Effectiveness of New Rock-Ramp Fishway at Miyanaka Intake Dam Compared with Existing Large and Small Stair-Type Fishways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fishway Design
- The width of the large fishway was decreased from 10 m to 8 m.
- The large fishway was changed to an ice-harbor fishway.
- The latent holes that caused transverse waves were abolished, and small holes (0.2 m diameter) were arranged at regular intervals for maintenance.
- The notch width was decreased.
2.3. Data Collection
2.3.1. Quantification of the Fishway Run-Up Environment
2.3.2. Survey for Capturing Fish
3. Results
3.1. Quantification of the Fishway Run-Up Environment
3.2. Utilization of Each Fishway
3.3. Habitat of Bottom-Dwelling Species
3.4. Effects of the Rock-Ramp Fishway
4. Discussion
4.1. Fishway Types for Target Fish Species
4.2. Effects on Benthic Species and Species with Low Swimming Abilities
4.3. Effectiveness of Fishways
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, M.; Fukushima, M.; Kameyama, S.; Fukushima, T.; Matsushita, B. How do dams affect freshwater fish distributions in Japan? Statistical analysis of native and nonnative species with various life histories. Ecol. Res. 2008, 23, 735–743. [Google Scholar] [CrossRef]
- Radinger, J.; Wolter, C. Disentangling the effects of habitat suitability, dispersal, and fragmentation on the distribution of river fishes. Ecol. Appl. 2015, 24, 914–924. [Google Scholar] [CrossRef]
- Baumgartner, L.J.; Barwick, M.; Boys, C.; Martin, K.; McPherson, J. A cautionary tale about the potential impacts of gated culverts on fish passage restoration efforts. J. Ecohydraul. 2019, 4, 27–42. [Google Scholar] [CrossRef]
- Liu, J.; Kattel, G.; Wang, Z.; Xu, M. Artificial fishways and their performances in China’s regulated river systems: A historical synthesis. J. Ecohydraul. 2019, 4, 158–171. [Google Scholar] [CrossRef]
- Gosselin, M.P.; Ouellet, V.; Harby, A.; Nestler, J. Advancing ecohydraulics and ecohydrology by clarifying the role of their component interdisciplines. J. Ecohydraul. 2019, 4, 172–187. [Google Scholar] [CrossRef]
- Silva, A.T.; Lucas, M.C.; Castro-Santos, T.; Katopodis, C.; Baumgartner, L.J.; Tiem, J.D.; Aarestrup, K.; Pompeu, P.S.; O’Brien, G.C.; Braun, D.C.; et al. The future of fish passage science, engineering, and practice. Fish 2017, 19, 340–362. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, P.S.; Celestino, L.F.; De Assumpção, L.; Makrakis, S.; Dias, J.H.P.; Kashiwaqui, E.A.L.; Makrakis, M.C. Ichthyoplankton drift through fishway in large dam: Effect of hydrology, seasonal patterns and larvae condition. J. Ecohydraul. 2020, 5, 165–174. [Google Scholar] [CrossRef]
- De-Miguel-Gallo, M.; Martinez-Capel, F.; Munoz-Mas, R.; Aihara, S.; Matsunaga, Y.; Fukuda, S. Habitat evaluation for the endangered fish species Lefua echigonia in the Yagawa River, Japan. J. Ecohydraul. 2019, 4, 147–157. [Google Scholar] [CrossRef]
- Gough, P.; Philipsen, P.; Scollema, P.P.; Wanningen, H. From Sea to Source: International Guidance for the Restoration of Fish Migration Highways; Regional Water Authority Hunze en Aa’s: Veendam, The Netherlands, 2012; 299p. [Google Scholar]
- Gostner, W.; Annable, W.K.; Schleiss, A.J.; Paternolli, M. A case-study evaluating river rehabilitation alternatives and habitat heterogeneity using the hydromorphological index of diversity. J. Ecohydraul. 2021, 6, 1–16. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Wegscheider, B.; Helminen, J.; Cormier, J.G.; Linnansaari, T.; Wilson, D.A.; Curry, A. Catchment-scale, high-resolution, hydraulic models and habitat maps—A salmonid’s perspective. J. Ecohydraul. 2021, 6, 53–68. [Google Scholar] [CrossRef]
- Larinier, M. Location of fishways. Bull. Fr. Pêche Piscic. 2002, 364, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, M.G.; Closs, G.P. Water infrastructure and the migrations of amphidromous species: Impacts and research requirements. J. Ecohydraul. 2019, 4, 4–13. [Google Scholar] [CrossRef]
- Harris, J.H.; Roberts, D.T.; O’Brien, S.; Mefford, B. A trap-and-haul fishway for upstream transfers of migrating fish at a challenging dam site. J. Ecohydraul. 2019, 4, 56–70. [Google Scholar] [CrossRef]
- Montali-Ashworth, D.; Vowles, A.S.; de Almeida, G.A.M.; Kemp, P. Understanding fish-hydrodynamic interactions within Cylindrical Bristle Cluster arrays to improve passage over sloped weirs. J. Ecohydraulics. 2021, 1–9. [Google Scholar] [CrossRef]
