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Abstract: Groundwater use for irrigation has a major influence on agricultural productivity and local
water resources. This study evaluated the groundwater irrigation schemes, SWAT auto-irrigation
scheduling based on plant water stress (Auto-Irr), and prescribed irrigation based on well pumping
rates in MODFLOW (Well-Irr), in the U.S. Northern High Plains (NHP) aquifer using coupled SWAT-
MODFLOW model simulations for the period 1982–2008. Auto-Irr generally performed better than
Well-Irr in simulating groundwater irrigation volume (reducing the mean bias from 86 to −30%) and
groundwater level (reducing the normalized root-mean-square-error from 13.55 to 12.47%) across the
NHP, as well as streamflow interannual variations at two stations (increasing NSE from 0.51, 0.51
to 0.55, 0.53). We also examined the effects of groundwater irrigation on the water cycle. Based on
simulation results from Auto-Irr, historical irrigation led to significant recharge along the Elkhorn and
Platte rivers. On average over the entire NHP, irrigation increased surface runoff, evapotranspiration,
soil moisture and groundwater recharge by 21.3%, 4.0%, 2.5% and 1.5%, respectively. Irrigation
improved crop water productivity by nearly 27.2% for corn and 23.8% for soybean. Therefore,
designing sustainable irrigation practices to enhance crop productivity must consider both regional
landscape characteristics and downstream hydrological consequences.

Keywords: irrigation; hydrology; groundwater recharge; crop water productivity; coupled modeling

1. Introduction

Irrigation is important for proper crop growth and consistent food supply [1]. Globally,
70% of freshwater is used for irrigation [2,3] and nearly 18% of the world’s agricultural
land is irrigated, which produces about 40% of global agricultural products [4]. Especially
in semi-arid regions, agricultural productivity relies heavily on groundwater resources
for irrigation [5]. For instance, the U.S. High Plains aquifer, one of the world’s largest
aquifers [6], accounts for about 88% of total freshwater withdrawn for irrigation [7] in
the country. The continuous use of nonrenewable groundwater has already and may
further threaten the environment and agricultural production [8]. For example, excessive
groundwater removal relative to natural recharge can lower the water levels of an aquifer
and regional streams through coupled surface–groundwater dynamics [9,10].

Groundwater depletion levels in the U.S. Northern High Plains (NHP) aquifer vary
across the region due to varying water demand for irrigation and recharge dynamics [8].
For instance, the groundwater storage level in the Sandy Hills region in the NHP has
remained relatively stable due to a higher recharge flux [8,11,12]. The streamflow in
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the NHP decreased annually between 23 and 73%, and in the dry season (July–August)
between 21 and 77%, from 1940 to 1980, primarily because of the decline in the groundwater
level caused by increased groundwater pumping [13]. Furthermore, from 1996 to 2015
there was an 11% increase in irrigated acres on the NHP [12]. As a consequence of the
increased irrigation, declining streamflow and groundwater levels, most river basins of
Nebraska have been classified as fully appropriated, i.e., existing water uses and rights are
equal to available water supplies, or over appropriated, i.e., existing water uses and rights
exceed available water supplies [14]. Over the past century, the NHP has experienced
several short-term and prolonged severe droughts resulting in considerable agricultural
losses [15,16], and such events are likely to increase in the future [17]. This could lead to
severe water stress in the region. As such, there is an urgent need to improve understanding
of hydrological processes and adapt future water management strategies in the NHP to
recurring drought and improved water conservation.

Hydrological modeling is a commonly used approach to evaluate the effect of agricul-
tural practices on surface and groundwater resources [18]. Multiple hydrological modeling
studies conducted to date in parts of the NHP have been based on SWAT or MODFLOW
for small and large river basins [19–23]. In general, most SWAT modeling studies have
been focused on evaluating and analyzing best management practices, water quality, wa-
ter and sediment transport, irrigation, bio-energy crops, climate change and land use
change [19,23,24]. Meanwhile, MODFLOW based studies in the region primarily examined
groundwater dynamics, e.g., river-aquifer interactions, groundwater level changes, ground-
water irrigation and climate change [20,21,25,26]. Recently, these two models were coupled
into SWAT-MODFLOW by Bailey et al. [27]. The coupled model improved the skills in
simulating watershed systems where both surface water and groundwater processes (as
well as their interactions) play a significant role on overall water budget [28,29]. The im-
provement can be attributed to a more realistic representation of physically based surface
and subsurface processes, such as runoff, soil water storage, evapotranspiration and aquifer
recharge/discharge. Some other examples of coupled surface–groundwater models include
ParFLOW [30], PCR-GLOBWB-MOD [31], and GSFLOW [32]. These models are grid based
and fully distributed (ParFLOW and PCR-GLOBWB-MOD) or semi-distributed (GSFLOW)
with high data requirement and computation costs. Among them, SWAT-MODFLOW has a
distinct advantage in its capability to simulate crop growth, agricultural management, land
management practices, water and sediment transport, and its ability to use the existing
SWAT and MODFLOW models of varying spatial extents.

SWAT-MODFLOW has been continuously enhanced over the last two decades [27,33,34].
It links surface and groundwater flow processes to provide an improved understanding
of complicated hydrological processes in large agricultural basins. SWAT-MODFLOW
can assess the hydrological and agronomic responses of a fully integrated river–aquifer
system to land use change [35], climate change [36,37] and agricultural management
practices [38,39], which greatly benefits water resource management. SWAT-MODFLOW
has been applied in watersheds of different spatial scales, ranging from 357 km2 in the
Uggerby River Catchment, Denmark [40], to 72,000 km2 in the South Platte River Basin [38].
In this study, we used the version of SWAT-MODFLOW developed by Bailey et al. [27].

