for watersheds associated
with the northern Gulf of Mexico. This assessment will provide a process to resource
managers for the identification and prioritization of watershed management areas. The
mapped erosion potential found from these models will be compared to the sediment yield
from the SWAT model (https://swat.tamu.edu/). The SWAT model is widely used across
the globe in assessing soil-erosion prevention control, nonpoint-source pollution control,
and regional management in watershed (https://swatplus.gitbook.io/docs/). The SWAT

https://swat.tamu.edu/
https://swatplus.gitbook.io/docs/
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was used in the development of the Weeks Bay Watershed Management plan. The model
delineated the Weeks Bay watershed into 237 sub-watersheds (197 for the Fish River and
40 for the Magnolia River); these are used to produce the computational hydrologic response
units (HRU’s) in SWAT. Sediment-yield results from this model were based on 2011 land
use/cover, and it was reported that over half of the sediment yield was produced from
about one-third of Weeks Bay watershed [52].

Therefore, the comparisons will be limited to basic observations between the quali-
tative and quantitative output of the data. The comparisons will show a general visual
alignment in sub-basins of increasing development and headland drainage areas in the
study area. The comparison against the output of the SWAT model will help the resource
managers to look at scenarios or management priorities without the understanding and
execution of more complex soil-loss models. The ensembled model will aid in the visu-
alization of the priorities of the management areas. The models will serve as a base for
the multi-criteria decision analysis (MCDA) of erosion potential by decision makers and
resource managers.

2. Materials and Methods
2.1. Study Area

The Weeks Bay watershed is located on the eastern shore of Mobile Bay in Alabama. It
is an ideal basin for the assessment of erosion potential, as it relatively small and secluded
from surrounding watersheds. The watershed is limited to inputs from two major rivers
(Fish and Magnolia) that both directly drain to Weeks Bay (Figure 1). The Weeks Bay water-
shed is a diverse natural and anthropogenically influenced landscape with natural, forested,
agricultural, and developed areas that are reflective of the region’s natural resources and
demographics [52]. The area is within the humid subtropical climate region, characterized
by warm summers and relatively mild winters. Average annual precipitation averages
about 165 cm due to winter storms (cold fronts), summer thunderstorms (including those
from the sea breeze), and tropical systems. The abundant water resources in the area make
for a range of very productive land uses from timber production, cash-grain crops, and
forage production [53]. The Fish River provides nearly 75% of the total discharge to the bay
itself and is made up of three sub-watersheds (Upper, Middle, and Lower Fish River). The
Magnolia River provides the remaining discharge and consist of a single sub-watershed.

2.2. Data Collection and Processing

The process used to map soil-erosion potential was based on several geospatial vari-
ables. National data sources were used for these variables to ensure transition between
different watersheds and scalability. Below, we describe the most relevant variables to be
included in the model.

2.2.1. Slope

The slope for the study area was calculated using the USGS (United States Geological
Survey) 30-m National Elevation Dataset (https://www.usgs.gov/3d-elevation-program;
accessed on 9 October 2019). The slope calculation for each raster cell was based on the
amount of descent between it and the surrounding eight cell neighborhoods using Horn’s
algorithm [54]. The maximum value of descent was, thus, recorded as the cell’s slope, and
could be calculated in percent or degrees. The slope raster was then normalized to 0–1.

2.2.2. Soil Erodibility

The soil erodibility (K-factor) was from the 30-m gridded USDA (United State Depart-
ment of Agriculture) Soil Survey Geographic Database (https://www.nrcs.usda.gov/wps/
portal/nrcs/main/soils/survey/; accessed on 10 March 2020). K-factor accounts for both
the susceptibility of a cell to soil erosion based on soil texture and rate of runoff. Values
less than 0.2 are considered as low erodibility, 0.2 to 0.4 as moderate, and greater than 0.4
as high, according to the National Soil Survey Handbook developed by the U.S. Department

https://www.usgs.gov/3d-elevation-program
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
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of Agriculture, Natural Resources Conservation Service (http://www.nrcs.usda.gov/wps/
portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242; accessed on 1 April 2019). The values
were normalized to 0.049–1.
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States along the northern Gulf of Mexico, with the four sub-basins labeled.