- DVWK. Fisheries and Aquaculture Management Division: Fish Passes—Design, Dimensions and Monitoring; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; p. 136. ISBN 9251048940. [Google Scholar]
- Clay, C.H. Design of Fishways and Other Fish Facilities, 2nd ed.; CRC Press Inc.: Boca Raton, FL, USA, 1995; ISBN 9780367449261. [Google Scholar]
- Larinier, M. Environmental issues, dams and fish migration, fish and fisheries: Opportunities, challenges and conflict resolution. Marmulla G 2001, 419, 45–90. [Google Scholar]
- Castro-Santos, T.; Cotel, A.J.; Webb, P.W. Fishway Evaluations for Better Bioengineering—An Integrative Approach; American Fisheries Society Symposium: Bethesda, MD, USA, 2009; p. 69. [Google Scholar]
- Gutfreund, C.; Makrakis, S.; Castro-Santos, T.; Celestino, L.F.; Dias, J.H.P.; Makrakis, M.C. Effectiveness of a fish ladder for two neotropical migratory species in the Paraná River. Mar. Freshw. Res. 2018, 69, 1848–1856. [Google Scholar] [CrossRef]
- Noonan, M.J.; Grant, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [Google Scholar] [CrossRef]
- Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.D.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [Google Scholar] [CrossRef]
- Larinier, M. Baffle fishways. Bull. Fr. Pêche Piscic. 2002, 364, 83–101. [Google Scholar] [CrossRef]
- Plesinski, K.; Gibbins, C.N.; Radecki-Pawlik, A. Effects of interlocked carpet ramps on upstream movement of brown trout Salmo trutta in an upland stream. J. Ecohydraul. 2020, 5, 3–30. [Google Scholar] [CrossRef]
- Moniz, P.J.; Pasternack, G.B.; Massa, D.A.; Stearman, L.W.; Bratovich, P.M. Do rearing salmonids predictably occupy physical microhabitat? J. Ecohydraul. 2020, 5, 132–150. [Google Scholar] [CrossRef]
- Baki, A.B.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K. Hydraulic design aspects of rock-weir fishways with notch for habitat connectivity. J. Ecohydraul. 2020, 5, 94–109. [Google Scholar] [CrossRef]
- Harris, J.H.; Peirson, W.L.; Mefford, B.; Kingsford, R.T.; Felder, S. Laboratory testing of an innovative tube fishway concept. J. Ecohydraul. 2020, 5, 84–93. [Google Scholar] [CrossRef]
- Linnansaari, T.; Wallace, B.; Curry, R.A.; Yamazaki, G. Fish passage in large rivers: A literature review. In Mactaquac Aquatic Ecosystem Study Report Series 2015–016; Canadian Rivers Institute: Fredericton, NB, Canada, 2015. [Google Scholar] [CrossRef]
- Liao, J.C. A review of fish swimming mechanics and behaviour in altered flows. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2007, 362, 1973–1993. [Google Scholar] [CrossRef] [Green Version]
- Basar, A.; Azimi, A.H. Hydraulic and design of fishways II: Vertical-slot and rock-weir fishways. J. Ecohydraulics. 2021. [Google Scholar] [CrossRef]
- Tinoco, R.O.; Prada, A.F.; George, A.E.; Stahlschmidt, B.H.; Jackson, P.R.; Chapman, D.C. Identifying turbulence features hindering swimming capabilities of grass carp larvae (Ctenopharyngodon idella) through submerged vegetation. J. Ecohydraul. 2022, 7, 4–16. [Google Scholar] [CrossRef]
- Santo, H.A.; Dupont, E.; Aracen, F.; Dvorak, J.; Pinheiro, A.; Teotonio, M.; Paula, A. Stairs pipe culverts: Flow simulations and implications for the passage of European and Neotropical fishes. J. Ecohydraul. 2021, 6, 36–52. [Google Scholar] [CrossRef]
- Dockery, D.R.; Ryan, E.; Kappenman, K.M.; Blank, M. Swimming performance of Arctic grayling (Thymallus arcticus Pallas) in an open-channel flume. J. Ecohydraul. 2020, 5, 31–42. [Google Scholar] [CrossRef]
- Knapp, M.; Montgomery, J.; Whittaker, C.; Franklin, P. Fish passage hydrodynamics: Insights into overcoming migration challenges for small-bodied fish. J. Ecohydraul. 2019, 4, 43–55. [Google Scholar] [CrossRef]
- Marsden, T.; Stuart, I. Fish passage developments for small-bodied tropical fish: Field case-studies lead to technology improvements. J. Ecohydraul. 2019, 4, 14–26. [Google Scholar] [CrossRef]
- Zobott, H.; Budwig, R.; Caudill, C.C.; Keefer, M.; Basham, W. Pacific lamprey drag force modeling to optimize fishway design. J. Ecohydraul. 2021, 6, 69–81. [Google Scholar] [CrossRef]
- Zielinski, D.P.; Miehls, S.; Burns, G.; Coutant, C. Adult sea lamprey respond to induced turbulence in a low current system. J. Ecohydraul. 2021, 6, 82–90. [Google Scholar] [CrossRef]