When modeling the hydrology in a semi-arid region such as the NHP with intensive
agricultural activities, a careful selection of the irrigation method is needed. Varying
irrigation methods can produce different results because of difference in irrigation volume,
timing, frequency, and recharge. Aliyari et al. [38] updated the SWAT auto-irrigation
subroutines and MODFLOW Well package to link MOFDLOW pumping wells and SWAT
HRUs for groundwater irrigation in SWAT-MODFLOW, and successfully implemented it
in the South Platte river basin in the United States. In SWAT-MODFLOW, the groundwater
irrigation volume can be prescribed by two methods: the MODFLOW Well package and
the SWAT auto-irrigation routines [41]. The first method allows the user to specify the
pumping rate of each well in the MODFLOW grid cell, and provides a reasonable estimate
of groundwater irrigation volume. This will provide irrigation water to the associated
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SWAT HRU. However, application of this approach is difficult in an intensively irrigated
large agricultural basin in the absence of measured pumping rates.

The second method calculates the groundwater irrigation volume for the HRU using
the auto-irrigation routines of SWAT. The irrigation volumes are converted to the pumping
rate and fed to the associated pumping well in the MODFLOW grid cells. This method is
commonly used in the case of inadequate irrigation scheduling data. It also accommodates
the effects of spatiotemporal variability in climate, soil moisture, and plant growth condi-
tions. However, this method could overestimate the irrigation amount because irrigation
is performed even after crop harvesting [42]. It can also underestimate the pumping rate
because the number of pumping wells in the model domain remains constant throughout
the simulation period, whereas, in practice, the number of active pumping wells can vary.
This study tries to overcome these limitations by modifying the groundwater irrigation
routine to better simulate irrigation practices. There is currently no study assessing the
benefits of two groundwater irrigation methods in SWAT-MODFLOW. Hence, a careful
evaluation of the two approaches is needed to seek an accurate representation of irrigation
practices and water balance components.

In this study, we aimed to examine and make multiple changes to the SWAT-MODFLOW
framework to enhance the representation of irrigation and hydrological processes in the
NHP and understand the role of irrigation practices in affecting watershed hydrology in the
347,058 km2 extent of the NHP. Specifically, we aimed to: (1) design a SWAT-MODFLOW
model in the NHP and improve its capability of simulating irrigation processes; (2) evaluate
the performance of the two irrigation options (SWAT auto-irrigation based on plant water
stress and MODFLOW-based prescription of irrigation well-pumping rates) for simulating
the groundwater demand and regional water budget; and (3) understand the effects of
irrigation on various hydrological processes, such as groundwater recharge, evapotran-
spiration, and streamflow. This modeling exercise helps to represent the hydrology in
an agriculturally intensive large watershed and generates knowledge regarding the role
of irrigation in influencing hydrological processes. Such efforts hold promise to better
support sustainable agricultural water management in large irrigation systems in the face
of imminent climate change and potential groundwater shortages.

2. Materials and Methods
2.1. Study Area

The NHP aquifer (Figure 1a), located in the Midwest U.S.A., spans Nebraska, Col-
orado, Kansas, Wyoming, and North Dakota, covering an area of about 347,058 km2

(Peterson et al., 2016). The NHP is comprised of multiple watersheds where intensive agri-
cultural activities are carried out. The dominant land cover category in the NHP is range
and pasture land (57.72%), followed by agriculture (33.47%), urban (3.38%), forest (3.01%),
wetlands (1.42%), water and barren land (1%).

The region is dominated by convective storms in summer (April–September), which
overlaps with the crop growing season [8]. The annual precipitation (Figure S1) shows
a strong east–west gradient, decreasing from 900 mm in the east to 350 mm in the west.
The estimated crop water use ranges from 584 to 711 mm for corn, and 508 to 635 mm
for soybean, with higher crop water use in eastern Nebraska [43]. This difference in
crop water demand and precipitation results in different irrigation needs. For example,
according to [14], the net corn irrigation requirement ranges from ~355 mm in the west
to ~152 mm in the east of Nebraska for the entire growing season (May to September) for
high yields. To meet these varied irrigation needs, both surface water and groundwater are
used in the NHP [8,20]. Historically, most of the irrigation water was taken from the rivers
and reservoirs in the region, but since 1940, irrigated areas using groundwater rapidly
expanded [20]. By 2000, almost 97% of the total groundwater withdrawals in the High
Plains were used for irrigation [7] and nearly 84% of irrigation water was from groundwater
in Nebraska [44]. In 2015, groundwater accounted for about 77% of the total water supply
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and about 84% of irrigation water in NHP; thus, irrigation used about 95% of the total
groundwater withdrawals [45].

Figure 1. Modeling domains for SWAT and MODFLOW (a), and land use map (b), for the U.S.
Northern High Plains.

2.2. SWAT Setup

SWAT is a physically-based model that simulates the hydrological processes by divid-
ing the watershed into sub-basins which are further divided into fundamental units called
hydrological response units (HRU) based on a unique combination of land use, soil type
and slope [46]. SWAT is capable of simulating reservoirs, wetlands, and a wide range of
agricultural and water management practices [47,48].

Multiple geospatial datasets were used to configure the SWAT model setup (Table 1).
Land use data was obtained from the Cropland Data Layer (CDL) 2008 [49] which contains
detailed crop-specific information. Different cropland types were reclassified into corn,
soybean and other small grains. The resulting digital map was then combined with
Moderate Resolution Imaging Spectroradiometer (MODIS) irrigated land layers 2007 [50]
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to generate a land use map with cropland separated into irrigated and dry cropland
(Figure 1b). Soil properties were derived from the State Soil Geographic (STATSGO) dataset.
Soil properties from STATSGO were used in order to keep the number of HRUs manageable
and reduce the computation time of the model simulation. Two slope classes 0–5% and
>5% were used for defining HRUs. The unique combinations of land use, soil type, and
slopes resulted in a total of 51,035 HRUs for the entire basin. Crop management operations
(planting, harvesting, and fertilizer application) were included for corn, soybean and winter
wheat, based on existing literature [51–53].