2.2.3. Stream Density

The stream density was a 30-m raster collected from the USGS National Hydrography
Dataset (https://www.usgs.gov/national-hydrography/national-hydrography-dataset;
accessed on 9 October 2019). Higher instances of stream density are associated with
increased erosion rates, specifically as they relate to the dissection of the landscape and land-
drainage system interactions [55]. Similar data layers are used in soil-erosion analysis [56]
and are also used in numerous landscape evolution models that simulate erosion and
deposition [57]. The density function used for calculation utilized a neighborhood area
with a specified search radius; all stream segments intersecting the area were counted and a
continuous surface with the specified cell size was returned. The default search radius used
in commercial GIS software is based on the minimal spatial dimension of the dataset [58].

http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242
http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242
https://www.usgs.gov/national-hydrography/national-hydrography-dataset
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The derived density surface was normalized by the maximum value within the Weeks Bay
Watershed. The resulting data layer was a continuous index of stream density with unitless
values ranging from 0.055–1.

2.2.4. Soil Brightness

The soil brightness was calculated dynamically from the tasseled cap transformation
of the 30-m Land cover raster from USGS Global Land Survey Dataset (https://www.usgs.
gov/landsat-missions/global-land-survey-gls; accessed on 9 October 2019). Hence, the
soil brightness band of the Tasseled Cap transformation provided an index of measure for
soil reflectance/exposure and not just the lack of vegetation [59]. The soil brightness data
from the GLS dataset were extracted, subset to the Weeks Bay Watershed, and normalized
by the maximum value. The resulting data layer was a continuous index of soil brightness
with unitless values ranging from 0.018–1.

2.2.5. Precipitation

The precipitation data were collected from the 4-km 30-year normal grid of PRISM
dataset (https://prism.oregonstate.edu/normals/; accessed on 15 March 2020) for rainfall
variation across the basin. These data were extracted from the database for the region of
interest, normalized by the maximum value, and resampled to 30 m (from 4 km). The
resulting data layer was a continuous index of annual precipitation climatology with
unitless values ranging from 0.96–1.

2.3. Model Description

The concept of watershed erosion is summarized as the total erosion for the combina-
tion of physical erodibility, land sensitivity, and precipitation erosivity factors [20,23,41,56].
For this study area, the physical erodibility was measured by slope and stream density; land
sensitivity included measures of soil K-factor and soil brightness (exposure); and rainfall
erosivity was measured as average precipitation of the watershed (rainfall variation). A
schematic diagram of the modeling approach for watershed erosion potential is indicated
in Figure 2. The algorithm used for this WLC mapping was a standard weighted linear
combination (WLC) for the summation of the five raster data layers, i.e., slope, stream
density, soil brightness, soil erodibility, and precipitation [37]. The weights for the AHP
model were calculated using Saaty’s method of a continuous rating scale for pairwise com-
parison [46]. This procedure set each data layer with a possible data range of zero to one
for a common scale of assessment. Zero would be a minimal impact on erosion potential,
with values of one having the greatest impact. The scale for the AHP model is shown in
Table 1. Each data layer was then compared individually with the other data layers as they
relate to erosion potential. Weights for each data layer were assigned based on results from
the pairwise comparison matrix (Table 1). With all layers standardized and weighted, the
WLC was used to apply the weights from the expert input for the assessment of erosion
potential. This allowed each data layer to be multiplied by the expert-defined weight and
then summed for a continuous surface of overall erosion potential. The algorithm for the
WLC and AHP model is shown in the Equations (1) and (2), respectively.

EPWLC = a(S + SD + K + SB + P), (1)

EPAHP = a1 ∗ S + a2 ∗ SD + a3 ∗ K + a4 ∗ SB + a5 ∗ P, (2)

where EP is the watershed erosion potential, P is the average Precipitation, K is the soil
erodibility, S is the slope length and steepness, SB is the soil brightness, and SD is the
stream density of this region. a is the standard weight for the WLC model, and a1, a2, a3,
a4, and a5 are weights expected from running the AHP model.

https://www.usgs.gov/landsat-missions/global-land-survey-gls
https://www.usgs.gov/landsat-missions/global-land-survey-gls
https://prism.oregonstate.edu/normals/
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Figure 2. A schematic of WLC, AHP, and ensembled model for watershed erosion-potential mapping.