- Snyder, N.M.; Schumaker, N.H.; Ebersole, L.J.; Dunham, J.; Comeleo, R.; Keefer, M.; Leinenbach, P.; Brookes, A.; Cope, B.; Wu, J.; et al. Individual based modelling of fish migration in a 2-D river system: Model description and case study. Landsc. Ecol. 2019, 34, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Li, W.; Zhang, C.; Mi, X.; Li, H.; Zhao, X.; Cao, N.; Twardek, M.W.; Cooke, J.S.; Duan, M. Quantitative assessment of fish passage efficiency at a vertical-slot fishway on the Daduhe River in Southwest China. Ecol. Eng. 2019, 141, 105597. [Google Scholar] [CrossRef]
- Rourke, L.M.; Robinson, W.; Baumgartner, J.L.; Doyle, J.; Growns, I.; Thiem, D.J. Sequential fishways reconnect a coastal river reflecting restored migratory pathways for an entire fish community. Restor. Ecol. 2019, 27, 399–407. [Google Scholar] [CrossRef]
- Syms, J.C.; Kirk, M.A.; Caudill, C.C.; Tonina, D. A biologically based measure of turbulence intensity for predicting fish passage behaviours. J. Ecohydraulics. 2021. [Google Scholar] [CrossRef]
- Albayrak, I.; Beck, C.; Kriewitz-Byun, C.R.; Doessegger, A.; Boes, R.M. Downstream fish passage technologies for medium-to large hydropower plants, Part II. In Proceedings of the SHF Conference, HydroES 2019, Grenoble, France, 29–30 January 2019. [Google Scholar] [CrossRef]
- Biggs, H.J.; Nikora, V.I.; Gibbins, C.N.; Cameron, S.M.; Papadppoulos, K.; Stewart, M.; Frasee, S.; Vettori, D.; Savio, M.; O’hare, M.T.; et al. Flow interactions with an aquatic macrophyte: A field study using stereoscopic particle image velocimetry. J. Ecohydraul. 2019, 4, 113–130. [Google Scholar] [CrossRef]
- Lothian, J.A.; Gardner, J.C.; Hull, T.; Griffiths, D.; Dickinson, R.E.; Lucas, C.M. Passage performance and behaviour of wild and stocked cyprinid fish at a sloping weir with a low cost baffle fishway. Ecol. Eng. 2019, 130, 67–79. [Google Scholar] [CrossRef]
- Reid, J.A.; Carlson, K.A.; Creed, F.I.; Eliason, J.E.; Gell, J.P.; Johnson, J.T.P.; Kidd, A.K.; MacCormack, J.M.; Olden, D.J.; Ormerod, J.S.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 2019, 94, 849–873. [Google Scholar] [CrossRef] [Green Version]
- Forcellini, M.; Plichard, L.; Dolédec, S.; Mérigoux, S.; Olivier, J.-M.; Cauvy-Fraunié, S.; Lamouroux, N. Microhabitat selection by macroinvertebrates: Generality among rivers and functional interpretation. J. Ecohydraul. 2011, 7, 28–41. [Google Scholar] [CrossRef]
- Asaeda, T.; Sanjaya, K. The effect of the shortage of gravel sediment in midstream river channels on riparian vegetation cover. River Res. Appl. 2017, 33, 1107–1118. [Google Scholar] [CrossRef]
- Nallaperuma, B.; Asaeda, T. Long-term changes in riparian forest cover under a dam-induced flow scheme: The accompanying a numerical modelling perspective. J. Ecohydraul. 2019, 4, 106–112. [Google Scholar] [CrossRef]
- Mani, V.T. Microplastics in the Rhine River from the Swiss catchment towards the North Sea. Doctoral Thesis, University of Basel, Basel, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sharma, A.; Granados, H.O.; Kumar, B. Bedload transport and temporal variation of non- uniform sediment in a seepage-affected alluvial channel. Hydrol. Sci. J. 2019, 64, 1001–1012. [Google Scholar] [CrossRef]
- Graf, W.H. Hydraulics of Sediment Transport; Water Resources Publications LLC: Littleton, CO, USA, 1984; 524p. [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism Shinanogawa River Office. Recommendations of the Shinanogawa Middle Basin Water Environment Improvement Review Council; Ministry of Land, Infrastructure, Transport and Tourism Shinanogawa River Office: Nagaoka City, Japan, 2011. [Google Scholar]
- Amaral, S.V.; Watson, S.M.; Schneider, A.D.; Rackovan, J.; Baumgartner, A. Improving survival: Injury and mortality of fish struck by blades with slanted, blunt leading edges. J. Ecohydraul. 2020, 5, 175–183. [Google Scholar] [CrossRef]
- Klopries, E.M.; Wilmink, A.; Pummer, E.; Bockman, I.; Hoffman, A.; Schuttrumpf, H. Development and evaluation of an empirical equation for the screening effect of bar racks. J. Ecohydraul. 2020, 5, 184–197. [Google Scholar] [CrossRef]
- Moser, M.L.; Corbett, S.C.; Matthew, M.L.; Frick, K.E.; Lopez-Johnston, S.; Caudill, C.C. Novel fishway entrance modifications for Pacific lamprey. J. Ecohydraul. 2019, 4, 71–84. [Google Scholar] [CrossRef]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [Google Scholar] [CrossRef]
- Albayrak, I.; Boes, R.M.; Krewitz–Byun, C.; Peter, A.; Tullis, B.P. Fish guidance structures: Hydraulic performance and fish guidance efficiencies. J. Ecohydraul. 2020, 5, 113–131. [Google Scholar] [CrossRef]