Table 1. SWAT model input summary.

Data Resolution Source

Precipitation, Temperature, Relative
Humidity, Wind Speed, Solar Radiation 0.3◦ × 0.3◦ NARR [54]

Digital Elevation Model (DEM) 90 m × 90 m Shuttle Radar Topography Mission (SRTM) [55]

Land Use 30 m × 30 m [49]

MODIS Irrigated Land 250 m × 250 m [50]

Soil Property 1:250,000 STATSGO [56]

Reservoir 22 large reservoirs USBR, USACE [57,58]

We used climate forcing data from the North American Regional Reanalysis (NARR)
database to drive the SWAT simulations. NARR climate forcing data have assimilated
multiple sources of observations [54], including satellite observations, and have shown
to provide good simulation of streamflow when used as climate forcing in hydrological
models [59]. The 22 large reservoirs that were identified to lie within the stream network
(Figure 1a) in the SWAT domain were incorporated into the model. A detailed description
of reservoir parameters and operations is provided in the Supplementary Information
(Table S1).

A large portion of the watershed is dominated by depressions, especially the Sand Hills
in northern and northeastern Nebraska. The pothole module simulates depressions at the
HRU-level and can reasonably represent the spatial distribution of seepage to MODFLOW
grids. Therefore, the pothole module was applied to HRU classified as wetlands. Most of the
lakes and wetlands in the Sand Hills are shallow and have a mean depth of ~800 mm [21].
Hence, the maximum pothole water depth in SWAT (POT_VOLX) was set to 800 mm which
allows water to pond on the surface up to the depth of 800 mm before runoff takes place.

2.3. MODFLOW Setup

We used an existing MODFLOW model configured for the NHP by [20] in our SWAT-
MODFLOW setup. The groundwater model consists of 565 × 795 grid cells, with a resolu-
tion of 1 × 1 km2, and a single layer. Originally, the model setup used the Streamflow Rout-
ing package to simulate the discharge in rivers, but in the SWAT-MODFLOW setup, it was
replaced by the River package [60]. This enabled the calculation of groundwater–surface
water exchanges between the aquifer and rivers. The boundary conditions, including
general head boundary, constant head, drain, well, and horizontal flow barrier packages
(Figure 2) based on Peterson [20] were also enabled in the present study. As most of the
irrigation scheduling in the NHP takes place in the growing season, the groundwater
irrigation was assumed to take place from May to September in the well package. The
domain of the watershed delineated for SWAT was larger than the MODFLOW model
boundary and the number of sub-basins in the southern section of the SWAT domain lay
in the no-flow boundary or outside the MODFLOW boundary (Figure 1a). The original
capability of each model was maintained in the non-overlapping region [27].
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Figure 2. Boundary conditions of the MODFLOW model domain.

2.4. SWAT and MODFLOW Coupling
2.4.1. Irrigation Scheme

The groundwater irrigation operation can be simulated in SWAT-MODFLOW through
two methods: First, the well pumping rate and locations defined in the MODFLOW
well package were based on Peterson et al. [20]; it was used to dictate the groundwater
irrigation amount in the SWAT auto-irrigation module. This setup is henceforth called Well-
Irr. Second the groundwater irrigation amount determined by the SWAT auto-irrigation
module was used to determine the pumping rates for irrigation wells in the MODFLOW
grid cells. This setup is henceforth called Auto-Irr. A plant water stress, defined as the ratio
of actual to the potential plant transpiration, was used to trigger the irrigation in SWAT.

The SWAT auto-irrigation module requires an irrigation source (surface water or
groundwater) as input. The irrigated cropland, corn, soybean and winter wheat, HRUs
close to the irrigation wells were assigned groundwater as the irrigation source; the remain-
ing HRUs were assigned river as the irrigation source. Additional details on irrigation
source assignment to the cropland HRUs is provided in the Supplementary Information
(Section 2.1). The coupling between the SWAT HRU and the MODFLOW grid was achieved
following the manual coupling procedures described in detail by Bailey and Park [41]. The
SWAT HRUs were first disaggregated into individual polygons with specific geographic
locations (DHRUs), and then intersected with the MODFLOW grid cells to determine
the spatial relationship between HRUs, DHRUs and MDFLOW grid cells. The mapping
scheme in SWAT-MODFLOW passed SWAT variables (recharge, ET, and stream stage) to
the corresponding MODFLOW grid. Additionally, the MODFLOW river grid cells were
intersected with the SWAT sub-basins for the river–aquifer water exchange.

2.4.2. SWAT-MODFLOW Modifications

SWAT-MODFLOW was modified to improve simulations of water management prac-
tices for intensively irrigated watersheds [38,39]. In particular, the irrigation modules
were modified to: (a) link MOFDLOW pumping wells and SWAT HRUs for groundwater
irrigation, (b) include the canal irrigation, and (c) groundwater evapotranspiration. These
changes improved model ability to produce more realistic effects of groundwater irrigation
on streamflow and groundwater level than SWAT.



Water 2022, 14, 1938 7 of 22

The SWAT-MODFLOW model developed by [27] was modified and used in this
study. Generally, each year, new irrigation wells are drilled depending on the irrigation
requirement but limited by the groundwater regulations of the Natural Resource Districts
in the region. Conversely, some wells become inactive or are taken out of service because
of high operation cost or general modernization leading to replacement by a new well. The
records of active irrigation wells and their locations can be obtained from the Nebraska
Department of Natural Resources Groundwater Wells Database [61]. However, in the
case of the SWAT auto-irrigation derived groundwater pumping rate, the irrigation well
that is associated with the SWAT HRUs remains active throughout the simulation period.
Therefore, the coupled irrigation function in SWAT-MODFLOW was modified to account
for the annual changes in the number of irrigation wells during the growing season. In
doing so, each irrigation well mapped to a SWAT HRU was activated or deactivated for a
simulation year based on the irrigation well activation information in the MODFLOW Well
package [60]. The SWAT auto-irrigation routine can falsely trigger irrigation events even
after the crop harvest [42,62]. Hence, the SWAT auto-irrigation function was modified to
allow irrigation only when the MODFLOW wells were active during the growing season of
that year.