Table 1. Scale for AHP Comparisons.

Scale Definition

9 Extremely

More Important

7 Very Strongly

5 Strongly

3 Moderately

1 Equally Important

1/3 Moderately

Less Important
1/5 Strongly

1/7 Very Strongly

1/9 Extremely

The erosion potential (EPEN) from the ensembled model was calculated and is men-
tioned in Equation (3).

EPEN =
n

∑
i=1

EPi (3)

where EPEN is the ensembled erosion-potential model, n is the number of models, and EPi
indicates the erosion potential from each of the ith models.

2.4. Sensitivity Analysis

A basic sensitivity assessment was performed for the WLC model variables. The
assessment was a simplistic one-at-a-time (OAT) procedure wherein a single variable or
layer was removed and the erosion-potential analysis was processed again. The procedure
followed the method used by Chen et al. [34] and Romano et al. [36].

2.5. Ranking of the Management Area

The study area was divided into 18 management areas based on the smaller streams
in the watershed. The management areas were ranked or prioritized based on the average
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EP value for each zone. The average EP values found in the WLC, AHP, and SWAT models
were compared to visualize the similarities in the zones’ priorities for management, to
support improved decision making for management and prioritization of resources.

3. Results
3.1. WLC Model

Potential watershed erosion cells were mapped with a standard weighted linear
combination (WLC) to build a foundation for the qualitative assessment for watershed
erosion. Criteria sensitivity was evaluated using the one-at-a-time (OAT) method to better
understand the influence of the landscape layers. The WLC model was executed using the
five raster data layers, weighted equally, for the initial assessment of generalized erosion
potential. The output of the WLC model was a continuous surface of erosion potential
based on physical erodibility, land sensitivity, and 30-year precipitation for the Weeks
Bay watershed. Mean erosion potential was calculated for the entire watershed (0.527,
S.D. = 0.057) and the four sub-basins within the Weeks Bay watershed. Field observations
during site visits showed that the upland, head water areas of the watershed, and the
areas dominated by cultivated agricultural areas are expected to have higher erosion
potential. Lower erosion-potential values are expected in the densely vegetated riparian
and marsh areas.

The erosion-potential data were classified based on the standard deviation spread
from the mean erosion potential across the drainage basin, to better define areas based on
the upper and lower ranks of erosion potential. This resulted in seven classes that were
used to define the ranks for the cells, with class 1 having the lowest potential and class 7
having the highest potential. At the watershed level, 1.5% of the cells are in the upper-most
erosion-potential ranks (classes 6 and 7), approximately 14% are in the moderate erosion-
potential rank (class 5), and the lower erosion-potential ranks (classes 1–3) are similar in
distribution to the upper ranks (classes 5–7).

Erosion potential across the four sub-basins level are varied in comparison. The two
downstream basins (Magnolia and Lower Fish) have decreased proportions of cells around
the mean erosion potential, and the two upstream basins (Upper and Middle Fish) have
increased cell proportions around the mean erosion potential. The Magnolia River sub-
basin has the largest count of cells in the upper erosion-potential ranks (classes 5–7), at
23%. The Lower Fish River sub-basin has the next highest count, with almost 17% of the
sub-basin in the upper erosion-potential ranks, and the Upper and Middle Fish sub-basins
have 12% or less in the upper ranks. Table 2 provides a complete description of cell counts
(with upper and lower ranks) at the basin and sub-basin levels.

Table 2. Descriptive statistics of erosion potential in WLC model.

