Start-Up and Performance of a Full Scale Passive System In-Cluding Biofilters for the Treatment of Fe, as and Mn in a Neutral Mine Drainage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site
2.2. Passive Treatment System
2.3. Physico-Chemical Parameters Monitoring
2.4. Determination of Kinetics
2.5. Biomolecular Monitoring
3. Results and Discussion
3.1. Evolution of HRT in the Treatment Plant
3.2. As and Fe Removal
3.3. Mn Removal
3.4. Suspended Solids
3.5. Bacterial Communities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blowes, D.W.; Jambor, J.L. The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings, Waite Amulet, Quebec, Canada. Appl. Geochem. 1990, 5, 327–346. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Nasir, A.F.A.A.; Cameron, S.F.; Niehaus, A.C.; Clemente, C.J.; von Hippel, F.A.; Wilson, R.S. Manganese contamination affects the motor performance of wild northern quolls (Dasyurus hallucatus). Env. Poll. 2018, 241, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Batty, L.C.; Atkin, L.; Manning, D.A.C. Assessment of the ecological potential of mine-water treatment wetlands using a baseline survey of macroinvertebrate communities. Env. Poll. 2005, 138, 412–419. [Google Scholar] [CrossRef]
- Candeias, C.; Ávila, P.F.; Da Silva, E.F.; Ferreira, A.; Durães, N.; Teixeira, J.P. Water–rock interaction and geochemical processes in surface waters influenced by tailings impoundments. Water Air Soil Pollut. 2015, 226, 23. [Google Scholar] [CrossRef]
- Jain, C.K.; Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Wat. Res. 2000, 34, 4304–4312. [Google Scholar] [CrossRef]
- Desoeuvre, A.; Casiot, C.; Héry, M. Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage. Microb. Ecol. 2016, 71, 672–685. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Manganese and Its Compounds: Environmental Aspects; Concise International Chemical Assessment Document; WHO: Geneva, Switzerland, 2004; p. 63. [Google Scholar]
- US DHHS (United States Department of Health and Human Services). Toxicological Profile for Manganese Agency for Toxic Substances and Disease Registry; ATSDR Publication: Atlanta, GA, USA, 2012; p. 556.
- INERIS Fiche de Données Toxicologiques et Environnementales Des Substances Chimiques—Manganèse et Ses Dérivés. 2012. Available online: http://substances.ineris.fr/fr/substance/getDocument/2797 (accessed on 15 January 2022).
- Bamforth, S.M.; Manning, D.A.; Singleton, I.; Younger, P.L.; Johnson, K.L. Manganese removal from mine waters–investigating the occurrence and importance of manganese carbonates. Appl. Geochem. 2006, 21, 1274–1287. [Google Scholar] [CrossRef]
- Neculita, C.M.; Rosa, E. A review of the implications and challenges of manganese removal from mine drainage. Chemosphere 2019, 214, 491–510. [Google Scholar] [CrossRef]
- Luan, F.; Santelli, C.M.; Hansel, C.M.; Burgos, W.D. Defining manganese (II) removal processes in passive coal mine drainage treatment systems through laboratory incubation experiments. Appl. Geochem. 2012, 27, 1567–1578. [Google Scholar] [CrossRef]
- Lesley, B.; Daniel, H.; Paul, Y. Iron and manganese removal in wetland treatment systems: Rates, processes and implications for management. Sci. Total Environ. 2008, 394, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Z.; Ma, H.S.; Hursthouse, A. Removal of Manganese (II) from acid mine wastewater: A review of the challenges and opportunities with special emphasis on Mn-oxidizing bacteria and microalgae. Water 2019, 11, 2493. [Google Scholar] [CrossRef] [Green Version]