The coupled model deactivated the SWAT groundwater module and replaced it with
MODFLOW in the overlapping areas. Hence, the SWAT groundwater module was turned
off even in the regions overlapping with inactive MODFLOW grid cells, where MODFLOW
did not simulate the groundwater flow process. Therefore, when the SWAT domain overlaid
the MODFLOW inactive grid cells (Figure 1a), the seepage and the subsurface flow were not
considered in the SWAT-MODFLOW simulation. Additional modification of the coupled
SWAT-MODFLOW model was performed in this work to keep the SWAT groundwater
module active for the overlapping region with inactive MODFLOW grid cells.

2.4.3. River–Aquifer Interaction

In SWAT-MODFLOW, the interaction between surface water and aquifers was simu-
lated using the MODFLOW River package. However, the MODFLOW model designed for
the NHP [20] used the Stream Flow Routing (SFR) package to simulate rivers. Hence, the
SFR package was replaced by the River package in this study. The river network generated
by SWAT was used to identify the MODFLOW river grid cells which varied spatially from
the original MODFLOW SFR grids. The riverbed hydraulic conductivity had a significant
impact on quantifying and understanding the stream–aquifer interactions [63,64] that de-
termine the baseflow and the effect of groundwater irrigation on streamflow. The riverbed
hydraulic conductivity estimated by [20] for the major rivers of the NHP that ranged
from 0.03 to 3.00 m/d were linearly interpolated to the river grid cells. These values lay
within the lower range of riverbed vertical hydraulic conductivity estimated by previous
studies [63,65] for the major rivers within the NHP. The river bed thickness values for river
segments from [20] were used in the MODFLOW River package.

2.5. System Parameter Adjustment

The calibration of integrated groundwater surface water models such as SWAT-
MODFLOW is complex and computationally expensive [36,40]. Hence, only SWAT model
parameters for crop and irrigation volume were optimized. SWAT model parameter adjust-
ment was conducted in two parts. First, the fractional potential heat units for planting and
harvest dates for corn, soybean and winter wheat were adjusted until the model-simulated
planting and harvest dates were within the beginning (planting) and end dates (harvesting)
as provided on the document (Usual Planting and Harvest Dates) published by USDA [66].

Second, the model parameter for irrigation—plant water stress threshold—was then
manually adjusted to reduce the bias in simulated annual groundwater irrigation volume
in the NHP. For this purpose, the plant water stress that triggers irrigation was varied
between 0.95 and 0.5 to obtain the lowest percent bias between the simulated and USGS
estimated annual groundwater irrigation volume.
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2.6. Experiment Design

To determine the appropriate irrigation management method between the Auto-Irr
and Well-Irr setups, the SWAT-MODFLOW model was run from 1979 to 2008 with a 3-year
warm-up period. The model performance for simulating streamflow, evapotranspira-
tion, groundwater level, and annual groundwater irrigation volume was evaluated in
the above-mentioned two scenarios. In addition, the Auto-Irr and Well-Irr performances
for simulating monthly streamflow were compared with the SWAT model simulation re-
sults. The same SWAT parameters were used for the consistent surface water hydrological
parameterization in all three setups.

Finally, the SWAT-MODFLOW setup that provided better model performance was used
to evaluate the impact of irrigation on hydrological processes and agricultural productivity.

2.7. Evaluation Metrics

The model performance on crop yield, monthly streamflow, evapotranspiration,
groundwater level, and annual groundwater irrigation volume simulated by the above-
mentioned three model setups, was evaluated. The statistical metrics: coefficient of deter-
mination (R2), Nash-Sutcliffe efficiency (NSE), root mean square error normalized against
the observed mean value or normalized root mean square error (NRMSE), and percent
bias (PBIAS), were used to evaluate model performance. R2 measured if the variation
in observed data was explained by the model. Its value ranged from 0 to 1, with values
closer to 1 indicating good agreement; model performance was considered acceptable if
R2 > 0.5 [67]. The NSE measured agreement between observed and simulated data. Its
value ranged from negative infinity to 1, with values closer to 1 indicating good agreement.
Following [68], the model performance for streamflow was considered to be satisfactory if
NSE was between 0.36 and 0.75, and considered good if NSE was greater than 0.75. The
NRMSE provided the (%) relative measure of simulated and observed values where the
lower value indicated better performance. The model performance was often considered
good when NRMSE < ±20%. PBIAS measured the tendency of simulated values to be
greater or lower than observed values. PBIAS of 0% was the optimal value, with positive
value indicating underestimation and negative value indicating overestimation by the
model. Following [19], PBIAS of ±15% was considered good and PBIAS of ±25% was
considered satisfactory.

The corn, soybean and winter wheat yield simulated by the model were compared
with county level USDA National Agricultural Statistical Survey (NASS) data [69]. County
level NASS data was aggregated to each sub-basin using an area weighted average. NASS-
reported crop yield in bushels per acre was converted to kg per hectare, as reported in
SWAT output, following the method described in [24]. To further evaluate the effect of
irrigation on the corn and soybean yield in the region, the spatial distribution of crop water
productivity (CWP), defined as the ratio of crop yield to actual evapotranspiration [70] at
the sub-basin scale, was estimated. The CWP represented the water use efficiency of the
crop, presented here in units of kg/m3.