- Blank, M.; Kappenman, K.M.; Ryan, E.; Banner, K. The effect of water depth on passage success of arctic grayling through two Denil fishways. J. Ecohydraulics. 2021. [Google Scholar] [CrossRef]
- Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [Google Scholar] [CrossRef]
- Zhang, N.; Rutherfurd, I.; Ghisalbertic, M. Effect of instream logs on bank erosion potential: A flume study with a single log. J. Ecohydraul. 2020, 5, 43–56. [Google Scholar] [CrossRef]
- Zhang, N.; Rutherfurd, I.; Ghisalbertic, M. The effect of instream logs on bank erosion potential: A flume study with multiple logs. J. Ecohydraul. 2020, 5, 57–70. [Google Scholar] [CrossRef]
- Legleiter, C.J.; McDonald, R.R.; Melson, J.M.; Kinzel, P.J.; Perroy, R.L.; Baek, D.; Seo, I.W. Remote sensing of tracer dye concentrations to support dispersion studies in river channels. J. Ecohydraul. 2019, 4, 131–146. [Google Scholar] [CrossRef]
- McDonald, R.R.; Nelson, J.M. A Lagrangian particle-tracking approach to modelling larval drift in rivers. J. Ecohydraul. 2021, 6, 17–35. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, M.; Lei, F.; Zhang, J.; Kattel, G.R.; Duan, Y. Spatio-temporal distribution of Gymnocypris przewalskii during migration with UAV-based photogrammetry and deep neural network. J. Ecohydraul. 2022, 7, 42–57. [Google Scholar] [CrossRef]
- Arsenault, M.; O’Sullivan, A.M.; Ogilvie, J.; Gillis, C.-A.; Linnansaari, T.; Curry, R.A. Remote sensing framework details riverscape connectivity fragmentation and fish passability in a forested landscape. J. Ecohydraulics. 2022, 1–12. [Google Scholar] [CrossRef]
- Gregory, R.S.; Northcote, T.G. Surface, planktonic, and benthic foraging by juvenile Chinook salmon (Oncorhynchus tshawytscha) in turbid laboratory conditions. Can. J. Fish. Aqua. Sci. 1993, 50, 233–240. [Google Scholar] [CrossRef]
- Hazelton, P.D.; Grossman, G.D. The effects of turbidity and an invasive species on foraging success of rosyside dace (Clinostomus funduloides). Freshw. Biol. 2009, 54, 1977–1989. [Google Scholar] [CrossRef]
- Utne-Palm, A.C. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. Mar. Freshw. Behav. Physiol. 2002, 35, 111–128. [Google Scholar] [CrossRef]
- Andersen, M.; Jacobsen, L.; Gronkjaer, P.; Skov, C. Turbidity increases behavioural diversity in northern pike. Fish. Manag. Ecol. 2008, 15, 377–383. [Google Scholar] [CrossRef]
- Prchalová, M.; Mrkvička, T.; Kubečka, J.; Peterka, J.; Čech, M.; Muška, M.; Kratochvíl, M.; Vašek, M. Fish activity as determined by gillnet catch: A comparison of two reservoirs of different turbidity. Fish. Res. 2010, 102, 291–296. [Google Scholar] [CrossRef]
- Newcombe, C.P.; Macdonald, D.D. Effects of suspended sediments on aquatic ecosystems. N. Am. J. Fish. Manag. 1991, 11, 72–82. [Google Scholar] [CrossRef]
- Magnuson, J.J.; Crowder, L.B.; Medvick, P.A. Temperature as an ecological resource. Am. Zoologist 1979, 19, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Sinokrot, B.A.; Stefan, H.G.; McCormick, J.H.; Eaton, J.G. Modeling of climate change effects on stream temperatures and fish habitats below dams and near groundwater inputs. Clim. Chang. 1995, 30, 181–200. [Google Scholar] [CrossRef]
- Fujiwara, K. Harmful influences of turbid water to fishes in lake Biwa and its surrounding rivers. Sci. Rep. Shiga Prefect. Fish. Exp. Stn. 1997, 46, 9–37. [Google Scholar]
- Kobler, A.; Humbolt, Y.; Knaepkens, G.; Engelen, B.; Eens, M. Diel movement of bullhead (Cottus perifretum) in a lowland stream. Ecol. Freshw. Fish 2012, 21, 453–460. [Google Scholar] [CrossRef]
- Urabe, A.; Umino, T. Comparisons of meristic characters between hatchery and wild ayu Plecoglossus altivelis. Nippon Suisan Gakkaishi 2018, 84, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Acutis, P.L.; Cambiotti, V.; Riina, M.V.; Meistro, S.; Maurella, C.; Massaro, M.; Stacchini, P.; Gilid, S.; Malandra, R.; Pezzolato, M.; et al. Detection of fish species substitution frauds in Italy: A targeted National Monitoring Plan. Food Control 2019, 101, 151–155. [Google Scholar] [CrossRef]
- Steneck, R.S.; Pauly, D. Fishing through the Anthropocene. Curr. Biol. 2019, 29, R987–R992. [Google Scholar] [CrossRef]
- Mallen-Cooper, M.; Stuart, I.G. Optimising Denil fishways for passage of small and large fishes. Fish. Manag. Ecol. 2007, 14, 61–71. [Google Scholar] [CrossRef]