Class Name Upper Fish Middle Fish Lower Fish Magnolia Weeks Bay

Class 1 0 1 5279 50 5330
Class 2 1436 825 5225 1335 8821
Class 3 22,586 16,072 19,899 15,938 74,495
Class 4 141,679 89,391 90,602 71,948 393,620
Class 5 21,206 12,331 22,433 23,872 79,842
Class 6 2287 1147 1908 2788 8130
Class 7 109 26 62 188 385

Minimum 0.356 0.353 0.231 0.294 0.231
Maximum 0.801 0.770 0.771 0.787 0.801

Range 0.445 0.417 0.540 0.493 0.570
Mean 0.527 0.526 0.520 0.537 0.527
S.D. 0.050 0.050 0.069 0.059 0.057

S.D. = Standard Deviation.
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3.2. WLC Model Criteria Sensitivity Assessment

The sensitivity of individual criteria was accessed using the one-at-a-time (OAT)
method by removing one criterion from the WLC model and recalculating erosion potential.
This resulted in five additional WLC model outputs of erosion potential produced by
equally weighting four of the five criteria; the detailed results are mentioned in Table 3. The
five additional OAT WLC models were compared to the initial WLC model to understand
the influence of each variable in the WLC. The OAT WLC models all had moderate- to-
strong correlations with the initial WLC model.

Table 3. Descriptive statistics and Pearson correlation for sensitivity analysis.

Statistical Parameter WLC Model
Variable Removed from the WLC Model

Slope Stream Density K-Factor Soil
Brightness Precipitation

Mean 0.527 0.634 0.539 0.511 0.540 0.411
Median 0.529 0.635 0.542 0.513 0.542 0.414
Mode 0.518 0.573 0.398 0.520 0.552 0.444
S.D. 0.057 0.072 0.061 0.052 0.061 0.072

Variance 0.003 0.005 0.004 0.003 0.004 0.005
Kurtosis 0.467 −0.033 −0.103 0.724 0.418 0.416

Skewness −0.328 −0.152 −0.103 −0.292 −0.184 −0.304
Range 0.570 0.632 0.611 0.560 0.544 0.711

Minimum 0.231 0.288 0.269 0.277 0.270 0.046
Maximum 0.801 0.920 0.881 0.837 0.814 0.757

Count 570,623 570,623 570,623 570,623 570,623 570,623
Pearson Correlation - 0.940 0.882 0.788 0.881 1.000

The model without the precipitation variable had the strongest correlation (R = 1.00),
followed by the model run without slope input (R = 0.94). The runs without stream
density and soil brightness were moderately correlated, R = 0.88. The run with the weakest
correlation was the one without K-factor, R = 0.79. The correlation results showed that
the WLC model was most sensitive to the K-factor variable, moderately sensitive to the
variables of stream density and soil brightness, and least sensitive to the precipitation and
slope variables.

3.3. AHP Model

This Analytical Hierarchy Process (AHP) model was executed on the five raster data
layers utilized in the WLC model. The AHP experts input defined weights for each of
the five layers with the pairwise comparison. The weight assignments for each of layers
were based on scores from the experts’ qualitative ranking of factors. The most weight
was given to terrain slope at 33.8% with lesser weights given to geomorphology, land
cover, and soil erodibility (~15.0% for each). The 30-year precipitation was effectively left
unchanged at 20.5%. The AHP mean erosion potential for the entire watershed (0.472,
S.D. = 0.051) decreased as compared to the WLC erosion potential. The range of the AHP
erosion potential increased slightly from that of the WLC and was strongly correlated, with
a Pearson’s R value of 0.923.

The AHP erosion-potential data were classified into seven classes based on a standard
deviation spread (Figure 3b) of just the WLC erosion-potential data (Figure 3a). At the
watershed level, 2.7% of the cells are in the upper-most erosion-potential ranks (classes 6
and 7) and approximately 12% are in the moderate erosion-potential rank (class 5). The
lower erosion-potential ranks (classes 1 and 2) are similar to the upper ranks with 2.27% of
the cells. The AHP model produces slightly more cells in the lower ranks than the upper
ranks of erosion potential (Table 4). The spatial differences between the AHP model and
the WLC model erosion-potential class changes are seen in Figure 3c, highlighting the areas
where the AHP increased or decreased erosion potential from the WLC model.
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Figure 3. The WLC map (a), AHP map (b), and the differences in mapped erosion cells between
the AHP and WLC map (c) are shown. In the difference erosion-potential map, the orange cells are
where erosion potential increased with the expert input from the AHP, and green cells are where
it decreased.