- Barboza, N.R.; Guerra-Sá, R.; Leão, V.A. Mechanisms of manganese bioremediation by microbes: An overview. J. Chem. Technol. Biotechnol. 2016, 91, 2733–2739. [Google Scholar] [CrossRef]
- Yu, H.; Leadbetter, J.R. Bacterial chemolithoautotrophy via manganese oxidation. Nature 2020, 583, 453–458. [Google Scholar] [CrossRef]
- Hallberg, K.B.; Johnson, D.B. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors. Sci. Total Environ. 2005, 338, 115–124. [Google Scholar] [CrossRef]
- Morgan, J.J.; Stumm, W. Colloid-chemical properties of manganese dioxide. J. Colloid Sci. 1964, 19, 347–359. [Google Scholar] [CrossRef]
- Elzinga, E.J. Reductive transformation of birnessite by aqueous Mn(II). Env. Sci. Technol. 2011, 45, 6366–6372. [Google Scholar] [CrossRef]
- Learman, D.R.; Wankel, S.D.; Webb, S.M.; Martinez, N.; Madden, A.S.; Hansel, C.M. Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochim. Cosmochim. Acta 2011, 75, 6048–6063. [Google Scholar] [CrossRef]
- Battaglia-Brunet, F.; Itard, Y.; Garrido, F.; Delorme, F.; Crouzet, C.; Greffié, C.; Joulian, C. A simple biogeochemical process removing arsenic from a mine drainage water. Geomicrobiol. J. 2006, 23, 201–211. [Google Scholar] [CrossRef]
- Michon, J.; Dagot, C.; Deluchat, V.; Dictor, M.-C.; Battaglia-Brunet, F.; Baudu, M. As(III) biological oxidation by CAsO1 consortium in fixed-bed reactors. Proc. Biochem. 2009, 45, 171–178. [Google Scholar] [CrossRef]
- Hamilton, Q.U.I.; Lamb, H.M.; Hallett, C.; Proctor, J.A. Passive Treatment Systems for the Remediation of Acid Mine Drainage at Wheal Jane, Cornwall. Wat. Env. J. 1999, 13, 93–103. [Google Scholar] [CrossRef]
- Kalin, M.; Caetano Chaves, W.L. Acid reduction using microbiology: Treating AMD effluent emerging from an abandoned mine portal. Hydrometallurgy, Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Hydrometallurgy 2003, 71, 217–225. [Google Scholar] [CrossRef]
- Whitehead, P.G.; Hall, G.; Neal, C.; Prior, H. Chemical behaviour of the Wheal Jane bioremediation system. Sci. Total Environ. 2005, 338, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Macías, F.; Caraballo, M.A.; Nieto, J.M.; Rötting, T.S.; Ayora, C. Natural pretreatment and passive remediation of highly polluted acid mine drainage. J. Environ. Manage. 2012, 104, 93–100. [Google Scholar] [CrossRef]
- Mattes, A.; Evans, L.; Gould, W.; Duncan, W.; Glasauer, S. The long term operation of a biologically based treatment system that removes As, S and Zn from industrial (smelter operation) landfill seepage. Appl. Geochem. 2011, 26, 1886–1896. [Google Scholar] [CrossRef]
- Laroche, E.; Casiot, C.; Fernandez-Rojo, L.; Desoeuvre, A.; Tardy, V.; Bruneel, O.; Battaglia-Brunet, F.; Joulian, C.; Héry, M. Dynamics of Bacterial Communities Mediating the Treatment of an As-Rich Acid Mine Drainage in a Field Pilot. Front. Microbiol. 2018, 9, 3169. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Rojo, L.; Casiot, C.; Laroche, E.; Tardy, V.; Bruneel, O.; Delpoux, S.; Desoeuvre, A.; Grapin, G.; Savignac, J.; Boisson, J.; et al. A field-pilot for passive bioremediation of As-rich acid mine drainage. J. Env. Manage. 2019, 232, 910–918. [Google Scholar] [CrossRef]
- Guézennec, A.G.; Touzé, S.; Battaglia-Brunet, F.; Morin, D. Biological treatment of mining water containing arsenic: From laboratory to pilot scale. In Proceedings of the International Mine Water Conference, Pretoria, South Africa, 19–23 October 2009; Available online: https://www.imwa.info/docs/imwa_2009/IMWA2009_Guezennec.pdf (accessed on 30 April 2022).