- Magaju, D.; Montgomery, J.; Franklin, P.; Baker, C.; Friedrich, H. A new framework for assessing roughness elements in promoting fish passage at low-head instream structures. J. Ecohydraul. 2020, 5, 152–164. [Google Scholar] [CrossRef]
- Ackerman, N.K.; Pyper, B.J.; David, M.M.; Wyatt, D.G.; Cramer, D.P.; Shibahara, T.M. Passage effectiveness at a pool-and-weir fishway designed to accommodate Pacific lampreys. N. Am. J. Fish. Manag. 2019, 39, 426–440. [Google Scholar] [CrossRef]
- Makrakis, S.; Bertão, A.P.S.; Silva, J.F.M.; Makrakis, M.C.; Ronda, F.J.S.; Celestino, L.F.S. Hydropower development and fishways: A need for connectivity in rivers of the Upper Paraná Basin. Sustainability 2019, 11, 3749. [Google Scholar] [CrossRef] [Green Version]
- Pedescoll, A.; Aguado, R.; Marcos, C.; González, G. Performance of a pool and weir fishway for Iberian cyprinids migration: A case study. Fishes 2019, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Branco, P.; Boavida, I.; Santos, J.M.; Pinheiro, A.; Ferreira, M.T. Boulders as building blocks: Improving habitat and river connectivity for stream fish. Ecohydrology 2013, 6, 627–634. [Google Scholar] [CrossRef]
- Harris, J.H.; Kingsford, R.T.; Peirson, A.; Baumgartner, L.J. Mitigating the effects of barriers to freshwater fish migrations: The Australian experience. Mar. Freshw. Res. 2016, 68, 614–628. [Google Scholar] [CrossRef]
- Newbury, R.; Gaboury, M. The use of natural stream characteristics for stream rehabilitation works below the Manitoba escarpment. Can. Water Resour. J. 1988, 13, 35–51. [Google Scholar] [CrossRef]
- Taniguchi, H.; Tokeshi, M. Effects of habitat complexity on benthic assemblages in a variable environment. Freshw. Biol. 2004, 49, 1164–1178. [Google Scholar] [CrossRef]
- Sone, S.; Inoue, M.; Yanagisawa, Y. Habitat use and diet of two stream gobies of the genus Rhinogobius in south-western Shikoku, Japan. Ecol. Res. 2001, 16, 205–219. [Google Scholar] [CrossRef]
- Yu, S.L.; Lee, T.W. Habitat segregation by fishes in western Taiwan rivers. J. Appl. Ichthyol. 2005, 21, 513–534. [Google Scholar] [CrossRef]
- Tamada, K. River bed features affect the riverine distribution of two amphidromous Rhinogobius species. Ecol. Freshw. Fish 2011, 20, 23–32. [Google Scholar] [CrossRef]
- Urquhart, A.N.; Koetsier, P. Pectoral fin morphology as a reliable field sexing characteristic in populations of the invasive oriental weatherfish (Misgurnus anguillicaudatus). Copeia 2011, 2011, 296–300. [Google Scholar] [CrossRef]
- Asaeda, T.; Vu, T.K.; Manatunge, J. Effects of flow velocity on feeding behaviour and microhabitat selection of the stone moroko Pseudorasbora parva: A trade-off between feeding and swimming costs. Trans. Am. Fish. Soc. 2005, 134, 537–547. [Google Scholar] [CrossRef]
- Sunardi, S.; Asaeda, T.; Manatunge, J.; Fujino, T. The effects of predation risk and current velocity stress on growth, condition and swimming energetics of Japanese minnow (Pseudorasbora parva). Ecol. Res. 2007, 22, 32–40. [Google Scholar] [CrossRef]
- Sunardi, S.; Asaeda, T.; Manatunge, J. Physiological responses of topmouth gudgeon, Pseudorasbora parva, to predator cues and variation of current velocity. Aquat. Ecol. 2001, 41, 111–118. [Google Scholar] [CrossRef]
- Priyadarshana, T.; Asaeda, T. Swimming restricted foraging behavior of two zooplanktivorous fishes Pseudorasbora parva and Rasbora daniconius (Cyprinidae) in a simulated structured environment. Environ. Biol. Fishes 2007, 80, 473–486. [Google Scholar] [CrossRef]
- Manatunge, J.; Asaeda, T. Optimal foraging as the criteria of prey selection by two centrarchid fishes. Hydrobiologia 1998, 391, 221–238. [Google Scholar] [CrossRef]
- Manatunge, J.; Asaeda, T.; Priyadarshana, T. The influence of structural complexity on fish–zooplankton interactions: A study using artificial submerged macrophytes. Environ. Biol. Fishes 2000, 58, 425–438. [Google Scholar] [CrossRef]
- Asaeda, T.; Priyadarshana, T.; Manatunge, J. Effects of satiation on feeding and swimming behaviour of planktivores. Hydrobiologia 2001, 443, 147–157. [Google Scholar] [CrossRef]
- Priyadarshana, T.; Asaeda, T.; Manatunge, J. Foraging behaviour of planktivorous fish in artificial vegetation: The effects on swimming and feeding. Hydrobiologia 2001, 442, 231–239. [Google Scholar] [CrossRef]