Table 4. Erosion-potential changes between WLC and AHP model.

Class Name WLC Model AHP Model Change

Class 1 5330 4927 −403
Class 2 8821 8012 −809
Class 3 74,495 72,206 −2289
Class 4 393,620 404,415 10,795
Class 5 79,842 68,674 −11,168
Class 6 8130 10,482 2352
Class 7 385 1907 1522
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The AHP weights were altered in one-percent increments to identify outliers with
AHP model runs. An example of weight alteration in the AHP model for 41 iterations for a
single layer is displayed in Appendix A, Table A1. The percentage of outliers at each map
(or grid) cell was calculated to look at variations spatially. A threshold of 25% was used
to define areas with minimal alignment between AHP runs. About 37.5% of the mapped
watershed cells were producing inconsistent or varying erosion-potential results. About
62.5% of the mapped watershed cells were in alignment with 75% of the model runs, with
no outliers. This area of the watershed is where the AHP model runs were in alignment
for the upper and lower ranks of erosion potential. Erosion cell counts in this area for the
moderate and upper ranks (classes 5, 6, and 7) decreased proportionally. The proportional
decrease shows that the higher instances of outliers are not clumped within the lower or
upper ranks of erosion potential. This provides the definition of a focus area (an analysis
mask) for increased erosion potential in the Weeks Bay watershed (Figure 4). This analysis
mask serves as spatial filter for mapped erosion-potential cells for improved agreement in
the modeled outputs.

Water 2022, 14, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 4. The area highlighted in yellow represents where the AHP model agreed based on one-
percent changes to criteria weights with minimal outliers. 

Figure 4. The area highlighted in yellow represents where the AHP model agreed based on one-
percent changes to criteria weights with minimal outliers.



Water 2022, 14, 1923 14 of 25

3.4. WLC and AHP Model Comparison

Comparisons between the WLC and AHP models were expanded to include an evalu-
ation of the outputs with a SWAT model for the Weeks Bay Watershed. This comparison
went beyond the mapped potential erosion cells to evaluate the outputs for watershed
management scenarios. The comparison took the classified erosion cells for the WLC and
AHP models and mapped them with the sediment-yield data for 237 sub-watersheds from
the SWAT model output. The WLC and AHP data were similar, with an apparent alignment
in the southwestern and northeastern areas of the watershed, with the higher ranks of
mapped erosion potential aligned with the SWAT sediment yield (Figure 5). Additionally,
the AHP data highlighted hillslope areas in the headland areas of the watershed due to the
experts’ emphasis on topography.
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3.5. Management-Priority Area Ranking

The final comparison was an aggregate of the mapped erosion-potential cells from
the WLC, AHP, and ensemble model runs and the SWAT model sediment-yield data to the
management areas of the Weeks Bay watershed (Figure 6). The average erosion-potential
values and the SWAT sediment-yield data were summarized for each of the management
areas for ranked prioritization. Observational trends in the summarized data exhibited
spatial alignment in the WLC and AHP upper erosion-potential ranks with higher SWAT
sediment-yield data for the watershed management areas. Both the qualitative AHP model
and the numerical SWAT model agreed in mapping the management area ranked with the
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highest erosion. Figure 6 shows the management area rankings for the WLC, AHP, and
SWAT models with the ranking of each area based on calculated erosion or sediment yield
for the respective model output. The WLC, AHP, and SWAT ranks for the higher ranks of
erosion aligned approximately 70% of the time.
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Figure 6. Management area rankings for the WLC (a), AHP (b), ensembled (c), and mapped erosion
cells compared with SWAT sediment yield (d). Agreement of the rankings in upper ranks provides
prioritization of management areas for the Weeks Bay watershed.

Similarly, the mapped erosion potential from the ensemble model was averaged and
summarized for the management areas, and similar rankings were found to that of the
SWAT model. Three of the four management areas—Pensacola Branch, Waterhole Branch,
and Turkey Branch—aligned with areas ranked by the SWAT model for high sediment
yield. In the lower ranks, alignment was found with the Weeks Branch and Weeks Bay
management areas (Table 5). Overall, the ensembled model produced similar results to
that of the WLC and AHP models, with agreement in mapped erosion potential in areas of
higher ranks.
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Table 5. Weeks Bay management area rankings from ensemble model and SWAT model.

