Reclaimed Water Reuse for Groundwater Recharge: A Review of Hot Spots and Hot Moments in the Hyporheic Zone
Abstract
:1. Introduction
2. Introduction of HSHMs
2.1. The Concept of HSHMs
2.2. The Formation Mechanism of HSHMs
2.3. Spatial and Temporal Characteristics of HSHMs
2.3.1. Location of Hot Spots
2.3.2. Duration of Hot Moments
3. Influencing Factors of HSHMs during RBF
3.1. Temperature
3.2. Residence Time
3.3. Hydrogeological Features
3.4. Availability of Electron Donor/Acceptor
3.5. Redox Potential and pH
3.6. Climate
3.7. Human Activities
3.8. Other Factors
4. HSHM Identification Indicators and Methods during RBF
4.1. Identification Indicators of HSHMs
4.2. Approaches for HSHM Identification
4.2.1. Numerical Simulation Method
4.2.2. Field Monitoring
4.2.3. Laboratory Experiments
4.2.4. Other Methods
5. The Prospect of Studying HSHMs during RBF
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, X.; Zhang, J.; Liang, P.; Zhang, X.; Yang, K.; Huang, X. Phytoplankton in an urban river replenished by reclaimed water: Features, influential factors and simulation. Ecol. Indic. 2020, 112, 106090. [Google Scholar] [CrossRef]
- Massoud, M.A.; Kazarian, A.; Alameddine, I.; Al-Hindi, M. Factors influencing the reuse of reclaimed water as a management option to augment water supplies. Environ. Monit. Assess. 2018, 190, 531. [Google Scholar] [CrossRef] [PubMed]
- Novinpour, E.A.; Moghimi, H.; Kaki, M. Aquifer vulnerability based on classical methods and GIS-based fuzzy optimization method (case study: Chahardoli plain in Kurdistan province, Iran). Arab. J. Geosci. 2022, 15, 1–15. [Google Scholar] [CrossRef]
- Sarkar, R.; Pandey, A.C.; Dwivedi, C.S. Effect of Urban Expansion on Groundwater Crisis: A Comparative Assessment of Nainital, Mussoorie and Shimla Hill Cities. In Remote Sensing and Geographic Information Systems for Policy Decision Support; Singh, R.B., Kumar, M., Tripathi, D.K., Eds.; Springer Nature: Singapore, 2022; pp. 443–466. [Google Scholar]
- Siddik, S.; Tulip, S.S.; Rahman, A.; Islam, N.; Haghighi, A.T.; Mustafa, S.M.T. The impact of land use and land cover change on groundwater recharge in northwestern Bangladesh. J. Environ. Manag. 2022, 315. [Google Scholar] [CrossRef]
- Ahuja, S. Overview of Global Water Challenges and Solutions. In Water Challenges and Solutions on a Global Scale; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; Volume 1206, pp. 1–25. [Google Scholar]
- Pruden, A. Balancing Water Sustainability and Public Health Goals in the Face of Growing Concerns about Antibiotic Resistance. Environ. Sci. Technol. 2013, 48, 5–14. [Google Scholar] [CrossRef]
- Angelakis, A.; Gikas, P. Water reuse: Overview of current practices and trends in the world with emphasis on EU states. Water Utility J. 2014, 8, e78. [Google Scholar]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technol. Environ. Policy 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Gomes, J.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R. Application of ozonation for pharmaceuticals and personal care products removal from water. Sci. Total Environ. 2017, 586, 265–283. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Liu, P.; Hill, V.R.; Hahn, D.; Johnson, T.B.; Pan, Y.; Jothikumar, N.; Moe, C.L. Hollow-fiber ultrafiltration for simultaneous recovery of viruses, bacteria and parasites from reclaimed water. J. Microbiol. Methods 2012, 88, 155–161. [Google Scholar] [CrossRef]
- Wintgens, T.; Melin, T.; Schäfer, A.; Khan, S.; Muston, M.; Bixio, D.; Thoeye, C. The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 2005, 178, 1–11. [Google Scholar] [CrossRef]
- Amori, P.N.; Mierzwa, J.C.; Bartelt-Hunt, S.; Guo, B.; Saroj, D.P. Germination and growth of horticultural crops irrigated with reclaimed water after biological treatment and ozonation. J. Clean. Prod. 2021, 336, 130173. [Google Scholar] [CrossRef]
- Huang, X.; Xiong, W.; Liu, W.; Guo, X. Effect of reclaimed water effluent on bacterial community structure in the Typha angustifolia L. rhizosphere soil of urbanized riverside wetland, China. J. Environ. Sci. 2017, 55, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Jang, T.; Seong, C.; Park, S. Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater. Agric. Water Manag. 2014, 141, 1–9. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, L.; Yang, Q.; Li, G.; Zhang, F. Occurrence and spatial distribution of perfluorinated compounds in groundwater receiving reclaimed water through river bank infiltration. Chemosphere 2018, 211, 1203–1211. [Google Scholar] [CrossRef]
- Li, J.; Fu, J.; Zhang, H.; Li, Z.; Ma, Y.; Wu, M.; Liu, X. Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: A field study along the Chaobai River, Beijing. Sci. Total Environ. 2013, 450–451, 162–168. [Google Scholar] [CrossRef]
- Ma, W.; Nie, C.; Chen, B.; Cheng, X.; Lun, X.; Zeng, F. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater. J. Environ. Sci. 2015, 31, 154–163. [Google Scholar] [CrossRef]
- Ma, W.; Nie, C.; Su, F.; Cheng, X.; Yan, Y.; Chen, B.; Lun, X. Migration and biotransformation of three selected endocrine disrupting chemicals in different river-based aquifers media recharge with reclaimed water. Int. Biodeterior. Biodegrad. 2015, 102, 298–307. [Google Scholar] [CrossRef]
- Ma, W.; Sun, J.; Li, Y.; Lun, X.; Shan, D.; Nie, C.; Liu, M. 17α-Ethynylestradiol biodegradation in different river-based groundwater recharge modes with reclaimed water and degradation-associated community structure of bacteria and archaea. J. Environ. Sci. 2018, 64, 51–61. [Google Scholar] [CrossRef]
- Teijon, G.; Candela, L.; Tamoh, K.; Molina-Díaz, A.; Fernández-Alba, A. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Total Environ. 2010, 408, 3584–3595. [Google Scholar] [CrossRef]
- Beltrán, E.M.; Pablos, M.V.; Torija, C.F.; Porcel, M.; González-Doncel, M. Uptake of atenolol, carbamazepine and triclosan by crops irrigated with reclaimed water in a Mediterranean scenario. Ecotoxicol. Environ. Saf. 2020, 191, 110171. [Google Scholar] [CrossRef] [PubMed]
- Chunhui, Z.; Liangliang, W.; Xiangyu, G.; Xudan, H. Antibiotics in WWTP discharge into the Chaobai River, Beijing. Arch. Environ. Prot. 2016, 42, 48–57. [Google Scholar] [CrossRef]
- Li, L.; He, J.; Gan, Z.; Yang, P. Occurrence and fate of antibiotics and heavy metals in sewage treatment plants and risk assessment of reclaimed water in Chengdu, China. Chemosphere 2021, 272, 129730. [Google Scholar] [CrossRef]
- Pei, M.; Zhang, B.; He, Y.; Su, J.; Gin, K.; Lev, O.; Shen, G.; Hu, S. State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants. Environ. Int. 2019, 131, 105026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, X.; Liu, R.; Zhang, T.; Li, M.; Zhang, Z.; Qu, Z.; Yuan, Z.; Yu, H. Influence of reclaimed water discharge on the dissemination and relationships of sulfonamide, sulfonamide resistance genes along the Chaobai River, Beijing. Front. Environ. Sci. Eng. 2018, 13, 8. [Google Scholar] [CrossRef]