- Asaeda, T.; Park, B.K.; Manatunge, J. Characteristics of reaction field and the reactive distance of a planktivore Pseudorasbora parva (Cyprinidae), in various environmental conditions. Hydrobiologia 2002, 489, 29–43. [Google Scholar] [CrossRef]
Fishway Type | Gap (m) | Water Depth (m) | Width (m) | Velocity (m/s) | Discharge (m3/s) | |
---|---|---|---|---|---|---|
Large fishway | General part | 0.25 | 0.25 | 10.0 | 1.31 | 3.7 |
Notch part | 0.39 | 1.66 | ||||
Small-fishway | – | 0.25 | 0.19 | 2.0 | 1.12 | 0.3 |
Fishing Gear | Specification | Amount of Effort | Survey Habitat | |||
---|---|---|---|---|---|---|
Rapid | Flat | Pool | Wando | |||
Cast net (mesh size 12 mm) | Circumferential length of the hem of the net: 12 m | [40 times] | 10 times | 10 times | 10 times | 10 times |
Cast net (mesh size 18 mm) | Circumferential length of the hem of the net: 15 m | [40 times] | 10 times | 10 times | 10 times | 10 times |
Landing net | Caliber 0.3 m, mesh size 2 mm and with rock movement | [4 h] | 1 h | 1 h | 1 h | 1 h |
Stationary net | Bag net; mesh size 10 mm, diameter 0.5 m, length 7 m Sleeve net; mesh size 14 mm, height 1.2 m, length 2.5 m, with float | [2 night] From before sunset to after sunrise | – | 1 night | – | 1 night |
Gill net | Length 20 m, height 1.2 m, mesh size 15 mm, and 90 mm, with two gill nets being used side by side in one survey habitat | [2 night] From before sunset to after sunrise | – | 1 night | 1 night | – |
Longline | Five needles per 1, and the bait is mainly earthworms | [4 night] From before sunset to after sunrise | 1 night | 1 night | 1 night | 1 night |
Fishway Type | Gap (m) | Water Depth (m) | Width (m) | Velocity (m/s) | Discharge (m3/s) | |
---|---|---|---|---|---|---|
Ice-harbor | General part | 0.25 | 0.24 | 8.0 | 1.27–1.69 | 1.637 |
Notch part | 0.39 | 1.57–2.43 | ||||
Stair-type | – | 0.25 | 0.13 | 1.5 | 0.87–1.05 | 0.133 |
Rock-ramp | Up to 2014 | 0.15 | 0.08 | 2.0 | 0.33 | 0.022 |
From 2015 | 0.15 | 0.64 | 0.071 |
(a) | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | (I) P. altivelis | (J) P. altivelis | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | ||||||
Discharge | 1.00 | 2.00 | −9.26 | 16.32 | 1.00 | −49.32 | 30.81 |
3.00 | 16.31 | 15.92 | 0.93 | −22.76 | 55.38 | ||
2.00 | 1.00 | 9.26 | 16.32 | 1.00 | −30.81 | 49.32 | |
3.00 | 25.57 | 16.93 | 0.41 | −15.99 | 67.12 | ||
3.00 | 1.00 | −16.31 | 15.92 | 0.93 | −55.38 | 22.76 | |
2.00 | −25.57 | 16.93 | 0.41 | −67.12 | 15.99 | ||
SS | 1.00 | 2.00 | −14.67 | 9.83 | 0.42 | −38.78 | 9.45 |
3.00 | 3.47 | 9.58 | 1.00 | −20.05 | 27.00 | ||
2.00 | 1.00 | 14.67 | 9.83 | 0.42 | −9.45 | 38.78 | |
3.00 | 18.14 | 10.19 | 0.24 | −6.88 | 43.16 | ||
3.00 | 1.00 | −3.47 | 9.58 | 1.00 | −27.00 | 20.05 | |
2.00 | −18.14 | 10.19 | 0.24 | −43.16 | 6.88 | ||
Temperature | 1.00 | 2.00 | −0.90 * | 0.31 | 0.02 | −1.67 | −0.14 |
3.00 | −1.32 * | 0.30 | <0.001 | −2.06 | −0.57 | ||
2.00 | 1.00 | 0.90 * | 0.31 | 0.15 | 0.14 | 1.67 | |
3.00 | −0.41 | 0.32 | 0.62 | −1.20 | 0.38 | ||
3.00 | 1.00 | 1.32 * | 0.30 | <0.001 | 0.57 | 2.06 | |
2.00 | 0.41 | 0.32 | 0.62 | −0.38 | 1.20 | ||
(b) | |||||||
Dependent Variable | (I) T. hakonensis | (J) T. hakonensis | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
Lower Bound | Upper Bound | ||||||
Discharge | 1.00 | 2.00 | 29.85 | 12.48 | 0.06 | −0.56 | 60.27 |
3.00 | 37.35 * | 11.28 | 0.00 | 9.86 | 64.83 | ||
2.00 | 1.00 | −29.85 | 12.48 | 0.06 | −60.27 | 0.56 | |
3.00 | 7.50 | 13.21 | 1.00 | −24.69 | 39.68 | ||
3.00 | 1.00 | −37.35 * | 11.28 | 0.00 | −64.83 | −9.86 | |
2.00 | −7.50 | 13.21 | 1.00 | −39.68 | 24.69 | ||
SS | 1.00 | 2.00 | 22.30 * | 7.16 | 0.01 | 4.86 | 39.74 |
3.00 | 23.79 * | 6.47 | 0.00 | 8.03 | 39.55 | ||
2.00 | 1.00 | −22.30 * | 7.57 | 0.01 | −39.74 | −4.86 | |
3.00 | 1.49 | 6.47 | 1.00 | −16.96 | 19.95 | ||
3.00 | 1.00 | −23.79 * | 6.47 | 0.00 | −39.55 | −8.03 | |
2.00 | −1.49 | 7.75 | 1.00 | −19.95 | 16.96 | ||
Temperature | 1.00 | 2.00 | −0.28 | 0.34 | 1.00 | −1.10 | 0.55 |
3.00 | −0.24 | 0.31 | 1.00 | −0.98 | 0.51 | ||
2.00 | 1.00 | 0.28 | 0.34 | 1.00 | −0.55 | 1.10 | |
3.00 | 0.04 | 0.36 | 1.00 | −0.84 | 0.91 | ||
3.00 | 1.00 | 0.24 | 0.31 | 1.00 | −0.51 | 0.98 | |
2.00 | −0.04 | 0.36 | 1.00 | −0.91 | 0.84 |
Scientific Name | Ice-Harbor | Stair-Type | Rock-Ramp | Total | |
---|---|---|---|---|---|
1 | Carassius auratus langsdorfii | 0.5 | 0.3 | 0.0 | 0.8 |
2 | Carassius | 0.0 | 0.0 | 0.5 | 0.5 |
3 | Opsariichthys platypus | 149.8 | 163.5 | 4.0 | 317.3 |
4 | Nipponocypris temminckii | 0.3 | 2.0 | 0.0 | 2.3 |