- Pauwels, H.; Pettenati, M.; Greffié, C. The combined effect of abandoned mines and agriculture on groundwater chemistry. J. Cont. Hydrol. 2010, 115, 64–78. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons: NewYork, NY, USA, 1998. [Google Scholar]
- Kim, M.J. Separation of inorganic arsenic species in groundwater using ion exchange method. Bull. Environ. Contam. Toxicol. 2001, 67, 46–51. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, P.Y. Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE 2009, 4, e7401. [Google Scholar] [CrossRef] [Green Version]
- Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Kirby, C.S.; Cravotta, C.A., III. Net alkalinity and net acidity 2: Practical considerations. Appl. Geochem. 2005, 20, 1941–1964. [Google Scholar] [CrossRef]
- Morgan, B.; Lahav, O. The effect of pH on the kinetics of spontaneous Fe (II) oxidation by O2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 2007, 68, 2080–2084. [Google Scholar] [CrossRef] [PubMed]
- Courtin-Nomade, A.; Grosbois, C.; Bril, H.; Roussel, C. Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl. Geochem. 2005, 20, 383–396. [Google Scholar] [CrossRef]
- Williams, D.J.; Bigham, J.M.; Cravotta, C.A.; Trainaa, S.J.; Anderson, J.E.; Lyon, J.G. Assessing mine drainage pH from the color and spectral reflectance of chemical precipitates. Appl. Geochem. 2002, 17, 1273–1286. [Google Scholar] [CrossRef]
- Murad, E.; Rojik, P. Iron mineralogy of mine-drainage precipitates as environmental indicators: Review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Min. 2005, 40, 427–440. [Google Scholar] [CrossRef]
- Park, J.H.; Han, Y.S.; Ahn, J.S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Wat. Res. 2016, 106, 295–303. [Google Scholar] [CrossRef]
- Rait, R.; Trumm, D.; Pope, J.; Craw, D.; Newman, N.; MacKenzie, H. Adsorption of arsenic by iron rich precipitates from two coal mine drainage sites on the West Coast of New Zealand. N. Zeal. J. Geol. Geophys. 2010, 53, 177–193. [Google Scholar] [CrossRef]
- Sekula, P.; Hiller, E.; Šottník, P.; Jurkovič, L.; Klimko, T.; Vozár, J. Removal of antimony and arsenic from circum-neutral mine drainage in Poproč, Slovakia: A field treatment system using low-cost iron-based material. Environ. Earth Sci. 2018, 77, 518. [Google Scholar] [CrossRef]
- O’Day, P.A. Chemistry and Mineralogy of Arsenic. Elements 2006, 2, 77–81. [Google Scholar] [CrossRef]
- Rose, A.W.; Means, B.; Shah, P.J. Methods for passive removal of manganese from acid mine drainage. In Proceedings of the 24th West Virginia Surface Mine Drainage Task Force Symposium, Morgantown, WV, USA, 15 April 2003; pp. 71–82. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.501.9735&rep=rep1&type=pdf (accessed on 12 January 2022).
- Johnson, K.L.; Younger, P.L. Rapid manganese removal from mine waters using an aerated packed-bed bioreactor. J. Env. Qual. 2005, 34, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Raignault, I.; Battaglia-Brunet, F.; Mailhan-Muxi, C.; Engevin, J.; Djemil, M. Biological manganese removal from mine drainage in a fixed-bed bioreactor at pilot-scale. In Proceedings of the 13th International Conference on Mine Closure, Perth, Australia, 3–5 September 2019; pp. 911–920. [Google Scholar] [CrossRef] [Green Version]
- Lind, C.J.; Hem, J.D. Manganese minerals and associated fine particulates in the streambed of Pinal Creek, Arizona, USA: A mining-related acid drainage problem. Appl. Geochem. 1993, 8, 67–80. [Google Scholar] [CrossRef]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef] [Green Version]
- Luan, F.; Burgos, W.D. Effects of solid-phase organic carbon and hydraulic residence time on manganese (II) removal in a passive coal mine drainage treatment system. Mine Wat. Env. 2019, 38, 130–135. [Google Scholar] [CrossRef]