The model-simulated groundwater irrigation volume values were compared with
the county level USGS estimates. We aggregated the USGS county-level 5-year averaged
groundwater irrigation volume data [71] to represent the overall groundwater irrigation
volume in the NHP aquifer. The observed groundwater level values were obtained from
the network of 39 USGS observation wells in the study region (Figure 1a). The mean
of observed data was used if multiple observation wells were located within a 1 km2

MODFLOW grid cell. A total of 2029 monthly groundwater level measurements were
available for the period of 1982–2008.

In a semi-arid region, evapotranspiration (ET) plays an important role in the hydro-
logical cycle. The Moderate Resolution Imaging Spectroradiometer (MODIS) based monthly
ET dataset from 2000–2008 was utilized as the benchmark for model evaluation at the sub-
basin scale. For this, the 8-day total 500 m gridded ET data from MODIS (MOD16A2) [72]
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was spatially aggregated into monthly ET values for each of the 203 SWAT sub-basins that
overlay the NHP aquifer.

In this study, R2 and NSE were used as model performance indicators for streamflow,
R2 and NRMSE for groundwater level, R2 for evapotranspiration, and PBIAS for crop
yield. In the case of groundwater irrigation volume, the model performance was evaluated
qualitatively due to limited observations.

3. Results
3.1. Model Performance
3.1.1. Annual Groundwater Irrigation

Figure 3 shows the annual groundwater irrigation volume for the NHP simulated by
the SWAT-MODFLOW model with the two irrigation schemes described in Section 2.4.1.
Both Well-Irr and Auto-Irr overestimated the annual groundwater irrigation volume. The
Auto-Irr achieved much lower bias than the Well-Irr method (−30% vs. 86%). The model
results generally indicated a gradual upward trend in the groundwater irrigation volume
from 1995.

The annual groundwater irrigation volume estimated by Auto-Irr was closer to the
USGS estimates compared with the Well-Irr setup. The use of the auto-irrigation module
allowed for the irrigation demand to be based on climatic conditions, resulting in high
irrigation demand during drought years. The years with peak irrigation volume simulated
by the Auto-Irr corresponded well with the observed drought years in the NHP: 1989, 2002
and 2006. In the Well-Irr setup, the irrigation frequency and intensity were based on the
MODFLOW Well package and stress period. Such detailed information was not available
for each irrigation well over the simulation period, leading to less sensitivity of Well-Irr
estimated irrigation volume to climate conditions. The normal water requirement for corn
and soybean is 762 and 531 mm/year in Nebraska [73], 642 and 580 mm/year in eastern
Colorado [74], 624 and 518 mm/year in Kansas [75]. The average annual precipitation in
the NHP fell to 395, 354 and 517 mm in 1989, 2002 and 2006, respectively, well below the
normal water requirement for corn and soybean in the region. The water deficit during
these years increased groundwater irrigation substantially (Figure 3).

Figure 3. Reported and simulated total annual groundwater irrigation volume in the U.S. Northern
High Plains aquifer.

3.1.2. Groundwater Level

The monthly mean groundwater level simulated by the Auto-Irr and Well-Irr setups
were compared with the observed monthly groundwater level from USGS as shown in
Figure 4. The R2 for Auto-Irr and Well-Irr were found to be 0.998 and 0.997, respectively.
This suggests that both irrigation settings were able to capture the dynamics of groundwater
level variations. The NRMSE values also showed small differences between the two coupled
model setups (13.55% (good) for Well-Irr, and 12.47% (good) for Auto-Irr). High hydraulic
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conductivity and specific yield across the NHP likely stabilized the saturated thickness of
the aquifer despite large differences in groundwater withdrawals. However, for both setups,
SWAT-MODFLOW underestimated the groundwater level compared with the observed
values. The tendency of the model to simulate higher irrigation volumes (Figure 4) was a
possible reason for model underestimation of the groundwater level. The mean bias error
(MBE) and mean absolute error (MAE) for Auto-Irr were −25.5 m and 25.6 m, respectively.
The corresponding values for the Well-Irr were −27.8 m and 27.8 m. In general, these errors
were <3% of the mean measured groundwater levels. The model biases may have arisen
from multiple reasons. For example, the mean elevation of the model grid cell of 1 km2

was different from the elevation of the USGS observation well, which was a single location
in the cell. Errors may also have resulted from uncertainty in specifying model parameters,
and pumping rates.

Figure 4. Comparison of observed and simulated mean monthly groundwater level of Auto-Irr and
Well-Irr for the period of 1982–2008.

3.1.3. Streamflow

The Auto-Irr, Well-Irr and SWAT simulated streamflow were evaluated against the
observed mean monthly streamflow data obtained from USGS gauges at the outlet cor-
responding to sub-basins 119 (northern) and 244 (southern) (Figure 1a). The model per-
formance for three model setups is summarized in Table 2. More details about the time
series of monthly mean simulated and observed streamflow at the outlet of sub-basins 119
and 244 are shown in Figure S2. For outlet 119, the R2 values were 0.66, 0.63 and 0.62 for
SWAT, Auto-Irr and Well-Irr, respectively. All were greater than 0.5, suggesting that all
model setups could capture the streamflow variation satisfactorily for the northern section
of the NHP. The NSE values increased from 0.13 for the SWAT, to 0.55 and 0.51 for Auto-
Irr and Well-Irr, respectively, in SWAT-MODFLOW. For outlet 244, SWAT outperformed
SWAT-MODFLOW with Auto-Irr and Well-Irr setups in terms of both R2 and NSE. Auto-Irr
slightly outperformed Well-Irr with an NSE of 0.53 vs. 0.51. Overall, at both locations,
the SWAT-MODFLOW Auto-Irr (NSE = 0.53 and R2 = 0.6) simulation performed better
than Well-Irr.

Table 2. Statistical parameters for SWAT and SWAT-MODFLOW simulated (uncalibrated) stream
discharge for 1982–2008.