- Hong, P.-Y.; Julian, T.R.; Pype, M.-L.; Jiang, S.C.; Nelson, K.L.; Graham, D.; Pruden, A.; Manaia, C.M. Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. Water 2018, 10, 244. [Google Scholar] [CrossRef] [Green Version]
- Piña, B.; Bayona, J.M.; Christou, A.; Fatta-Kassinos, D.; Guillon, E.; Lambropoulou, D.; Michael, C.; Polesel, F.; Sayen, S. On the contribution of reclaimed wastewater irrigation to the potential exposure of humans to antibiotics, antibiotic resistant bacteria and antibiotic resistance genes – NEREUS COST Action ES1403 position paper. J. Environ. Chem. Eng. 2020, 8, 102131. [Google Scholar] [CrossRef]
- Gilbert, R.G.; Rice, R.C.; Bouwer, H.; Gerba, C.P.; Wallis, C.; Melnick, J.L. Wastewater Renovation and Reuse: Virus Removal by Soil Filtration. Science 1976, 192, 1004–1005. [Google Scholar] [CrossRef]
- A Thurston, J.; E Foster, K.; Karpiscak, M.M.; Gerba, C.P. Fate of indicator microorganisms, giardia and cryptosporidium in subsurface flow constructed wetlands. Water Res. 2001, 35, 1547–1551. [Google Scholar] [CrossRef]
- Drewes, J.E.; Summers, R.S. Natural Organic Matter Removal During Riverbank Filtration: Current Knowledge and Research Needs. In Riverbank Filtration: Improving Source-Water Quality; Ray, C., Melin, G., Linsky, R.B., Eds.; Springer: Dordrecht, The Netherland, 2002; pp. 303–309. [Google Scholar]
- Hoppe-Jones, C.; Oldham, G.; Drewes, J.E. Attenuation of total organic carbon and unregulated trace organic chemicals in U.S. riverbank filtration systems. Water Res. 2010, 44, 4643–4659. [Google Scholar] [CrossRef]
- Ding, G.; Chen, G.; Liu, Y.; Li, M.; Liu, X. Occurrence and risk assessment of fluoroquinolone antibiotics in reclaimed water and receiving groundwater with different replenishment pathways. Sci. Total Environ. 2020, 738, 139802. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, Y.; Yang, Q.; Jiang, L.; Li, G. Occurrence and distribution of Pharmaceuticals and Personal Care Products (PPCPs) in wastewater related riverbank groundwater. Sci. Total Environ. 2022, 821, 153372. [Google Scholar] [CrossRef] [PubMed]
- Van Driezum, I.H.; Chik, A.H.; Jakwerth, S.; Lindner, G.; Farnleitner, A.H.; Sommer, R.; Blaschke, A.P.; Kirschner, A.K. Spatiotemporal analysis of bacterial biomass and activity to understand surface and groundwater interactions in a highly dynamic riverbank filtration system. Sci. Total Environ. 2018, 627, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, J.; Arnon, S.; Banks, E.; Batelaan, O.; Betterle, A.; Broecker, T.; Coll, C.; Drummond, J.D.; Garcia, J.G.; Galloway, J.; et al. Is the Hyporheic Zone Relevant beyond the Scientific Community? Water 2019, 11, 2230. [Google Scholar] [CrossRef] [Green Version]
- Stegen, J.; Fredrickson, J.K.; Wilkins, M.J.; Konopka, A.E.; Nelson, W.; Arntzen, E.V.; Chrisler, W.B.; Chu, R.K.; Danczak, R.E.; Fansler, S.J.; et al. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 2016, 7, 11237. [Google Scholar] [CrossRef] [Green Version]
- Harvey, J.; Fuller, C. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resour. Res. 1998, 34, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.M.; Jones, J.B.; Fisher, S.G.; Grimm, N.B. Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 1996, 33, 125–146. [Google Scholar] [CrossRef]
- Krause, S.; Lewandowski, J.; Grimm, N.B.; Hannah, D.M.; Pinay, G.; McDonald, K.; Martí, E.; Argerich, A.; Pfister, L.; Klaus, J.; et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 2017, 53, 6359–6376. [Google Scholar] [CrossRef] [Green Version]
- Arora, B.; Dwivedi, D.; Hubbard, S.S.; Steefel, C.I.; Williams, K. Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 2016, 85, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Gurwick, N.P.; Groffman, P.; Yavitt, J.B.; Gold, A.J.; Blazejewski, G.; Stolt, M. Microbially available carbon in buried riparian soils in a glaciated landscape. Soil Biol. Biochem. 2008, 40, 85–96. [Google Scholar] [CrossRef]
- Kellogg, D.Q.; Gold, A.J.; Groffman, P.M.; Addy, K.; Stolt, M.H.; Blazejewski, G. In Situ Ground Water Denitrification in Stratified, Permeable Soils Underlying Riparian Wetlands. J. Environ. Qual. 2005, 34, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Zhong, H.; Duan, D.; Pan, K. A review on mercury biogeochemistry in mangrove sediments: Hotspots of methylmercury production? Sci. Total Environ. 2019, 680, 140–150. [Google Scholar] [CrossRef]
- Eklöf, K.; Bishop, K.; Bertilsson, S.; Björn, E.; Buck, M.; Skyllberg, U.; Osman, O.A.; Kronberg, R.-M.; Bravo, A.G. Formation of mercury methylation hotspots as a consequence of forestry operations. Sci. Total Environ. 2018, 613–614, 1069–1078. [Google Scholar] [CrossRef]
- Kumar, P.; Avtar, R.; Kumar, A.; Singh, C.K.; Tripathi, P.; Kumar, G.S.; Ramanathan, A.L. Geophysical approach to delineate arsenic hot spots in the alluvial aquifers of Bhagalpur district, Bihar (India) in the central Gangetic plains. Appl. Water Sci. 2013, 4, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.P.; Branfireun, B.A.; Kolka, R.K. Assessing sulfate and carbon controls on net methylmercury production in peatlands: An in situ mesocosm approach. Appl. Geochem. 2008, 23, 503–518. [Google Scholar] [CrossRef]
- Charlet, L.; Chakraborty, S.; Appelo, C.; Roman-Ross, G.; Nath, B.; Ansari, A.; Lanson, M.; Chatterjee, D.; Mallik, S.B. Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: A field and reactive transport modeling study. Appl. Geochem. 2007, 22, 1273–1292. [Google Scholar] [CrossRef]
- Henri, C.V.; Fernàndez-Garcia, D.; de Barros, F.P.J. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels. Water Resour. Res. 2015, 51, 4086–4108. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Hu, N.; Ding, D.; Li, S.; Li, G.; Wang, Y. An experimental study on the inhibitory effect of high concentration bicarbonate on the reduction of U(VI) in groundwater by functionalized indigenous microbial communities. J. Radioanal. Nucl. Chem. Artic. 2015, 307, 1011–1019. [Google Scholar] [CrossRef]
- Long, P.E.; Williams, K.H.; Davis, J.A.; Fox, P.; Wilkins, M.; Yabusaki, S.B.; Fang, Y.; Waichler, S.R.; Berman, E.S.; Gupta, M.; et al. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochim. Cosmochim. Acta 2014, 150, 106–124. [Google Scholar] [CrossRef] [Green Version]
- Bao, C.; Wu, H.; Li, L.; Newcomer, D.; Long, P.E.; Williams, K.H. Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado. Environ. Sci. Technol. 2014, 48, 10116–10127. [Google Scholar] [CrossRef]
- Dole-Olivier, M.-J. The hyporheic refuge hypothesis reconsidered: A review of hydrological aspects. Mar. Freshw. Res. 2011, 62, 1281–1302. [Google Scholar] [CrossRef]