Name of the
Management Area Sub-Basin Name Rank in

Ensemble Model
Rank in

SWAT Model

Pensacola Branch Middle Fish 1 1
Perone Branch Upper Fish 12 2

Waterhole Branch Lower Fish 2 3
Turkey Branch Lower Fish 4 4
Picard Branch Upper Fish 15 5
Corn Branch Upper Fish 3 6

Barner Lower Fish 16 7
Magnolia River Magnolia 9 8
Polecat Creek Middle Fish 14 9

Cowpen Creek Lower Fish 13 10
Baker Branch Middle Fish 10 11

Unknown Middle Fish 7 12
Three Mile Creek Upper Fish 6 13

Green Creek Lower Fish 5 14
Bay Branch Upper Fish 11 15

Weeks Branch Lower Fish 17 16
Upper Fish River Upper Fish 8 17

Weeks Bay Lower Fish 18 18

4. Discussion

The erosion potential for a watershed along the northern Gulf of Mexico was mapped
qualitatively using layers representative of physical erodibility, land sensitivity, and 30-year
precipitation for the Weeks Bay watershed. The criteria used to define these layers were
based on regional availability and input from watershed managers and stakeholders on
erosional trends in this area. The approach used a WLC model and was set up with
criteria similar to numerical models such as RUSLE [19]. Other approaches to soil-erosion
mapping include empirical, conceptual, physically based, and hybrid models [60]. Some
hydrodynamic numerical models, i.e., 1-D (one-dimensional) and 2-D hydrodynamic
models showed better efficiency in urban-flood-risk mapping [61]. Compared to the
conceptual models, i.e., the Hydrologic Simulation Program (HSPF) and SWAT [60], this
study proposed a WLC model which is also applicable to larger areas with less complexity.
Additionally, the AHP model in the study area considered the factors’ importance in terms
of being responsible for regional watershed erosion. However, this study did not show
any physically based model, which could be a future demand for better estimation of
erosion risk at a large scale. In addition, factors such as surface hydrology, slope aspect,
and storm events could be used in 2-D physically based simulation models such as GSSHA
(Grided Surface/Subsurface Hydrologic Analysis), DWSM (Dynamic Watershed Simulation
Models), etc.

In this study, the northern headland and the southern agricultural regions of the
watershed had the highest erosion potential, as expected [1,28]. Overall erosion potential in
the Weeks Bay watershed tends to be lower in densely vegetated riparian and marsh areas.
Many of these areas, especially in the southern area near the bay, are part of the Weeks Bay
National Estuarine Research Reserve. Areas in the watershed with higher erosion potential
are more associated with transitional-type lands that appear to be more agricultural or
dynamic in terms of land practices. The southeast region of the watershed reflects this, as it
is an area dominated by agricultural practices such as cultivated crops and turf-grass farms.

Land sensitivity accessed by soil erodibility (as defined by the soil K-factor and soil
exposure or brightness) was the criterion that had the most influence on mapped erosion
potential with the WLC model. The K-factor is used in USLE and RUSLE applications that
represents soil texture and composition [19,20,24], and was the most influential of the layers.
Soil brightness is indicative of disruptive land uses and increases in erosion potential from
this variable are apparent in agriculture-dominated areas of the watershed. The physical
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erodibility (topographic) criteria for slope and stream density moderately influenced the
WLC-modeled erosion potential. These areas of increased potential are indicative of higher
concentrations of stream reaches, with more surface interaction with runoff waters and
lower soil infiltration rates [55], and proximity to active stream and river channels.