Sub-Basin Model Type Irrigation Type R2 NSE

119

SWAT Auto Irrigation 0.66 0.13

SWAT-MODFLOW Auto Irrigation 0.63 0.55

SWAT-MODFLOW MODFLOW Well 0.62 0.51
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Table 2. Cont.

Sub-Basin Model Type Irrigation Type R2 NSE

244

SWAT Auto Irrigation 0.76 0.75

SWAT-MODFLOW Auto Irrigation 0.68 0.53

SWAT-MODFLOW MODFLOW Well 0.68 0.51

We further used flow duration curves (FDC) to better understand the model’s capability
to simulate the streamflow regime. Figure 5 displays the streamflow regime (i.e., high flow to
low flow conditions at outlets 119 and 244). Although the R2 and NSE values from the SWAT
alone simulation at outlet 244 were greater than other coupled simulation results, it failed to
capture the low flow regime at this site. The FDC analysis indicated that SWAT significantly
underestimated the low flow regime at these two sites. The simplified representation of an
aquifer in SWAT may have resulted in the rapid depletion of the aquifer water level when
the aquifer was used as an irrigation source [76]. This could have reduced the baseflow and
hence resulted in the underestimation of low flow regimes. Meanwhile, the low flow regime
simulated by the coupled SWAT-MODFLOW setups were closer to the observed conditions
when compared with SWAT. However, both SWAT-MODFLOW setups underestimated the
high to mid-range flow regime for outlet 119. In the case of outlet 244, both SWAT-MODFLOW
setups underestimated the entire flow regime. Among the coupled simulations, the largest
underestimation of the low flow regime was found for Well-Irr. Overall, the performance
of Auto-Irr for simulating stream discharge was the best among the coupled model setups.
The SWAT-MODFLOW improved the R2 and NSE of streamflow in the northern section
(i.e., sub-basin 119) of the NHP, demonstrating the positive influence of including a spatially
variable groundwater system. In general, these results showed that SWAT-MODFLOW could
simulate stream discharge at a large-scale watershed such as the NHP within the acceptable
ranges based on model performance evaluation criteria.

3.1.4. Sub-Basin Evapotranspiration

Figures 6a and S3 show the Auto-Irr, Well-Irr and SWAT simulated mean annual ET
for all the sub-basins in the NHP. The simulated monthly and annual ET in three model
setups were similar. The model setup had negligible effects on ET. The simulated ET from
Auto-Irr and MODIS ET (Figures S3 and S4) shows the spatial resemblance over the NHP
with a west to east gradient, generally lower ET in western and northcentral sub-basins,
and higher ET in the eastern sub-basins of the NHP (Figures 6a and S4). The west–east
gradient could be attributed to the west–east gradient in annual rainfall and irrigation
distribution in the NHP. The average annual ET for the entire basin was found to be 512 mm
and 376 mm for Auto-Irr and MODIS, respectively. The model estimated mean annual
ET values for the NHP were 38% more than MODIS. The sub-basins with high ET in the
east and south of the NHP coincided with the irrigated croplands which suggests that
additional moisture from irrigation during the growing season facilitated the crop growth
that could have contributed to higher ET in these regions.

The R2 of mean monthly ET at the sub-basin scale (Figure 6b) predicted by the Auto-Irr
ranged from 0.01 to 0.80. The model simulated monthly ET with a mean R2 of 0.54 and more
than 70% of sub-basins had an R2 greater than 0.5. Overall, the model performance indicated
that the Auto-Irr with default SWAT parameters could provide reasonable estimates of
monthly variation in ET at the sub-basin level.
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Figure 5. Simulated and observed flow duration curve at the outlets of U.S. Northern High Plains
from 1982–2008.

Figure 6. Sub-basin level (a) mean annual evapotranspiration simulated by Auto-Irr, and (b) R2

between Auto-Irr simulated and MODIS evapotranspiration on a monthly scale from 2000–2008.

3.1.5. Crop Yield

The NASS corn yield ranged from 5464 to 7820 kg/ha with an average of 6771 kg/ha,
and the soybean yield ranged from 1389 to 2157 kg/ha with an average of 1774 kg/ha. The
simulated corn yield shown in Figure 7 ranged from 3840 to 7927, and 3837 to 7925 kg/ha
with an average of 6080 and 6078 kg/ha for Auto-Irr and Well-Irr, respectively. The
simulated soybean yield ranged from 802 to 2533 kg/ha and 802 to 2532 kg/ha with an
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average of 1719 and 1717 kg/ha for Auto-Irr and Well-Irr, respectively. The small difference
in simulated corn and soybean yield by Auto-Irr and Well-Irr showed that the crop yield
was less sensitive to the choice of irrigation scheme. The overall PBIAS values for corn and
soybean were 10.21 and 3.13% for Auto-Irr, and 10.23 and 3.21% for Well-Irr. This indicates
good performance of the coupled model setups in simulating the corn and soybean yields.

Figure 7. Comparison between Auto-Irr simulated and NASS corn and soybean yield in the NHP.

Given that the monthly stream discharge, groundwater level, annual groundwater
pumping volume and corn and soybean yield simulated by the Auto-Irr were comparable
with the observed values, and that the performance statistics indicated that the model could
provide a reasonable characterization of the regional hydrological processes, Auto-Irr was
used to assess the impact of water management practices in the NHP.

3.2. Irrigation Impacts on Groundwater Recharge

Groundwater recharge can be spatially variable depending on the vegetation, soil type
and climate. First, groundwater recharge over the NHP was examined under the current
land and water management practices and then compared with a “no-irrigation” scenario
to understand the overall impact of irrigation on groundwater recharge.