- Malcolm, I.A.; Soulsby, C.; Youngson, A.F.; Hannah, D.M.; McLaren, I.S.; Thorne, A. Hydrological influences on hyporheic water quality: Implications for salmon egg survival. Hydrol. Process. 2004, 18, 1543–1560. [Google Scholar] [CrossRef]
- Wallis, I.; Prommer, H.; Berg, M.; Siade, A.J.; Sun, J.; Kipfer, R. The river–groundwater interface as a hotspot for arsenic release. Nat. Geosci. 2020, 13, 288–295. [Google Scholar] [CrossRef]
- Weyer, C.; Peiffer, S.; Schulze, K.; Borken, W.; Lischeid, G. Catchments as heterogeneous and multi-species reactors: An integral approach for identifying biogeochemical hot-spots at the catchment scale. J. Hydrol. 2014, 519, 1560–1571. [Google Scholar] [CrossRef]
- Duncan, J.M.; Groffman, P.M.; Band, L.E. Towards closing the watershed nitrogen budget: Spatial and temporal scaling of denitrification. J. Geophys. Res. Biogeosciences 2013, 118, 1105–1119. [Google Scholar] [CrossRef]
- Young, I.M.; Crawford, J.W.; Nunan, N.; Otten, W.; Spiers, A. Chapter 4 Microbial Distribution in Soils: Physics and Scaling. In Advances in Agronomy; Academic Press: San Diego, CA, USA, 2008; Volume 100, pp. 81–121. [Google Scholar]
- Parkin, T.B. Soil Microsites as a Source of Denitrification Variability. Soil Sci. Soc. Am. J. 1987, 51, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015, 83, 184–199. [Google Scholar] [CrossRef]
- Pennock, D.J.; van Kessel, C.; Farrell, R.E.; Sutherland, R.A. Landscape-Scale Variations in Denitrification. Soil Sci. Soc. Am. J. 1992, 56, 770–776. [Google Scholar] [CrossRef]
- McClain, M.E.; Boyer, E.W.; Dent, C.L.; Gergel, S.E.; Grimm, N.B.; Groffman, P.M.; Hart, S.C.; Harvey, J.; Johnston, C.A.; Mayorga, E.; et al. Biogeochemical Hot Spots and Hot Moments at the Interface of Terrestrial and Aquatic Ecosystems. Ecosystems 2003, 6, 301–312. [Google Scholar] [CrossRef]
- Vidon, P.; Allan, C.; Burns, D.; Duval, T.P.; Gurwick, N.; Inamdar, S.; Lowrance, R.; Okay, J.; Scott, D.; Sebestyen, S. Hot Spots and Hot Moments in Riparian Zones: Potential for Improved Water Quality Management1. JAWRA J. Am. Water Resour. Assoc. 2010, 46, 278–298. [Google Scholar] [CrossRef]
- Shuai, P.; Chen, X.; Song, X.; Hammond, G.E.; Zachara, J.; Royer, P.; Ren, H.; Perkins, W.A.; Richmond, M.C.; Huang, M. Dam Operations and Subsurface Hydrogeology Control Dynamics of Hydrologic Exchange Flows in a Regulated River Reach. Water Resour. Res. 2019, 55, 2593–2612. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, E.S.; Blaszczak, J.R.; Ficken, C.D.; Fork, M.L.; Kaiser, K.E.; Seybold, E.C. Control Points in Ecosystems: Moving Beyond the Hot Spot Hot Moment Concept. Ecosystems 2017, 20, 665–682. [Google Scholar] [CrossRef]
- Chen, J.; Arora, B.; Bellin, A.; Rubin, Y. Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology. Hydrol. Earth Syst. Sci. 2021, 25, 4127–4146. [Google Scholar] [CrossRef]
- Bochet, O.; Bethencourt, L.; Dufresne, A.; Farasin, J.; Pédrot, M.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.; Abbott, B.W.; et al. Iron-oxidizer hotspots formed by intermittent oxic–anoxic fluid mixing in fractured rocks. Nat. Geosci. 2020, 13, 149–155. [Google Scholar] [CrossRef]
- Jensen, J.K.; Engesgaard, P.; Johnsen, A.; Martí, V.; Nilsson, B. Hydrological mediated denitrification in groundwater below a seasonal flooded restored riparian zone. Water Resour. Res. 2017, 53, 2074–2094. [Google Scholar] [CrossRef]
- Palta, M.M.; Ehrenfeld, J.G.; Groffman, P. “Hotspots” and “Hot Moments” of Denitrification in Urban Brownfield Wetlands. Ecosystems 2014, 17, 1121–1137. [Google Scholar] [CrossRef]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Baker, M.A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J. Geophys. Res. Biogeosciences 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Lansdown, K.; Heppell, C.M.; Trimmer, M.; Binley, A.; Heathwaite, A.L.; Byrne, P.; Zhang, H. The interplay between transport and reaction rates as controls on nitrate attenuation in permeable, streambed sediments. J. Geophys. Res. Biogeosciences 2015, 120, 1093–1109. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.P.; Branfireun, B.A.; Kolka, R.K. Spatial Characteristics of Net Methylmercury Production Hot Spots in Peatlands. Environ. Sci. Technol. 2008, 42, 1010–1016. [Google Scholar] [CrossRef]
- Baker, M.A.; Vervier, P. Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshw. Biol. 2004, 49, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.; Anderson, W.; Maggi, F. Riparian biogeochemical hot moments induced by stream fluctuations. Water Resour. Res. 2012, 48, W09546. [Google Scholar] [CrossRef] [Green Version]
- Munz, M.; Oswald, S.E.; Schäfferling, R.; Lensing, H.-J. Temperature-dependent redox zonation, nitrate removal and attenuation of organic micropollutants during bank filtration. Water Res. 2019, 162, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Maeng, S.K.; Sharma, S.K.; Lekkerkerker-Teunissen, K.; Amy, G.L. Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: A review. Water Res. 2011, 45, 3015–3033. [Google Scholar] [CrossRef]
- Boulton, A.J. Hyporheic rehabilitation in rivers: Restoring vertical connectivity. Freshw. Biol. 2007, 52, 632–650. [Google Scholar] [CrossRef]
- Mayer, P.M.; Groffman, P.M.; Striz, E.A.; Kaushal, S.S. Nitrogen Dynamics at the Groundwater–Surface Water Interface of a Degraded Urban Stream. J. Environ. Qual. 2010, 39, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Hornberger, G.M.; Mills, A.L.; Herman, J.S.; Flewelling, S.A. Nitrate reduction in streambed sediments: Effects of flow and biogeochemical kinetics. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, B.; Sun, X.; Yang, L. Hot spots and hot moments of nitrogen removal from hyporheic and riparian zones: A review. Sci. Total Environ. 2020, 762, 144168. [Google Scholar] [CrossRef] [PubMed]
- Lautz, L.K.; Fanelli, R.M. Seasonal biogeochemical hotspots in the streambed around restoration structures. Biogeochemistry 2008, 91, 85–104. [Google Scholar] [CrossRef]
- Boulton, A.J.; Findlay, S.; Marmonier, P.; Stanley, E.H.; Valett, H.M. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst. 1998, 29, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Devito, K.J.; Fitzgerald, D.; Hill, A.R.; Aravena, R. Nitrate Dynamics in Relation to Lithology and Hydrologic Flow Path in a River Riparian Zone. J. Environ. Qual. 2000, 29, 1075–1084. [Google Scholar] [CrossRef]
- Vidon, P.G.F.; Hill, A.R. Landscape controls on nitrate removal in stream riparian zones. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, D.; Arora, B.; Steefel, C.I.; Dafflon, B.; Versteeg, R. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resour. Res. 2018, 54, 205–222. [Google Scholar] [CrossRef]