The assessment was enhanced with expert input through the AHP model, allowing
experts to rank the criteria. The ranking of criteria quantified the weights based on their
relative importance in the study area. The physical erodibility criterion of slope was
identified as the most important by the experts. In this, the AHP model differs from the
traditional soil-erosion models, with the experts’ minimal emphasis on land cover or land
sensitivity [19,21]. This difference is also concerning due to the increased erosion rates due
to development in the watersheds in this region of the Gulf of Mexico [52]. The AHP model
proved to be beneficial in mapping areas of increased erosion potential, as defined by the
upper ranks in the classified data. These shifts of the mapped erosion cells from the WLC
model align with similar approaches using MCDA techniques [42,55]. The AHP model is
not a typical numerical model and can be better-suited to qualitative geospatial assessment
for mapping erosion potential with MCDA.

The variations in the AHP weights are normally used to identify shifts (increasing
and decreasing) in the mapped erosion-potential cells. Data outliers were used for the
identification of areas of model alignment for the high ranks of erosion potential. This
approach allowed for an analysis (management) mask to be generated for these areas that
were consistently high, irrespective of the variation in criteria weights. The areas identified
were generally associated with higher slopes, which were associated with stream and
channel networks. The outlier analysis was successful in helping to identify management
areas; however, a suitable model approach would allow for a quantification shift between
ranks of erosion potential [34,39,45].

The WLC and AHP erosion-potential models were run as an ensemble to improve
the reliability of the output. The outputs (from models) were compared with the SWAT
sediment yield; the comparisons were used to help identify if there were any visual
alignments or trends between the qualitative and quantitative outputs. The comparisons
were very similar, with the primary difference being the focus of higher erosion-potential
values in the WLC and AHP models. The alignment of the data was most apparent in
areas of transition with expanding development and agricultural land practices. The AHP
model, however, produced some areas that were more focused on topographic features
because of the experts’ input placing more emphasis on physical erodibility (slope and
other terrain measures). This was most apparent in the headland area of the watershed
where the landscape has more dissection. The comparison of prioritization and ranking of
the mapped erosion-potential cells for Weeks Bay Watershed management areas displayed
alignment for select areas of higher erosion potential.

These management areas include the Pensacola Branch, Waterhole Branch, and Turkey
Branch basins of the Weeks Bay Watershed. Each of these management areas have ex-
perienced increased erosion due to expanding land development associated with the
surrounding communities. The management areas with the lowest ranks were also in
agreement. This, coupled with the alignment in the upper ranks, indicates a generalized
agreement between the qualitative and quantitative assessments for the prioritization of
management areas. The approach has limitations in management areas that would be
considered to be of intermediate concern with regard to erosion. This is, in part, due to
various reasons, including the added emphasis by the experts on terrain characteristics and
temporal generalizations in layers used in the WLC/AHP models and the SWAT model.

However, these areas of upper and lower erosion ranks are indicative of the agreement
between the qualitative and quantitative modeling approaches, supporting the use of
MCDA for management decisions and improved applications for watershed managers.



Water 2022, 14, 1923 22 of 25

5. Conclusions

The watersheds that drain areas along the northern Gulf of Mexico have dynamic
landscapes that experience erosion and contribute volumes of sediment to the associated
estuaries. These watersheds and their estuaries are important for both their services and
the resources they provide. To maintain the function and value of these services and
resources, these areas require proper management in terms of soil-loss and erosion. Those
involved in the management of these watersheds and the associated resources need to have
information that is both accurate and timely. This study took an approach that focused on a
qualitative assessment with GIS and MCDA for mapping erosion potential, to facilitate the
prioritization of watershed management areas for improved management decisions. This
aim of this approach was to provide watershed managers with a process to quickly map
erosion potential and prioritize areas for management. This will allow for better and more
efficient allocation of resources to be utilized in watershed management for areas such as
the Weeks Bay watershed.

Field measurements and numerical models are critical to accurately measure and
estimate sediment yield and erosion, as they provide quantitative information to facilitate
management plans and decisions. Qualitative assessments can produce similar results
and help in the management process. Qualitative assessments do not provide numerical
sediment-yield information, but often provide more rapid assessments with a more sim-
plistic approach and execution. The design of these assessments needs to be similar to
numerical modeling approaches, using similar criteria and inputs. Their design can also
allow for expert input for situation-specific applications due to their understanding of the
processes and issues unique to the watershed of interest. A WLC model and an AHP model
were used to map erosion potential based on terrain slope, geomorphology, land cover, soil
erodibility, and long-term precipitation trends.