- Sikora, F.J.; Behrends, L.L.; Brodie, G.A.; Taylor, H.N. Design criteria and required chemistry for removing manganese in acid mine drainage using subsurface flow wetlands. Wat. Env. Res. 2000, 72, 536–544. [Google Scholar] [CrossRef]
- Aguiar, A.O.; Duarte, R.A.; Ladeira, A.C.Q. The application of MnO2 in the removal of manganese from acid mine water. Wat. Air Soil Poll. 2013, 224, 1–8. [Google Scholar] [CrossRef]
- Kepkay, P.E.; Nealson, K.H. Growth of a manganese oxidizing Pseudomonas sp. in continuous culture. Arch. Microbiol. 1987, 148, 63–67. [Google Scholar] [CrossRef]
- Carmichael, M.J.; Carmichael, S.K.; Santelli, C.M.; Strom, A.; Bräuer, S.L. Mn(II)-oxidizing Bacteria are Abundant and Environmentally Relevant Members of Ferromanganese Deposits in Caves of the Upper Tennessee River Basin. Geomicrobiol. J. 2013, 30, 779–800. [Google Scholar] [CrossRef]
- Tyler, P.A. Hyphomicrobia and the oxidation of manganese in aquatic ecosystems. Antonie Van Leeuwenhoek 1970, 36, 567–578. [Google Scholar] [CrossRef]
- Khianngam, S.; Akaracharanya, A.; Lee, J.S.; Lee, K.C.; Kim, K.W.; Tanasupawat, S. Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. Antonie Van Leeuwenhoek 2014, 106, 1239–1246. [Google Scholar] [CrossRef]
- Jana, A.; Bhattacharya, P.; Swarnakar, S.; Majumdar, S.; Ghosh, S. Anabaena sp. mediated bio-oxidation of arsenite to arsenate in synthetic arsenic (III) solution: Process optimization by response surface methodology. Chemosphere 2015, 138, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Campos, V.L.; Valenzuela, C.; Yarza, P.; Kämpfer, P.; Vidal, R.; Zaror, C.; Mondaca, M.A.; Lopez-Lopez, A.; Rosselló-Móra, R. Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst. Appl. Microb. 2010, 33, 193–197. [Google Scholar] [CrossRef] [PubMed]
Parameters | Average | Min | Max |
---|---|---|---|
Flow (m3.h−1) | 16.7 | 11.6 | 33.0 |
pH | 6.4 | 6.1 | 6.7 |
ORP (SHE * mV) | 233 | −18 | 323 |
Dissolved oxygen (mg.L−1) | 0.4 | 0.0 | 1.4 |
Temperature (°C) | 12.4 | 12.1 | 12.9 |
Total dissolved iron (mg.L−1) | 6.9 | 4.2 | 9.3 |
Total dissolved manganese (µg.L−1) | 1162 | 1027 | 1334 |
Total dissolved arsenic (µg.L−1) | 167 | 30 | 268 |
As(III) (µg.L−1) | 119 | 1 | 244 |
As(V) (µg.L−1) | 62 | 22 | 135 |
Year | Sampling Point | pH | ORP (SHE mV) | Dissolved Oxygen (mg.L−1) |
---|---|---|---|---|
2017 | Inflow | 6.2 | 194 | 0.3 |
Cascade | 6.7 | 353 | 7.8 | |
Settling pond | 7.0 | 366 | 8.6 | |
Biofilter | 7.0 | 298 | 8.4 | |
2018 | Inflow | 6.6 | 287 | 0.4 |
Cascade | 7.0 | 310 | 7.9 | |
Settling pond | 7.3 | 372 | 9.8 | |
Biofilter | 7.3 | 388 | 10.2 |
Parameters | TSS (mg.L−1) | Fe>0.45µm (mg.L−1) | Fe>0.45µm (%) | As>0.45µm (%) | Mn>0.45µm (%) | Fep */TSS ** (%) |
---|---|---|---|---|---|---|
Inflow | n/a | 2.2 | 14 | 26 | 0 | 59 |
Settling pond | 4.4 | 2.6 | 94 | 92 | 2 | 69 |
Biofilter | 2.1 | 1.4 | 97 | 87 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacob, J.; Joulian, C.; Battaglia-Brunet, F. Start-Up and Performance of a Full Scale Passive System In-Cluding Biofilters for the Treatment of Fe, as and Mn in a Neutral Mine Drainage. Water 2022, 14, 1963. https://doi.org/10.3390/w14121963
Jacob J, Joulian C, Battaglia-Brunet F. Start-Up and Performance of a Full Scale Passive System In-Cluding Biofilters for the Treatment of Fe, as and Mn in a Neutral Mine Drainage. Water. 2022; 14(12):1963. https://doi.org/10.3390/w14121963
Chicago/Turabian StyleJacob, Jérôme, Catherine Joulian, and Fabienne Battaglia-Brunet. 2022. "Start-Up and Performance of a Full Scale Passive System In-Cluding Biofilters for the Treatment of Fe, as and Mn in a Neutral Mine Drainage" Water 14, no. 12: 1963. https://doi.org/10.3390/w14121963
APA StyleJacob, J., Joulian, C., & Battaglia-Brunet, F. (2022). Start-Up and Performance of a Full Scale Passive System In-Cluding Biofilters for the Treatment of Fe, as and Mn in a Neutral Mine Drainage. Water, 14(12), 1963. https://doi.org/10.3390/w14121963