- Duval, T.P.; Hill, A.R. Influence of base flow stream bank seepage on riparian zone nitrogen biogeochemistry. Biogeochemistry 2007, 85, 185–199. [Google Scholar] [CrossRef]
- Petitta, M.; Primavera, P.; Tuccimei, P.; Aravena, R. Interaction between deep and shallow groundwater systems in areas affected by Quaternary tectonics (Central Italy): A geochemical and isotope approach. Environ. Earth Sci. 2011, 63, 11–30. [Google Scholar] [CrossRef]
- Nyamangara, J.; Jeke, N.; Rurinda, J. Long-term nitrate and phosphate loading of river water in the Upper Manyame Catchment, Zimbabwe. Water SA 2013, 39, 637. [Google Scholar] [CrossRef] [Green Version]
- Dubé, M.G.; Muldoon, B.; Wilson, J.; Maracle, K.B. Accumulated state of the Yukon River watershed: Part I critical review of literature. Integr. Environ. Assess. Manag. 2012, 9, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Groffman, P.M.; Butterbach-Bahl, K.; Fulweiler, R.W.; Gold, A.J.; Morse, J.L.; Stander, E.K.; Tague, C.; Tonitto, C.; Vidon, P. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 2009, 93, 49–77. [Google Scholar] [CrossRef]
- Bernard-Jannin, L.; Sun, X.; Teissier, S.; Sauvage, S.; Sánchez-Pérez, J.-M. Spatio-temporal analysis of factors controlling nitrate dynamics and potential denitrification hot spots and hot moments in groundwater of an alluvial floodplain. Ecol. Eng. 2017, 103, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Knights, D.; Sawyer, A.H.; Barnes, R.T.; Musial, C.T.; Bray, S. Tidal controls on riverbed denitrification along a tidal freshwater zone. Water Resour. Res. 2017, 53, 799–816. [Google Scholar] [CrossRef]
- Zachara, J.M.; Chen, X.; Murray, C.; Hammond, G. River stage influences on uranium transport in a hydrologically dynamic groundwater-surface water transition zone. Water Resour. Res. 2016, 52, 1568–1590. [Google Scholar] [CrossRef]
- Krause, S.; Klaar, M.J.; Hannah, D.M.; Mant, J.; Bridgeman, J.; Trimmer, M.; Manning-Jones, S. The potential of large woody debris to alter biogeochemical processes and ecosystem services in lowland rivers. WIREs Water 2014, 1, 263–275. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, Y.; Kana, T.M.; Wu, Y.; Li, X.; Yan, X. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere 2013, 93, 2124–2131. [Google Scholar] [CrossRef] [PubMed]
- Spieles, D.J.; Mitsch, W.J. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: A comparison of low- and high-nutrient riverine systems. Ecol. Eng. 1999, 14, 77–91. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Mitsch, W.J. Denitrification in created riverine wetlands: Influence of hydrology and season. Ecol. Eng. 2007, 30, 78–88. [Google Scholar] [CrossRef]
- Boyer, E.W.; Alexander, R.B.; Parton, W.J.; Li, C.; Butterbach-Bahl, K.; Donner, S.D.; Skaggs, R.W.; Del Grosso, S.J. Modeling denitrification in terrestrial and aquatic ecosystems at regional scales. Ecol. Appl. 2006, 16, 2123–2142. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef]
- Gibert, O.; Pomierny, S.; Rowe, I.; Kalin, R.M. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresour. Technol. 2008, 99, 7587–7596. [Google Scholar] [CrossRef]
- Hiscock, K.; Lloyd, J.; Lerner, D. Review of natural and artificial denitrification of groundwater. Water Res. 1991, 25, 1099–1111. [Google Scholar] [CrossRef]
- Hannah, D.M.; Malcolm, I.A.; Bradley, C. Seasonal hyporheic temperature dynamics over riffle bedforms. Hydrol. Process. 2009, 23, 2178–2194. [Google Scholar] [CrossRef]
- Goto, S.; Yamano, M.; Kinoshita, M. Thermal response of sediment with vertical fluid flow to periodic temperature variation at the surface. J. Geophys. Res. Earth Surf. 2005, 110, B01106. [Google Scholar] [CrossRef]
- Caissie, D.; Kurylyk, B.L.; St-Hilaire, A.; El-Jabi, N.; MacQuarrie, K.T. Streambed temperature dynamics and corresponding heat fluxes in small streams experiencing seasonal ice cover. J. Hydrol. 2014, 519, 1441–1452. [Google Scholar] [CrossRef]
- Zheng, L.; Cardenas, M.B. Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. J. Geophys. Res. Biogeosciences 2018, 123, 2743–2760. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, W.; Yang, J.; Zhou, Y. Using water temperature series and hydraulic heads to quantify hyporheic exchange in the riparian zone. Appl. Hydrogeol. 2019, 27, 1419–1437. [Google Scholar] [CrossRef]
- Anibas, C.; Tolche, A.D.; Ghysels, G.; Nossent, J.; Schneidewind, U.; Huysmans, M.; Batelaan, O. Delineation of spatial-temporal patterns of groundwater/surface-water interaction along a river reach (Aa River, Belgium) with transient thermal modeling. Appl. Hydrogeol. 2017, 26, 819–835. [Google Scholar] [CrossRef]
- Briggs, M.; Lautz, L.K.; McKenzie, J.M.; Gordon, R.P.; Hare, D.K. Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour. Res. 2012, 48, W02527. [Google Scholar] [CrossRef]
- Surfleet, C.; Louen, J. The Influence of Hyporheic Exchange on Water Temperatures in a Headwater Stream. Water 2018, 10, 1615. [Google Scholar] [CrossRef] [Green Version]
- Vogt, T.; Schirmer, M.; Cirpka, O.A. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution. Hydrol. Earth Syst. Sci. 2012, 16, 473–487. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Cardenas, M.B.; Wang, L. Temperature effects on nitrogen cycling and nitrate removal-production efficiency in bed form-induced hyporheic zones. J. Geophys. Res. Biogeoscience 2016, 121, 1086–1103. [Google Scholar] [CrossRef] [Green Version]
- Foglar, L.; Briški, F.; Sipos, L.; Vuković, M. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresour. Technol. 2005, 96, 879–888. [Google Scholar] [CrossRef]
- A Loáiciga, H. Residence time, groundwater age, and solute output in steady-state groundwater systems. Adv. Water Resour. 2004, 27, 681–688. [Google Scholar] [CrossRef]
- Song, X.; Chen, X.; Zachara, J.M.; Gomez-Velez, J.D.; Shuai, P.; Ren, H.; Hammond, G.E. River Dynamics Control Transit Time Distributions and Biogeochemical Reactions in a Dam-Regulated River Corridor. Water Resour. Res. 2020, 56, e2019WR026470. [Google Scholar] [CrossRef]
- Su, X.; Yeh, T.-C.J.; Shu, L.; Li, K.; Brusseau, M.L.; Wang, W.; Hao, Y.; Lu, C. Scale issues and the effects of heterogeneity on the dune-induced hyporheic mixing. J. Hydrol. 2020, 590, 125429. [Google Scholar] [CrossRef]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Bokil, V.A.; González-Pinzón, R. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resour. Res. 2012, 48, W12999. [Google Scholar] [CrossRef] [Green Version]
- Medici, G.; Engdahl, N.B.; Langman, J.B. A Basin-Scale Groundwater Flow Model of the Columbia Plateau Regional Aquifer System in the Palouse (USA): Insights for Aquifer Vulnerability Assessment. Int. J. Environ. Res. 2021, 15, 299–312. [Google Scholar] [CrossRef]