The WLC and AHP models developed for this study mapped erosion potential to cells
as defined by the input layers for the Weeks Bay watershed. The mapped erosion potential
aligned with the erosion trends described in the Weeks Bay Watershed Management
Plan, with increased erosion occurring in areas associated with agricultural practices
and expanding areas of urban and suburban development. The MCDA with the AHP
model mapped areas that are most susceptible to erosion, as evidenced by the shifts of
cells in the upper ranks. This, coupled with the analysis mask generated by the criteria
weighting variations, identified areas of alignment or commonality in erosion potential
in the Weeks Bay watershed. These areas, in both the WLC and AHP models, were in
agreement with the SWAT sediment-yield data from the Weeks Bay Watershed Management
Plan. The qualitative approach was effective in prioritizing management areas in the
Weeks Bay watershed and offers a simplified approach to mapping erosion potential.
This simplified approach provides watershed managers with the means to define and
prioritize management actions. This does not replace the need for numerical modeling for
quantitative soil-erosion metrics; it does, however, provide management alternatives when
needed. There are numerous pathways for future research for this work. Refinement and
adaptation of the qualitative approach will continue to improve reliability as compared
with numerical model outputs such as sediment yield. This will involve more interactions
with modelers and watershed managers (and stakeholders). Scaling the approach to a
regional level in future efforts could be beneficial in prioritizing modeling needs and
guidance in watershed management plan needs. This, coupled with more development of
geospatial tools, would help to transition these types of approaches to a more operational
environment, allowing for enhanced planning and management-scenario development.
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Appendix A

Table A1. Criteria weight variation example for 41 iterations in each data layer in the AHP model.

No. of Iterations Slope Stream Density K-Factor Soil Brightness Precipitation

−20 0.270 0.184 0.166 0.158 0.222
−19 0.274 0.183 0.165 0.157 0.221
−18 0.277 0.182 0.164 0.156 0.220
−17 0.281 0.181 0.164 0.155 0.219
−16 0.284 0.180 0.163 0.154 0.219
−15 0.287 0.180 0.162 0.154 0.218
−14 0.291 0.179 0.161 0.153 0.217
−13 0.294 0.178 0.160 0.152 0.216
−12 0.297 0.177 0.159 0.151 0.215
−11 0.301 0.176 0.158 0.150 0.214
−10 0.304 0.175 0.158 0.149 0.213
−9 0.308 0.175 0.157 0.148 0.213
−8 0.311 0.174 0.156 0.148 0.212
−7 0.314 0.173 0.155 0.147 0.211
−6 0.318 0.172 0.154 0.146 0.210
−5 0.321 0.171 0.153 0.145 0.209
−4 0.324 0.170 0.153 0.144 0.208
−3 0.328 0.169 0.152 0.143 0.208
−2 0.331 0.169 0.151 0.143 0.207
−1 0.335 0.168 0.150 0.142 0.206
0 0.338 0.167 0.149 0.141 0.205
1 0.341 0.166 0.148 0.140 0.204
2 0.345 0.165 0.147 0.139 0.203
3 0.348 0.164 0.147 0.138 0.202
4 0.352 0.164 0.146 0.137 0.202
5 0.355 0.163 0.145 0.137 0.201
6 0.358 0.162 0.144 0.136 0.200
7 0.362 0.161 0.143 0.135 0.199
8 0.365 0.160 0.142 0.134 0.198
9 0.368 0.159 0.142 0.133 0.197

10 0.372 0.158 0.141 0.132 0.197
11 0.375 0.158 0.140 0.132 0.196
12 0.379 0.157 0.139 0.131 0.195
13 0.382 0.156 0.138 0.130 0.194
14 0.385 0.155 0.137 0.129 0.193
15 0.389 0.154 0.137 0.128 0.192
16 0.392 0.153 0.136 0.127 0.191
17 0.395 0.153 0.135 0.127 0.191
18 0.399 0.152 0.134 0.126 0.190
19 0.402 0.151 0.133 0.125 0.189
20 0.406 0.150 0.132 0.124 0.188
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