The spatial distribution of the long term (1982–2008) mean annual recharge rate is
displayed in Figure 8a. The mean annual recharge averaged across the NHP aquifer was
48.01 mm yr−1, close to the value of 48 mm yr−1 obtained by [77], a regional recharge
study for Nebraska based on a simple water balance method. It was spatially variable with
significant recharge around the north-central NHP (Sand Hills) and along the Platte and
Elkhorn rivers. The recharge rate reached as high as 500 mm yr−1 in the Sand Hills and
less than 0.5 mm yr−1 over the southern NHP and west of Sand Hills where precipitation
is minimal and where the aquifer consists of clay soils. The elevated recharge rates in
the northern part relative to the south of the NHP was associated with the soil properties
which follow a gradient of high permeability in the north, to low permeability in the
south [12]. The highly permeable sandy soils in Sand Hills reduce evapotranspiration and
promote infiltration [78]. The combination of low evapotranspiration and high infiltration
rates over Sand Hills could explain the higher groundwater recharge rate. The spatial
pattern of recharge was consistent with previously published studies [12,77,79]. A study
by Zhang et al. [79] used the Soil Water Balance (SWB) model to estimate the mean annual
recharge for the period of 1950–2010 in the NHP that ranged from 0 to 499 mm yr−1,
matching closely with the 0–500 mm yr−1 range estimated in this study.

The spatial distribution of the difference in precipitation and ET (P-ET) in Figure 9a
illustrates negative P-ET terms in the western and southern sub-basins. These sub-basins
mostly corresponded with the areas of high irrigation demand dominated by irrigated
crops (Figure 9b–d), low precipitation (Figure S1) and low permeability of soils, which
contributed to negligible recharge ~0 mm yr−1 (Figure 8a) despite additional water from
irrigation in the region. Meanwhile, we found that in the eastern part of the NHP which
receives high precipitation, despite high irrigation demand, mean annual precipitation
exceeded the mean annual ET, resulting in a relatively higher recharge rate in the eastern
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NHP than the western and southern parts (Figure 8a). Our result was supported by the
similar findings of Crosbie et al. [80], that identified the high recharge rate in eastern
Nebraska which was linked with the irrigation and coarse-textured soils.

Figure 8. Auto-Irr estimated long term (1982–2008) average (a) mean annual recharge, and (b) differ-
ence in annual recharge between irrigation and no-irrigation scenarios.

Figure 9. Simulated mean annual (a) difference in precipitation and evapotranspiration, (b) corn
irrigation volume, (c) soybean irrigation volume, and (d) winter wheat irrigation volume, at the
sub-basin level from 1982–2008.

Upon comparing the Auto-Irr and “no irrigation” scenarios from Figure 8b, we found
that the regions with increased recharge overlapped the areas with irrigation wells. In
irrigated areas, irrigation resulted in an overall increase in annual recharge that could
exceed 10 mm yr−1. The high recharge rates (>5 mm yr−1) as a result of irrigation were
found along the Platte and Elkhorn rivers. The groundwater recharge change due to
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irrigation was relatively small (~3.6%) in the study region. The previous studies that
evaluated the effect of irrigation on groundwater recharge within our study region reported
similar results. A study by Zhang et al. [79] also found the negligible impact of irrigation
on groundwater recharge in the NHP.

3.3. Irrigation Impacts on Surface-Groundwater Exchange

A comparison of the change in surface and groundwater exchange indicated that
intensive irrigation could have a significant influence on the river discharge. In the absence
of irrigation, on average there was an increase in groundwater discharge to all of the
major rivers (Figure 10). Comparing the long-term annual average surface–groundwater
exchange rates between irrigated and non-irrigated scenarios (Table 3) shows that irriga-
tion practices decreased the groundwater discharge by 1.60 to 9.66 m3/s. The greatest
decrease of 9.66 m3/s was found in the Platte River, followed by the Loup, Elkhorn, South
Platte, Republican, Niobara, and North Platte rivers. These results indicated the signifi-
cant effect of intensive irrigation on surface-groundwater exchange in the NHP, in good
agreement with the Kustu et al. [13] finding that stream discharge was highly sensitive to
irrigation pumping.

Figure 10. Auto-Irr estimated differences in the long term (1982–2008) mean annual surface–groundwater
exchange between irrigated and non-irrigated scenarios.

Table 3. Long term (1982–2008) mean annual surface–groundwater exchange in major rivers of the
NHP, where negative values indicate groundwater discharge.

Rivers Irrigation
(m3/s)

No-Irrigation
(m3/s)

Difference
(m3/s)

North Platte River −20.88 −22.48 1.60
South Platte River 3.72 0.63 3.09

Platte River −18.97 −28.63 9.66
Loup River −64.05 −69.99 5.94

Republican River −16.26 −19.09 2.83
Elkhorn River −10.65 −14.77 4.12
Niobara River −24.31 −26.67 2.35

3.4. Hydrological Responses to Irrigation

A comparison of the effects of irrigation on the watershed scale water budget com-
ponents (streamflow, groundwater recharge and evapotranspiration) relative to the no-
irrigation scenario over 1982–2008 for sub-basins overlaying the NHP aquifer is shown in
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Figure 11. The intensive irrigation in the region resulted in the largest impact on surface
runoff (particularly during the growing season) and altered other water budget components.
On the annual scale, as a result of irrigation, surface runoff increased 21.3%, groundwa-
ter infiltration increased 1.5%, soil water content increased 2.5% and ET increased 4.0%,
compared with the no-irrigation scenario. It can be inferred that additional water from irri-
gation slightly increased soil water content and infiltration, resulting in more groundwater
recharge and evapotranspiration, as well as higher surface runoff. The significant increase
in seasonal surface runoff (up to 67% in July) demonstrates the potential impacts on the
aquatic ecological system in the NHP caused by intensive irrigation.

Figure 11. Long-term (1982–2008) seasonal hydrological processes analysis of U.S. Northern High
Plains for irrigation scenario relative to no-irrigation scenario.