- Boano, F.; DeMaria, A.; Revelli, R.; Ridolfi, L. Biogeochemical zonation due to intrameander hyporheic flow. Water Resour. Res. 2010, 46, W02511. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lautz, L.K.; Hare, D.K. Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone. Hydrol. Process. 2013, 28, 3741–3751. [Google Scholar] [CrossRef]
- Marzadri, A.; Tonina, D.; Bellin, A. A semianalytical three-dimensional process-based model for hyporheic nitrogen dynamics in gravel bed rivers. Water Resour. Res. 2011, 47, W11518. [Google Scholar] [CrossRef] [Green Version]
- Pinay, G.; O’Keefe, T.C.; Edwards, R.T.; Naiman, R.J. Nitrate removal in the hyporheic zone of a salmon river in Alaska. River Res. Appl. 2008, 25, 367–375. [Google Scholar] [CrossRef]
- Valett, H.M.; Morrice, J.A.; Dahm, C.N.; Campana, M.E. Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol. Oceanogr. 1996, 41, 333–345. [Google Scholar] [CrossRef]
- Naranjo, R.C.; Pohll, G.; Niswonger, R.G.; Stone, M.; Mckay, A. Using heat as a tracer to estimate spatially distributed mean residence times in the hyporheic zone of a riffle-pool sequence. Water Resour. Res. 2013, 49, 3697–3711. [Google Scholar] [CrossRef]
- Cardenas, M.B. The effect of river bend morphology on flow and timescales of surface water–groundwater exchange across pointbars. J. Hydrol. 2008, 362, 134–141. [Google Scholar] [CrossRef]
- Bardini, L.; Boano, F.; Cardenas, M.; Revelli, R.; Ridolfi, L. Nutrient cycling in bedform induced hyporheic zones. Geochim. Cosmochim. Acta 2012, 84, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.D.; Wilson, J.L.; Cardenas, M.B. Residence time distributions in sinuosity-driven hyporheic zones and their biogeochemical effects. Water Resour. Res. 2012, 48, W09533. [Google Scholar] [CrossRef]
- Cardenas, M.B. Surface water-groundwater interface geomorphology leads to scaling of residence times. Geophys. Res. Lett. 2008, 35, L08402. [Google Scholar] [CrossRef]
- Trauth, N.; Schmidt, C.; Maier, U.; Vieweg, M.; Fleckenstein, J.H. Coupled 3-D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour. Res. 2013, 49, 5834–5850. [Google Scholar] [CrossRef]
- Marzadri, A.; Tonina, D.; Bellin, A.; Valli, A. Mixing interfaces, fluxes, residence times and redox conditions of the hyporheic zones induced by dune-like bedforms and ambient groundwater flow. Adv. Water Resour. 2016, 88, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Tonina, D.; Buffington, J.M. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels. Water Resour. Res. 2011, 47, W08508. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Soulsby, C.; Tetzlaff, D.; Malcolm, I.A.; Schoups, G. Gamma distribution models for transit time estimation in catchments: Physical interpretation of parameters and implications for time-variant transit time assessment. Water Resour. Res. 2010, 46, W10536. [Google Scholar] [CrossRef] [Green Version]
- Botter, G.; Bertuzzo, E.; Rinaldo, A. Catchment residence and travel time distributions: The master equation. Geophys. Res. Lett. 2011, 38, L11403. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.L.A.; González-Pinzón, R.; Drummond, J.D.; Larsen, L.G.; Cirpka, O.A.; Harvey, J.W. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams. Water Resour. Res. 2017, 53, 1575–1594. [Google Scholar] [CrossRef]
- Helton, A.M.; Poole, G.; Payn, R.A.; Izurieta, C.; Stanford, J.A. Relative influences of the river channel, floodplain surface, and alluvial aquifer on simulated hydrologic residence time in a montane river floodplain. Geomorphology 2014, 205, 17–26. [Google Scholar] [CrossRef]
- Naranjo, R.C.; Niswonger, R.G.; Davis, C.J. Mixing effects on nitrogen and oxygen concentrations and the relationship to mean residence time in a hyporheic zone of a riffle-pool sequence. Water Resour. Res. 2015, 51, 7202–7217. [Google Scholar] [CrossRef]
- Green, C.T.; Bohlke, J.K.; Bekins, B.A.; Phillips, S.P. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer. Water Resour. Res. 2010, 46, W08525. [Google Scholar] [CrossRef]
- Green, C.; Jurgens, B.C.; Zhang, Y.; Starn, J.J.; Singleton, M.J.; Esser, B.K. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA. J. Hydrol. 2016, 543, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Munz, M.; Oswald, S.E.; Schmidt, C. Coupled Long-Term Simulation of Reach-Scale Water and Heat Fluxes Across the River-Groundwater Interface for Retrieving Hyporheic Residence Times and Temperature Dynamics. Water Resour. Res. 2017, 53, 8900–8924. [Google Scholar] [CrossRef] [Green Version]
- Frei, S.; Knorr, K.-H.; Peiffer, S.; Fleckenstein, J.H. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment. J. Geophys. Res. Earth Surf. 2012, 117, G00N12. [Google Scholar] [CrossRef]
- Clément, J.-C.; Pinay, G.; Marmonier, P. Seasonal Dynamics of Denitrification along Topohydrosequences in Three Different Riparian Wetlands. J. Environ. Qual. 2002, 31, 1025–1037. [Google Scholar] [CrossRef]
- Tonina, D.; Buffington, J.M. Hyporheic exchange in gravel bed rivers with pool-riffle morphology: Laboratory experiments and three-dimensional modeling. Water Resour. Res. 2007, 43, W01421. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Aubeneau, A.F.; Cardenas, M.B. The Sensitivity of Hyporheic Exchange to Fractal Properties of Riverbeds. Water Resour. Res. 2020, 56, e2019WR026560. [Google Scholar] [CrossRef]
- Kasahara, T.; Hill, A.R. Effects of riffle–step restoration on hyporheic zone chemistry in N-rich lowland streams. Can. J. Fish. Aquat. Sci. 2006, 63, 120–133. [Google Scholar] [CrossRef]
- Kasahara, T.; Wondzell, S.M. Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resour. Res. 2003, 39, SBH-3. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, D.; Steefel, C.I.; Arora, B.; Newcomer, M.; Moulton, J.D.; Dafflon, B.; Faybishenko, B.; Fox, P.; Nico, P.; Spycher, N.; et al. Geochemical Exports to River from the Intrameander Hyporheic Zone under Transient Hydrologic Conditions: East River Mountainous Watershed, Colorado. Water Resour. Res. 2018, 54, 8456–8477. [Google Scholar] [CrossRef]
- Herzog, S.P.; Higgins, C.P.; McCray, J.E. Engineered Streambeds for Induced Hyporheic Flow: Enhanced Removal of Nutrients, Pathogens, and Metals from Urban Streams. J. Environ. Eng. 2016, 142, 04015053. [Google Scholar] [CrossRef]
- Hester, E.T.; Doyle, M.W.; Poole, G. The influence of in-stream structures on summer water temperatures via induced hyporheic exchange. Limnol. Oceanogr. 2009, 54, 355–367. [Google Scholar] [CrossRef]
- Briggs, M.A.; Lautz, L.K.; Hare, D.K.; González-Pinzón, R. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams. Freshw. Sci. 2013, 32, 622–641. [Google Scholar] [CrossRef]
- Zheng, L.; Cardenas, M.B.; Wang, L.; Mohrig, D. Ripple Effects: Bed Form Morphodynamics Cascading into Hyporheic Zone Biogeochemistry. Water Resour. Res. 2019, 55, 7320–7342. [Google Scholar] [CrossRef]