5 | Rhynchocypris logowskii steindachneri | 0.8 | 11.5 | 4.8 | 17.0 |
6 | Tribolodon nakamurai | 0.5 | 0.0 | 0.0 | 0.5 |
7 | Tribolodon hakonensis | 455.8 | 59.5 | 1.3 | 516.5 |
8 | Pseudourasbora parva | 0.0 | 0.0 | 1.3 | 1.3 |
9 | Sarcocheilichthys variegatus microoculus | 3.5 | 0.3 | 0.0 | 3.8 |
10 | Gnathopogon elongatus | 0.0 | 0.8 | 2.3 | 3.0 |
11 | Pseudogobio esocinus | 8.8 | 18.8 | 0.0 | 27.5 |
12 | Hemibarbus barbus | 10.3 | 0.5 | 0.0 | 10.8 |
13 | Squalidus chankaensis biwae | 7.5 | 99.5 | 0.0 | 107.0 |
14 | Cyprinidae | 1.0 | 1.3 | 0.0 | 2.3 |
15 | Plecoglossus altivelis | 2826.8 | 623.0 | 0.5 | 3450.3 |
16 | Salmo trutta | 2.3 | 0.0 | 0.3 | 2.5 |
17 | Salvelinus leucomaenis pluvius | 3.5 | 0.3 | 0.3 | 4.0 |
18 | Oncorhynchus mykiss | 2.8 | 0.3 | 0.0 | 3.0 |
19 | Oncorhynchus masou | 30.3 | 5.0 | 1.8 | 37.0 |
20 | Micropterus salmoides | 0.0 | 0.0 | 0.8 | 0.8 |
21 | Micropterus dolomieu | 3.0 | 0.8 | 0.3 | 4.0 |
Subtotal | 3507.0 | 987.0 | 17.8 | 4511.8 | |
22 | Lethenteron sp. | 0.0 | 0.0 | 0.3 | 0.3 |
23 | Anguilla | 0.0 | 0.3 | 0.0 | 0.3 |
24 | Misgurnus anguillicaudatus | 0.0 | 0.0 | 0.3 | 0.3 |
25 | Misgurnus dabryanus | 0.0 | 0.0 | 0.3 | 0.3 |
26 | Misgurnus | 0.0 | 0.3 | 0.0 | 0.3 |
27 | Cobitis biwae | 0.0 | 0.0 | 2.8 | 2.8 |
28 | Pelteobagrus nudiceps | 1.0 | 1.3 | 0.0 | 2.3 |
29 | Silurus asotus | 0.3 | 0.0 | 0.0 | 0.3 |
30 | Liobagrus reini | 0.0 | 0.0 | 2.5 | 2.5 |
31 | Cottus pollux | 0.5 | 9.3 | 22.5 | 32.3 |
32 | Rhinogobius kurodai | 0.3 | 2.5 | 47.0 | 49.8 |
Subtotal | 2.0 | 13.5 | 75.5 | 91.0 | |
Total | 3509 | 1001 | 93 | 4603 |
Scientific Name | Average (2012–2015) | |||||
---|---|---|---|---|---|---|
S-1 | S-2 | S-3 | S-4 | Total (S-2 and 3) | ||
1 | Carassius sp. | 0.5 | 0.3 | 0.0 | 0.3 | 0.3 |
2 | Opsariichthys platypus | 4.0 | 0.5 | 0.5 | 8.5 | 1.0 |
3 | Rhynchocypris logowskii steindachneri | 4.8 | 0.0 | 0.3 | 0.3 | 0.3 |
4 | Tribolodon hakonensis | 1.3 | 1.8 | 5.3 | 93.3 | 7.0 |
5 | Pseudorasbora parva | 1.3 | 0.3 | 0.0 | 0.0 | 0.3 |
6 | Gnathopogon elongatus | 2.3 | 0.3 | 0.0 | 0.0 | 0.3 |
7 | Pseudogobio esocinus | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 |
8 | Hemibarbus barbus | 0.0 | 4.0 | 7.0 | 11.8 | 11.0 |
9 | Cyprinidae sp. | 0.0 | 14.3 | 15.3 | 66.8 | 29.5 |
10 | Plecoglossus altivelis | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 |
11 | Salmo trutta | 0.3 | 0.0 | 0.0 | 0.5 | 0.0 |
12 | Salvelinus leucomaenis pluvius | 0.3 | 0.3 | 0.3 | 0.0 | 0.5 |
13 | Oncorhynchus masou | 1.8 | 0.3 | 0.8 | 0.0 | 1.0 |
14 | Micropterus salmoides | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 |
15 | Micropterus dolomieu | 0.3 | 0.0 | 0.3 | 4.3 | 0.3 |
16 | Lethenteron sp. | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 |
17 | Misgurnus anguillicaudatus | 0.3 | 0.0 | 0.5 | 3.0 | 0.5 |
18 | Misgurnus dabryanus | 0.3 | 1.0 | 2.8 | 5.8 | 3.8 |
19 | Misgurnus sp. | 0.0 | 0.0 | 0.0 | 0.3 | 0.0 |
20 | Cobitis biwae | 2.8 | 0.5 | 4.3 | 1.5 | 4.8 |
21 | Liobagrus reini | 2.5 | 0.0 | 0.0 | 0.5 | 0.0 |
22 | Cottus pollux | 22.5 | 0.5 | 2.0 | 10.0 | 2.5 |
23 | Rhinogobius kurodai | 47.0 | 0.3 | 0.0 | 14.0 | 0.3 |
total | 93 | 24 | 39 | 221 | 63 |
Scientific Name | Upstream | Downstream | ||
---|---|---|---|---|
Average Individuals (2009 to 2011) | Average Individuals (2012 to 2015) | Average Individuals (2009 to 2011) | Average Individuals (2012 to 2015) | |
Carassius auratus buergeri | 0.3 | 0.0 | 0.0 | 0.8 |
Carassius auratus langsdorfii | 17.7 | 8.3 | 1.3 | 1.5 |
Carassius cuvieri | 0.3 | 1.3 | 0.0 | 0.3 |
Carassius sp. | 3.0 | 5.8 | 0.0 | 0.3 |
Cyprinus carpio | 3.7 | 7.0 | 0.3 | 7.8 |
Gnathopogon elongatus | 42.7 | 10.3 | 2.3 | 5.5 |
Hemibarbus barbus | 205.0 | 388.8 | 39.0 | 153.5 |
Nipponocypris temminckii | 24.3 | 20.8 | 0.0 | 0.0 |
Opsariichthys platypus | 506.3 | 213.8 | 633.3 | 103.0 |
Opsariichthys sp. | 6.0 | 0.0 | 0.0 | 0.0 |
Pseudogobio esocinus | 9.0 | 10.3 | 15.3 | 10.0 |
Pseudorasbora parva | 61.7 | 40.8 | 20.3 | 14.0 |
Rhodeus ocellatus ocellatus | 6.0 | 0.3 | 2.0 | 0.3 |
Rhynchocypris logowskii steindachneri | 13.0 | 22.8 | 3.3 | 6.8 |
Sarcocheilichthys variegatus microoculus | 0.3 | 0.0 | 0.0 | 0.0 |
Squalidus chankaensis biwae | 2.0 | 1.8 | 13.7 | 0.3 |
Squalidus sp. | 5.7 | 15.0 | 0.0 | 0.0 |
Cyprinidae sp. | 35.7 | 0.8 | 0.0 | 0.3 |
Tribolodon nakamurai | 1.3 | 1.0 | 0.3 | 0.8 |
Tribolodon hakonensis | 185.0 | 527.5 | 69.0 | 88.3 |