3.5. Irrigation Impacts on Crop Water Productivity

Figure 12 shows the changes in the average CWP (1982–2008) of corn and soybean,
respectively, for the irrigation and no-irrigation scenarios. In the absence of irrigation, the
CWP (corn and soybean) showed an upward west–east gradient, with lower values in the
west and higher values in the east, which correlated with the precipitation distribution
in the region (Figure S1). This illustrates that the drier climate in the western sub-basins
limited the crop yield. The simulated CWP for corn and soybean ranged from 0.39–1.8,
and 0.01–0.39 kg/m3, respectively. With irrigation, the average CWP of corn and soybean
increased by 27.2 and 23.8%, respectively, at the sub-basin level. Correspondingly, the
simulated irrigated CWP for corn and soybean ranged from 0.39–1.9, and 0.01–0.44 kg/m3,
respectively. Note that, the CWP increase in the eastern sub-basins under the irrigation
scenario was minimal or closer to the no-irrigation scenario. The minimal CWP increase in
the east of the NHP was not a surprise as the water deficit under no-irrigation was minimal.
Meanwhile, in the western and central sub-basins where the water deficit was large, we
observed pronounced increases in CWP, which suggested that the additional water from
irrigation significantly increased the crop yield in those dry regions.
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Figure 12. Simulated average annual values of crop water productivity for corn and soybean in the
irrigation and no-irrigation scenarios. Gray shades represent regions without corn or soybean production.

4. Discussions

Caution should be used when interpreting the results from this study, which are
subject to multiple caveats. For example, our model configuration assumes constant
land use and land cover throughout the simulation period that presents difficulty in an
accurate estimation of the irrigation demand and recharge rates. Additionally, the canal
seepage was not simulated, which adds to the uncertainty in the modeled recharge rates.
Therefore, further studies to allow dynamic land-use change and better representation of
canal irrigation systems are needed.

Note that in our model evaluation and application, we did not apply automatic
parameter calibration algorithms to adjust numerous parameters within the model. We
made this choice for two reasons. First, the SWAT model was originally developed to
operate in large-scale ungauged watersheds with minimal calibration efforts [81], and
Zhang et al. [82] and Arnold et al. [83] noted that parameter calibration in many cases
could not guarantee high fidelity of modeling results. Second, automatic optimization
algorithms often require a large amount of resources and long times to identify globally
optimal parameter solutions for complex hydrologic models such as SWAT [84], which is
currently not affordable, as running SWAT-MODFLOW once for the NHP takes multiple
days. As such, to ensure an objective comparison between different models, we used default
model parameters or derived parameters from literature instead of intensively calibrating
numerous parameters of SWAT-MODFLOW. In the future, further modifications of SWAT-
MODFLOW are needed to assess the applicability of parallel processing for drastically
reducing the computational resources needed to run the coupled model, thereby allowing
for numerous model runs and understanding uncertainties associated with parameters and
input data.
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5. Summary and Conclusions

In this study, we conducted modification and evaluation of the SWAT-MODFLOW
model’s irrigation modules for improved representation of irrigation practices and the
exchange of water fluxes in the U.S. Northern High Plains (NHP) aquifer. We found
that SWAT-MODFLOW with irrigation based on auto-irrigation scheduling, triggered
by plant water stress (Auto-Irr), attained better performance than SWAT-MODFLOW
with prescribed irrigation based on well pumping rates in MODFLOW (Well-Irr) in terms
of groundwater level, streamflow, and ET, and was capable of explicitly representing
groundwater level change as compared with the original SWAT model. Therefore, Auto-Irr
was used to quantify and understand hydrologic and agronomic impacts of the intensive
irrigation practices in the NHP.

The results showed that the groundwater recharge rate and groundwater level changes
in the NHP were spatially variable and were all substantially impacted by irrigation
practices. A comparison of Auto-Irr results with “no-irrigation” scenarios showed that
intensive irrigation in the region had a significant impact on the groundwater levels and
crop water productivity, but only exerted a modest effect on groundwater recharge, except
in the region with dense irrigation wells.

The irrigation-caused changes in groundwater systems also translated into alterations
in other hydrological processes, including streamflow, evapotranspiration (ET), soil mois-
ture and groundwater recharge. In general, the impact of irrigation slightly altered soil
moisture, and groundwater recharge, but significantly modified ET and streamflow regimes
in the NHP, particularly during the growing season. For example, on the annual scale, as a
result of irrigation, ET and surface runoff increased by 4.0% and 21.3%, respectively. During
July, irrigation practices increased ET by 9.9% and surface runoff by 67.1%. Such large
changes in surface runoff resulting from irrigation are expected to have significant impacts
on aquatic ecosystems, which deserves further research in the future. Irrigation in the
NHP also significantly increased corn and soybean yields and their crop water productivity
(CPW). With irrigation, the average CWP of corn and soybean increased by 27.2 and 23.8%.

Overall, historical irrigation in the NHP greatly benefited crop productivity, and
caused pronounced modifications to the groundwater systems and other hydrological pro-
cesses. Particularly, the decline in groundwater level raises concerns for future sustainable
irrigation in the face of a warming climate; and significant alterations in streamflow during
the growing season indicates that future design of sustainable irrigation practices should
consider downstream aquatic ecosystems impacts. We anticipate that the exercises con-
ducted here help to increase the understanding of the hydrological and agronomic impacts
of historical irrigation, and provide support for future efforts to enhance agroecosystem
sustainability in the NHP and other regions facing water shortage challenges.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w14121938/s1, Figure S1: North American Regional Reanalysis (NARR)
based average annual precipitation (1982–2008) at the sub-basin scale for SWAT domain; Figure S2:
Monthly mean streamflow at the outlet of watersheds in Northern High Plains; Figure S3: Sub-basin
level mean annual evapotranspiration simulated by (a) SWAT only, and (b) Well-Irr, for 2000–2008;
Figure S4: Sub-basin level mean annual evapotranspiration estimated from Moderate Resolution
Imaging Spectroradiometer (MODIS) from 2000–2008; Table S1: Reservoir summary.
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