- Wallace, C.D.; Sawyer, A.H.; Soltanian, M.R.; Barnes, R.T. Nitrate Removal within Heterogeneous Riparian Aquifers under Tidal Influence. Geophys. Res. Lett. 2020, 47, e2019GL085699. [Google Scholar] [CrossRef]
- Claret, C.; Boulton, A.J. Integrating hydraulic conductivity with biogeochemical gradients and microbial activity along river–groundwater exchange zones in a subtropical stream. Appl. Hydrogeol. 2008, 17, 151–160. [Google Scholar] [CrossRef]
- Wroblicky, G.J.; Campana, M.E.; Valett, H.M.; Dahm, C.N. Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resour. Res. 1998, 34, 317–328. [Google Scholar] [CrossRef]
- Shuai, P.; Cardenas, M.B.; Knappett, P.S.K.; Bennett, P.C.; Neilson, B.T. Denitrification in the banks of fluctuating rivers: The effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resour. Res. 2017, 53, 7951–7967. [Google Scholar] [CrossRef]
- Vidon, P.; Hill, A.R. Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry 2004, 71, 259–283. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Xiao, Y.; Wang, T.; Lang, Q. Effects of riverbed and lake bottom sediment thickness on infiltration and purification of reclaimed water. Environ. Earth Sci. 2016, 76, 37. [Google Scholar] [CrossRef]
- Trauth, N.; Schmidt, C.; Vieweg, M.; Oswald, S.E.; Fleckenstein, J.H. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions. Water Resour. Res. 2015, 51, 2243–2263. [Google Scholar] [CrossRef]
- Hester, E.T.; Young, K.I.; Widdowson, M.A. Mixing of surface and groundwater induced by riverbed dunes: Implications for hyporheic zone definitions and pollutant reactions. Water Resour. Res. 2013, 49, 5221–5237. [Google Scholar] [CrossRef]
- Seitzinger, S.; Harrison, J.; Bohlke, J.K.; Bouwman, L.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [Green Version]
- Postma, D.; Boesen, C.; Kristiansen, H.; Larsen, F. Nitrate Reduction in an Unconfined Sandy Aquifer: Water Chemistry, Reduction Processes, and Geochemical Modeling. Water Resour. Res. 1991, 27, 2027–2045. [Google Scholar] [CrossRef]
- Zarnetske, J.P.; Haggerty, R.; Wondzell, S.M.; Baker, M.A. Labile dissolved organic carbon supply limits hyporheic denitrification. J. Geophys. Res. Earth Surf. 2011, 116, G04036. [Google Scholar] [CrossRef] [Green Version]
- Starr, R.C.; Gillham, R.W. Denitrification and Organic Carbon Availability in Two Aquifers. Groundwater 1993, 31, 934–947. [Google Scholar] [CrossRef]
- Bradley, P.M.; Fernandez, M.; Chapelle, F.H. Carbon limitation of denitrification rates in an anaerobic groundwater system. Environ. Sci. Technol. 1992, 26, 2377–2381. [Google Scholar] [CrossRef]
- Korom, S.F.; Schlag, A.J.; Schuh, W.M.; Schlag, A.K. In situ mesocosms: Denitrification in the Elk Valley aquifer. Ground Water Monit. Remediat. 2005, 25, 79–89. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Liebscher, H.; Cox, S.E. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths. Water Resour. Res. 2000, 36, 1545–1559. [Google Scholar] [CrossRef]
- Robertson, W.; Russell, B.; Cherry, J. Attenuation of nitrate in aquitard sediments of southern Ontario. J. Hydrol. 1996, 180, 267–281. [Google Scholar] [CrossRef]
- McIntosh, J.C.; Grasby, S.E.; Hamilton, S.M.; Osborn, S.G. Origin, distribution and hydrogeochemical controls on methane occurrences in shallow aquifers, southwestern Ontario, Canada. Appl. Geochem. 2014, 50, 37–52. [Google Scholar] [CrossRef]
- Obermajer, M.; Fowler, M.; Goodarzi, F.; Snowdon, L. Organic petrology and organic geochemistry of Devonian black shales in southwestern Ontario, Canada. Org. Geochem. 1997, 26, 229–246. [Google Scholar] [CrossRef]
- Knabe, D.; Kludt, C.; Jacques, D.; Lichtner, P.; Engelhardt, I. Development of a Fully Coupled Biogeochemical Reactive Transport Model to Simulate Microbial Oxidation of Organic Carbon and Pyrite under Nitrate-Reducing Conditions. Water Resour. Res. 2018, 54, 9264–9286. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Salemi, E.; Castaldelli, G. Reactive Modeling of Denitrification in Soils with Natural and Depleted Organic Matter. Water Air Soil Pollut. 2011, 222, 205–215. [Google Scholar] [CrossRef]
- Ghafari, S.; Hasan, M.; Aroua, M.K. Bio-electrochemical removal of nitrate from water and wastewater—A review. Bioresour. Technol. 2008, 99, 3965–3974. [Google Scholar] [CrossRef]
- Almeida, J.S.; Reis, M.A.M.; Carrondo, M.J.T. Competition between nitrate and nitrite reduction in denitrification byPseudomonas fluorescens. Biotechnol. Bioeng. 1995, 46, 476–484. [Google Scholar] [CrossRef]
- Blackmer, A.; Bremner, J. Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol. Biochem. 1978, 10, 187–191. [Google Scholar] [CrossRef]
- Stegen, J.; Konopka, A.; McKinley, J.P.; Murray, C.; Lin, X.; Miller, M.D.; Kennedy, D.W.; Miller, E.A.; Resch, C.T.; Fredrickson, J.K. Coupling among Microbial Communities, Biogeochemistry and Mineralogy across Biogeochemical Facies. Sci. Rep. 2016, 6, 30553. [Google Scholar] [CrossRef]
- Carling, G.T.; Romanowicz, E.A.; Jin, L.; Fernandez, D.P.; Tingey, D.G.; Goodsell, T.H. Redox conditions and pH control trace element concentrations in a meandering stream and shallow groundwater of a semiarid mountain watershed, Red Canyon, Wyoming, USA. Environ. Earth Sci. 2019, 78, 510. [Google Scholar] [CrossRef]
- Pan, D.; Williams, K.H.; Robbins, M.J.; Weber, K.A. Uranium Retention in a Bioreduced Region of an Alluvial Aquifer Induced by the Influx of Dissolved Oxygen. Environ. Sci. Technol. 2018, 52, 8133–8145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benoit, J.M.; Gilmour, C.C.; Heyes, A.; Mason, R.P.; Miller, C.L. Geochemical and Biological Controls over Methylmercury Production and Degradation in Aquatic Ecosystems. In Biogeochemistry of Environmentally Important Trace Elements; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2002; Volume 835, pp. 262–297. [Google Scholar]
- Schulz-Zunkel, C.; Krueger, F.; Rupp, H.; Meissner, R.; Gruber, B.; Gerisch, M.; Bork, H.-R. Spatial and seasonal distribution of trace metals in floodplain soils. A case study with the Middle Elbe River, Germany. Geoderma 2013, 211–212, 128–137. [Google Scholar] [CrossRef]
- Neidhardt, H.; Rudischer, S.; Eiche, E.; Schneider, M.; Stopelli, E.; Duyen, V.T.; Trang, P.T.; Viet, P.H.; Neumann, T.; Berg, M. Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. J. Hazard. Mater. 2021, 411, 125128. [Google Scholar] [CrossRef]
- McMahon, P.B.; Chapelle, F.H. Redox Processes and Water Quality of Selected Principal Aquifer Systems. Groundwater 2008, 46, 259–271. [Google Scholar] [CrossRef]
- Cey, E.; Rudolph, D.L.; Aravena, R.; Parkin, G. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contam. Hydrol. 1999, 37, 45–67. [Google Scholar] [CrossRef]
- Králová, M.; Masscheleyn, P.H.; Lindau, C.W.; Patrick, W.H. Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Pollut. 1992, 61, 37–45. [Google Scholar] [CrossRef]