Tribolodon sp. | 2.3 | 0.0 | 0.0 | 0.0 |
Plecoglossus altivelis | 9.3 | 10.8 | 13.3 | 5.5 |
Lepomis macrochirus | 0.0 | 0.5 | 0.0 | 0.0 |
Micropterus dolomieu | 12.0 | 28.8 | 7.3 | 19.3 |
Micropterus salmoides | 1.0 | 0.3 | 0.0 | 0.0 |
Channa argus | 0.0 | 0.0 | 0.3 | 0.0 |
Oncorhynchus keta | 0.0 | 1.0 | 0.0 | 0.5 |
Oncorhynchus masou | 2.7 | 0.5 | 0.3 | 0.0 |
Oncorhynchus mykiss | 0.3 | 0.3 | 0.0 | 0.3 |
Salmo trutta | 0.0 | 0.5 | 0.0 | 0.0 |
Salvelinus sp. | 0.0 | 0.0 | 0.0 | 0.0 |
Anguilliformes sp. | 0.0 | 0.0 | 0.3 | 0.0 |
Liobagrus reini | 0.3 | 0.8 | 3.3 | 8.3 |
Cobitis biwae | 1.0 | 4.8 | 15.7 | 38.5 |
Lefua echigonia | 0.0 | 0.3 | 0.0 | 0.0 |
Misgurnus anguillicaudatus | 13.7 | 5.8 | 7.0 | 5.3 |
Paramisgurnus dabryanus | 0.0 | 1.3 | 0.0 | 1.8 |
Rhinogobius fluviatilis | 0.0 | 0.0 | 0.3 | 0.0 |
Rhinogobius kurodai | 6.7 | 1.3 | 1.7 | 2.0 |
Lethenteron spp | 0.7 | 0.0 | 4.0 | 1.0 |
Cottus pollux | 2.7 | 7.0 | 1.0 | 4.3 |
Pelteobagrus nudiceps | 1.3 | 1.5 | 2.3 | 3.5 |
Siluriformes sp. | 7.0 | 2.8 | 6.3 | 7.3 |
Scientific Name | Fishway Type | Average Number of Individuals (Population) | d.f. | t | P |
---|---|---|---|---|---|
Carassius auratus langsdorfii | I + S | 3 | 116 | 1.981 | 0.083 |
R | 0 | ||||
Carassius sp. | I + S | 0 | 116 | 1.981 | 0.158 |
R | 2 | ||||
Opsariichthys platypus | I + S | 1253 | 116 | 1.981 | 0.000 |
R | 16 | ||||
Nipponocypris temminckii | I + S | 9 | 116 | 1.981 | 0.012 |
R | 0 | ||||
Rhynchocypris logowskii steindachneri | I + S | 49 | 157 | 1.975 | 0.028 |
R | 19 | ||||
Tribolodon nakamurai | I + S | 2 | 116 | 1.981 | 0.158 |
R | 0 | ||||
Tribolodon hakonensis | I + S | 2061 | 116 | 1.981 | 0.000 |
R | 5 | ||||
Pseudorasbora parva | I + S | 0 | 116 | 1.981 | 0.025 |
R | 5 | ||||
Sarcocheilichthys variegatus microoculus | I + S | 15 | 116 | 1.981 | 0.000 |
R | 0 | ||||
Gnathopogon elongatus | I + S | 3 | 168 | 1.974 | 0.128 |
R | 9 | ||||
Pseudogobio esocinus | I + S | 110 | 116 | 1.981 | 0.000 |
R | 0 | ||||
Hemibarbus barbus | I + S | 43 | 116 | 1.981 | 0.000 |
R | 0 | ||||
Squalidus chankaensis biwae | I + S | 428 | 116 | 1.981 | 0.009 |
R | 0 | ||||
Cyprinidae sp. | I + S | 9 | 116 | 1.981 | 0.072 |
R | 0 | ||||
Plecoglossus altivelis | I + S | 13,799 | 116 | 1.981 | 0.001 |
R | 2 | ||||
Salmo trutta | I + S | 9 | 138 | 1.977 | 0.019 |
R | 1 | ||||
Salvelinus leucomaenis pluvius | I + S | 15 | 128 | 1.979 | 0.002 |
R | 1 | ||||
Oncorhynchus mykiss | I + S | 12 | 116 | 1.981 | 0.028 |
R | 0 | ||||
Oncorhynchus masou | I + S | 141 | 124 | 1.979 | 0.000 |
R | 7 | ||||
Micropterus salmoides | I + S | 0 | 116 | 1.981 | 0.083 |
R | 3 | ||||
Micropterus dolomieu | I + S | 15 | 131 | 1.978 | 0.001 |
R | 1 | ||||
Lethenteron sp. | I + S | 1 | 116 | 1.981 | 0.319 |
R | 0 | ||||
Anguilla sp. | I + S | 1 | 116 | 1.981 | 0.319 |
R | 0 | ||||
Misgurnus anguillicaudatus | I + S | 0 | 116 | 1.981 | 0.319 |
R | 1 | ||||
Misgurnus dabryanus | I + S | 0 | 116 | 1.981 | 0.319 |
R | 1 | ||||
Misgurnus sp. | I + S | 1 | 116 | 1.981 | 0.319 |
R | 0 | ||||
Cobitis biwae | I + S | 0 | 116 | 1.981 | 0.002 |
R | 11 | ||||
Pelteobagrus nudiceps | I + S | 9 | 116 | 1.981 | 0.002 |
R | 0 | ||||
Silurus asotus | I + S | 1 | 116 | 1.981 | 0.319 |
R | 0 | ||||
Liobagrus reini | I + S | 0 | 116 | 1.981 | 0.077 |
R | 10 | ||||
Cottus pollux | I + S | 39 | 136 | 1.978 | 0.040 |
R | 90 | ||||
Rhinogobius kurodai | I + S | 10 | 120 | 1.980 | 0.000 |
R | 189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masumoto, T.; Nakai, M.; Asaeda, T.; Rahman, M. Effectiveness of New Rock-Ramp Fishway at Miyanaka Intake Dam Compared with Existing Large and Small Stair-Type Fishways. Water 2022, 14, 1991. https://doi.org/10.3390/w14131991
Masumoto T, Nakai M, Asaeda T, Rahman M. Effectiveness of New Rock-Ramp Fishway at Miyanaka Intake Dam Compared with Existing Large and Small Stair-Type Fishways. Water. 2022; 14(13):1991. https://doi.org/10.3390/w14131991
Chicago/Turabian StyleMasumoto, Taku, Masahiko Nakai, Takashi Asaeda, and Mizanur Rahman. 2022. "Effectiveness of New Rock-Ramp Fishway at Miyanaka Intake Dam Compared with Existing Large and Small Stair-Type Fishways" Water 14, no. 13: 1991. https://doi.org/10.3390/w14131991
APA StyleMasumoto, T., Nakai, M., Asaeda, T., & Rahman, M. (2022). Effectiveness of New Rock-Ramp Fishway at Miyanaka Intake Dam Compared with Existing Large and Small Stair-Type Fishways. Water, 14(13), 1991. https://doi.org/10.3390/w14131991