- Heberer, T.; Massmann, G.; Fanck, B.; Taute, T.; Dünnbier, U. Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 2008, 73, 451–460. [Google Scholar] [CrossRef]
- Winfrey, M.R.; Rudd, J.W.M. Environmental factors affecting the formation of methylmercury in low pH lakes. Environ. Toxicol. Chem. 1990, 9, 853–869. [Google Scholar] [CrossRef]
- Rust, C.M.; Aelion, C.; Flora, J.R. Control of pH during denitrification in subsurface sediment microcosms using encapsulated phosphate buffer. Water Res. 2000, 34, 1447–1454. [Google Scholar] [CrossRef]
- Vidon, P. Towards a better understanding of riparian zone water table response to precipitation: Surface water infiltration, hillslope contribution or pressure wave processes? Hydrol. Process. 2011, 26, 3207–3215. [Google Scholar] [CrossRef]
- Ocampo, C.J.; Sivapalan, M.; Oldham, C. Hydrological connectivity of upland-riparian zones in agricultural catchments: Implications for runoff generation and nitrate transport. J. Hydrol. 2006, 331, 643–658. [Google Scholar] [CrossRef]
- Puckett, L.J.; Cowdery, T.K.; McMahon, P.B.; Tornes, L.H.; Stoner, J.D. Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour. Res. 2002, 38, 9-1–9-20. [Google Scholar] [CrossRef]
- Zhu, Q.; Schmidt, J.P.; Bryant, R.B. Hot moments and hot spots of nutrient losses from a mixed land use watershed. J. Hydrol. 2011, 414–415, 393–404. [Google Scholar] [CrossRef]
- Shizuka, K.; Maie, N.; Nagasaki, M.; Kakino, W.; Tanji, H. Spring to summer nitrogen level in a brackish lake is higher in abundant snowmelt years: Correlation and causation. J. Environ. Qual. 2020, 49, 119–127. [Google Scholar] [CrossRef]
- Brooks, P.; Williams, M.W.; Schmidt, S.K. Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt. Biogeochemistry 1998, 43, 1–15. [Google Scholar] [CrossRef]
- Andrews, D.M.; Lin, H.; Zhu, Q.; Jin, L.; Brantley, S.L. Hot Spots and Hot Moments of Dissolved Organic Carbon Export and Soil Organic Carbon Storage in the Shale Hills Catchment. Vadose Zone J. 2011, 10, 943–954. [Google Scholar] [CrossRef]
- Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J. Factors Controlling Mercury Transport in an Upland Forested Catchment. Water Air Soil Pollut. 1998, 105, 427–438. [Google Scholar] [CrossRef]
- Petrone, K.; Buffam, I.; Laudon, H. Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservative and reactive tracer approach. Water Resour. Res. 2007, 43, W06420. [Google Scholar] [CrossRef]
- Xin, J.; Liu, Y.; Chen, F.; Duan, Y.; Wei, G.; Zheng, X.; Li, M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Res. 2019, 165, 114977. [Google Scholar] [CrossRef]
- Li, F.Y.; Betteridge, K.; Cichota, R.; Hoogendoorn, C.J.; Jolly, B.H. Effects of nitrogen load variation in animal urination events on nitrogen leaching from grazed pasture. Agric. Ecosyst. Environ. 2012, 159, 81–89. [Google Scholar] [CrossRef]
- Song, X.; Chen, X.; Stegen, J.; Hammond, G.; Song, H.; Dai, H.; Graham, E.; Zachara, J.M. Drought Conditions Maximize the Impact of High-Frequency Flow Variations on Thermal Regimes and Biogeochemical Function in the Hyporheic Zone. Water Resour. Res. 2018, 54, 7361–7382. [Google Scholar] [CrossRef]
- Giri, S.; Singh, A.K. Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environ. Monit. Assess. 2015, 187, 63. [Google Scholar] [CrossRef] [PubMed]
- Beutel, M.W.; Leonard, T.M.; Dent, S.R.; Moore, B.C. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake. Water Res. 2008, 42, 1953–1962. [Google Scholar] [CrossRef]
- Boano, F.; Harvey, J.; Marion, A.; I Packman, A.; Revelli, R.; Ridolfi, L.; Wörman, A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef]
- De Vet, W.; van Loosdrecht, M.; Rietveld, L. Phosphorus limitation in nitrifying groundwater filters. Water Res. 2012, 46, 1061–1069. [Google Scholar] [CrossRef]
- Hänsch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef]
- Merchant, S.S.; Helmann, J.D. Chapter 2 - Elemental Economy: Microbial Strategies for Optimizing Growth in the Face of Nutrient Limitation. In Advances in Microbial Physiology; Poole, R.K., Ed.; Academic Press: London, UK, 2012; Volume 60, pp. 91–210. [Google Scholar]
- Yin, S.; Wu, W.; Liu, H.; Bao, Z. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area. J. Contam. Hydrol. 2016, 193, 1–9. [Google Scholar] [CrossRef]
- Hosono, T.; Tokunaga, T.; Kagabu, M.; Nakata, H.; Orishikida, T.; Lin, I.-T.; Shimada, J. The use of δ15N and δ18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution. Water Res. 2013, 47, 2661–2675. [Google Scholar] [CrossRef]
- Winderl, C.; Anneser, B.; Griebler, C.; Meckenstock, R.U.; Lueders, T. Depth-Resolved Quantification of Anaerobic Toluene Degraders and Aquifer Microbial Community Patterns in Distinct Redox Zones of a Tar Oil Contaminant Plume. Appl. Environ. Microbiol. 2008, 74, 792–801. [Google Scholar] [CrossRef] [Green Version]
- Jobelius, C.; Ruth, B.; Griebler, C.; Meckenstock, R.U.; Hollender, J.; Reineke, A.; Frimmel, F.H.; Zwiener, C. Metabolites Indicate Hot Spots of Biodegradation and Biogeochemical Gradients in a High-Resolution Monitoring Well. Environ. Sci. Technol. 2010, 45, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.B.; Harrison, L.; Donovan, P.M.; Blum, J.D.; Marvin-DiPasquale, M. Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors. Sci. Total Environ. 2016, 568, 697–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Briggs, M.A.; Day-Lewis, F.D.; Slater, L.D. Evaluation of riverbed magnetic susceptibility for mapping biogeochemical hot spots in groundwater-impacted rivers. Hydrol. Process. 2021, 35, e14184. [Google Scholar] [CrossRef]
- Trauth, N.; Schmidt, C.; Vieweg, M.; Maier, U.; Fleckenstein, J.H. Hyporheic transport and biogeochemical reactions in pool-riffle systems under varying ambient groundwater flow conditions. J. Geophys. Res. Biogeoscience 2014, 119, 910–928. [Google Scholar] [CrossRef]
- Kaufman, M.H.; Cardenas, M.B.; Buttles, J.; Kessler, A.J.; Cook, P.L.M. Hyporheic hot moments: Dissolved oxygen dynamics in the hyporheic zone in response to surface flow perturbations. Water Resour. Res. 2017, 53, 6642–6662. [Google Scholar] [CrossRef]
- Trudell, M.; Gillham, R.; Cherry, J. An in-situ study of the occurrence and rate of denitrification in a shallow unconfined sand aquifer. J. Hydrol. 1986, 83, 251–268. [Google Scholar] [CrossRef]
- Weng, P.; Sánchez-Pérez, J.M.; Sauvage, S.; Vervier, P.; Giraud, F. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: Hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process. 2003, 17, 2375–2392. [Google Scholar] [CrossRef]
- Bernard-Jannin, L.; Brito, D.; Sun, X.; Jauch, E.; Neves, R.; Sauvage, S.; Sánchez-Pérez, J.-M. Spatially distributed modelling of surface water-groundwater exchanges during overbank flood events—A case study at the Garonne River. Adv. Water Resour. 2016, 94, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Bernard-Jannin, L.; Sauvage, S.; Garneau, C.; Arnold, J.; Srinivasan, R.; Sánchez-Pérez, J. Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model. Ecol. Eng. 2016, 103, 344–358. [Google Scholar] [CrossRef]
- Peyrard, D.; Delmotte, S.; Sauvage, S.; Namour, P.; Gerino, M.; Vervier, P.; Sanchez-Perez, J. Longitudinal transformation of nitrogen and carbon in the hyporheic zone of an N-rich stream: A combined modelling and field study. Phys. Chem. Earth Parts A/B/C 2011, 36, 599–611. [Google Scholar] [CrossRef] [Green Version]
- Antiguedad, I.; Zabaleta, A.; Martinez-Santos, M.; Ruiz, E.; Uriarte, J.; Morales, T.; Comin, F.A.; Carranza, F.; Español, C.; Navarro, E.; et al. A simple multi-criteria approach to delimitate nitrate attenuation zones in alluvial floodplains. Four cases in south-western Europe. Ecol. Eng. 2017, 103, 315–331. [Google Scholar] [CrossRef]
- Swoboda-Colberg, N.G.; Drever, J.I. Mineral dissolution rates in plot-scale field and laboratory experiments. Chem. Geol. 1993, 105, 51–69. [Google Scholar] [CrossRef]
- Murphy, S.F.; Brantley, S.L.; Blum, A.E.; White, A.F.; Dong, H. Chemical Weathering in a Tropical Watershed, Luquillo Mountains, Puerto Rico: II. Rate and Mechanism of Biotite Weathering. Geochim. Cosmochim. Acta 1998, 62, 227–243. [Google Scholar] [CrossRef]
- Prommer, H.; Anneser, B.; Rolle, M.; Einsiedl, F.; Griebler, C. Biogeochemical and Isotopic Gradients in a BTEX/PAH Contaminant Plume: Model-Based Interpretation of a High-Resolution Field Data Set. Environ. Sci. Technol. 2009, 43, 8206–8212. [Google Scholar] [CrossRef]
- Mariotti, A.; Germon, J.C.; Hubert, P.; Kaiser, P.; Letolle, R.; Tardieux, A. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 1981, 62, 413–430. [Google Scholar] [CrossRef]
- Wainwright, H.M.; Orozco, A.F.; Bücker, M.; Dafflon, B.; Chen, J.; Hubbard, S.S.; Williams, K.H. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour. Res. 2015, 52, 533–551. [Google Scholar] [CrossRef] [Green Version]
- Burgin, A.J.; Hamilton, S.K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front. Ecol. Environ. 2007, 5, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, Y.; Kanyerere, T. A review of the managed aquifer recharge: Historical development, current situation and perspectives. Phys. Chem. Earth Parts A/B/C 2020, 118–119, 102887. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Puckett, L.J. O2reduction and denitrification rates in shallow aquifers. Water Resour. Res. 2011, 47, W12522. [Google Scholar] [CrossRef]
- Karanasios, K.A.; Vasiliadou, I.A.; Pavlou, S.; Vayenas, D.V. Hydrogenotrophic denitrification of potable water: A review. J. Hazard. Mater. 2010, 180, 20–37. [Google Scholar] [CrossRef]
- Bohlke, J.K.; Harvey, J.W.; Voytek, M.A. Reach-scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, midcontinent United States. Limnol. Oceanogr. 2004, 49, 821–838. [Google Scholar] [CrossRef]
- Smith, R.L.; Garabedian, S.P.; Brooks, M.H. Comparison of Denitrification Activity Measurements in Groundwater Using Cores and Natural-Gradient Tracer Tests. Environ. Sci. Technol. 1996, 30, 3448–3456. [Google Scholar] [CrossRef]
- Korom, S.F. Natural denitrification in the saturated zone: A review. Water Resour. Res. 1992, 28, 1657–1668. [Google Scholar] [CrossRef]
Research Materials | Reaction Rates of Hot Spots | Conventional Reaction Rates | Type | References |
---|---|---|---|---|
N | 35 kg N ha−1 yr−1 (lab rates) | 20 kg N ha−1 yr−1 (lab rates) | HSHMs | [69] |
N | 1.26–15.2 ug N2O-N kg soil−1 h−1 | 1.8–1.26 ug N2O-N kg soil−1 h−1 | HSHMs | [70] |
N | 0.54 mg-N/L (the highest concentration of nitrate produced) | 0.03 mg-N/L (concentration of denitrification) | HSHMs | [71] |
As | 738 mol (the amount of As released) | 225.6 mol (the amount of As released) | Hot spot | [56] |
N | 17,053 nmol 15N-N2 L−1 h−1 (max) | 25 nmol 15N-N2 L−1 h−1 (min) | Hot spot | [72] |
U (Ⅵ) | 3.5–4.5 umol/g sediment/d (max) | 0 | Hot spot | [53] |
Hg | 7.62 ng/L (concentration of methylmercury) | Detection limit (0.06 ng/L) | Hot spot | [73] |
N | 5.40 ug N2O L−1 min−1 | 2.91 ug N2O L−1 min−1 | Hot spot | [74] |
N | 55,400 ng N2O-N g−1 d−1 (max) | Undetectable (min) | Hot spot | [60] |
N | 1.9 gd−1 m−1 (max) | 0 | Hot moment | [75] |
Comprehensive Indicators | Specific Indicators | Applications/Substances of Concern | References | Description |
---|---|---|---|---|
Reaction rates | Reaction rates | Denitrification/N | [75] | Detailed field information suitable for a small scale is required during simulation. |
Denitrification/N | [70] | Measuring reaction rates in the field is likely to miss HSHMs. | ||
Attenuation ratio | Nitrification and denitrification/N; Biodegradation/TOC | [204]; [33] | Simple and easy to use, but not precise enough. | |
Isotopic enrichment factor | Denitrification/N | [205] | Suitable for large-scale biogeochemical HSHM indications. | |
Microbial community distribution or enzyme activity | Denitrifying enzyme activity/N; Microbial community distribution and bssA a/BETX b | [92]; [206] | Substantial evidence is needed to show that this index is the key to the occurrence of biogeochemical reactions. | |
Metabolites | Microbial degradation/ BETX, PAHs c, and heterocyclic compounds | [207] | It is generally applicable to small-scale pollutants with known degradation paths. | |
Inundation history | Flood history triggered the conversion of mercury to methylmercury/mercury | [208] | It needs unique scenes and is not universal. | |
Isotopic and residence time threshold | Nitrification and denitrification/N | [71] | The resulting threshold may vary with temperature and surrounding water flow conditions and requires constant monitoring. | |
Others | Magnetic susceptibility signal | Iron oxide precipitates | [209] | It is highly specific and can only identify hot spots associated with magnetic minerals and needs to be combined with complementary techniques. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, M.; Wu, X. Reclaimed Water Reuse for Groundwater Recharge: A Review of Hot Spots and Hot Moments in the Hyporheic Zone. Water 2022, 14, 1936. https://doi.org/10.3390/w14121936
Li Y, Liu M, Wu X. Reclaimed Water Reuse for Groundwater Recharge: A Review of Hot Spots and Hot Moments in the Hyporheic Zone. Water. 2022; 14(12):1936. https://doi.org/10.3390/w14121936
Chicago/Turabian StyleLi, Yu, Mingzhu Liu, and Xiong Wu. 2022. "Reclaimed Water Reuse for Groundwater Recharge: A Review of Hot Spots and Hot Moments in the Hyporheic Zone" Water 14, no. 12: 1936. https://doi.org/10.3390/w14121936
APA StyleLi, Y., Liu, M., & Wu, X. (2022). Reclaimed Water Reuse for Groundwater Recharge: A Review of Hot Spots and Hot Moments in the Hyporheic Zone. Water, 14(12), 1936. https://doi.org/10.3390/w14121936