Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments
Abstract
:1. Introduction
2. Rainfall-Runoff Modelling
2.1. Mechanistic Modelling
2.2. Simplified Models
2.3. Calibration and Validation of Rainfall-Runoff Models
3. System Data
3.1. Spatial Data
3.2. Sewer System Characteristics
3.3. Rainfall Data
4. Model Parameters
4.1. Surface Roughness and Runoff Coefficients
4.2. Subcatchment Area
4.3. Infiltration Ratio
4.4. Personal Catchment Survey
5. Calibration Data
6. Data for Optimization
7. Rainfall-Runoff Models and the Decision-Making Process
8. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mariolakos, I. Water resources management in the framework of sustainable development. Desalination 2007, 213, 147–151. [Google Scholar] [CrossRef]
- Hurlimann, A.; Wilson, E. Sustainable Urban Water Management under a Changing Climate: The Role of Spatial Planning. Water 2018, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Koebele, E.; Deslatte, A.; Ernst, K.; Manago, K.F.; Treuer, G. Towards urban water sustainability: Analyzing management transitions in Miami, Las Vegas, and Los Angeles. Glob. Environ. Chang. 2019, 58, 101967. [Google Scholar] [CrossRef]
- Özerol, G.; Dolman, N.; Bormann, H.; Bressers, H.; Lulofs, K.; Böge, M. Urban water management and climate change adaptation: A self-assessment study by seven midsize cities in the North Sea Region. Sustain. Cities Soc. 2020, 55, 102066. [Google Scholar] [CrossRef]
- Musz-Pomorska, A.; Widomski, M.K.; Gołębiowska, J. Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland. Sustainability 2020, 12, 4853. [Google Scholar] [CrossRef]
- Arfanuzzaman, M.; Atiq Rahman, A. Sustainable water demand management in the face of rapid urbanization and ground water depletion for social–ecological resilience building. Glob. Ecol. Conserv. 2017, 10, 9–22. [Google Scholar] [CrossRef]
- Yang, T.H.; Liu, W.C. A General Overview of the Risk-Reduction Strategies for Floods and Droughts. Sustainability 2020, 12, 2687. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Huang, G. A coupled 1D and 2D hydrodynamic model for free-surface flows. Proc. Inst. Civ. Eng. Water Manag. 2014, 167, 523–531. [Google Scholar] [CrossRef]
- Santamarta, J.C.; Neris, J.; Rodríguez-Martín, J.; Arraiza, M.P.; López, J.V. Climate Change and Water Planning: New Challenges on Islands Environments. IERI Procedia 2014, 9, 59–63. [Google Scholar] [CrossRef] [Green Version]
- De Paola, F.; Giugni, M.; Pugliese, F.; Romano, P. Optimal Design of LIDs in Urban Stormwater Systems Using a Harmony-Search Decision Support System. Water Resour. Manag. 2018, 32, 4933–4951. [Google Scholar] [CrossRef]
- Azadi, F.; Ashofteh, P.-S.; Loáiciga, H.A. Reservoir Water-Quality Projections under Climate-Change Conditions. Water Resour. Manag. 2019, 33, 401–421. [Google Scholar] [CrossRef]
- Harding, R. Ecologically sustainable development: Origins, implementation and challenges. Desalination 2006, 187, 229–239. [Google Scholar] [CrossRef]
- Wang, L.; Ye, M.; Lee, P.Z.; Hicks, R.W. Support of sustainable management of nitrogen contamination due to septic systems using numerical modeling methods. Environ. Syst. Decis. 2013, 33, 237–250. [Google Scholar] [CrossRef]
- Cardoso de Salis, H.H.; Monteiro da Costa, A.; Moreira Vianna, J.H.; Azeneth Schuler, M.; Künne, A.; Sanches Fernandes, L.F.; Leal Pacheco, F.A. Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas. Int. J. Environ. Res. Public Health 2019, 16, 2542. [Google Scholar] [CrossRef] [Green Version]
- Leigh, N.; Lee, H. Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning. Sustainability 2019, 11, 918. [Google Scholar] [CrossRef] [Green Version]
- Simonovic, S. Systems Approach to Management of Water Resources—Toward Performance Based Water Resources Engineering. Water 2020, 12, 1208. [Google Scholar] [CrossRef]
- Jurik, L.; Pokrývková, J. Urban Water retention—Theoretical Aspects and Practical Measures. Zadržiavanie vody v mestách—teória a praktické riešenia. Životné Prostr. 2018, 52, 42–48. [Google Scholar]
- Towsif Khan, S.; Chapa, F.; Hack, J. Highly Resolved Rainfall-Runoff Simulation of Retrofitted Green Stormwater Infrastructure at the Micro-Watershed Scale. Land 2020, 9, 339. [Google Scholar] [CrossRef]
- Lee, J.G.; Nietch, C.T.; Panguluri, S. Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model. Hydrol. Earth Syst. Sci. 2018, 22, 2615–2635. [Google Scholar] [CrossRef] [Green Version]
- Thiagarajan, M.; Newman, G.; Zandt, S. The Projected Impact of a Neighborhood-Scaled Green-Infrastructure Retrofit. Sustainability 2018, 10, 3665. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Diaconu, D.C.; Haarstad, K. Urban Water Retention Measures. Procedia Eng. 2017, 190, 419–426. [Google Scholar] [CrossRef]
- Lee, J.G.; Heaney, J.P. Estimation of Urban Imperviousness and its Impacts on Storm Water Systems. J. Water Resour. Plan. Manag. 2003, 129, 419–426. [Google Scholar] [CrossRef]
- Jayasooriya, V.M.; Ng, A.W.M. Tools for Modeling of Stormwater Management and Economics of Green Infrastructure Practices: A Review. Water Air Soil Pollut. 2014, 225, 2055. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Sarma, A.K.; Hack, J. Cost-Effective Optimization of Nature-Based Solutions for Reducing Urban Floods Considering Limited Space Availability. Environ. Process. 2020, 7, 297–319. [Google Scholar] [CrossRef]
- Endreny, T.A. Land Use and Land Cover Effects on Runoff Processes: Urban and Suburban Development. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Goncalves, M.L.R.; Zischg, J.; Rau, S.; Sitzmann, M.; Rauch, W.; Kleidorfer, M. Modeling the effects of introducing low impact development in a tropical city: A case study from Joinville, Brazil. Sustainability 2018, 10, 728. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, E.; ten Veldhuis, M.-C.; van de Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, T.G.; Ressourcen, T.U.K.I.W.I. Regenwasser in Urbanen Räumen—Aqua Urbanica Trifft RegenwasserTage 2018: Landau in der Pfalz, 18./19. Juni 2018; Tagungsband; Schriftenreihe Wasser Infrastruktur Ressourcen; Technische Universität Kaiserslautern, Institut Wasser Infrastruktur Ressourcen: Germany, Kaiserslauter, 2018; ISBN 9783959740869. [Google Scholar]
- Li, C.; Wang, W.; Xiong, J.; Chen, P. Sensitivity Analysis for Urban Drainage Modeling Using Mutual Information. Entropy 2014, 16, 5738–5752. [Google Scholar] [CrossRef]
- Leandro, J.; Martins, R. A methodology for linking 2D overland flow models with the sewer network model SWMM 5.1 based on dynamic link libraries. Water Sci. Technol. 2016, 73, 3017–3026. [Google Scholar] [CrossRef]
- Kwak, D.; Kim, H.; Han, M. Runoff Control Potential for Design Types of Low Impact Development in Small Developing Area Using XPSWMM. Procedia Eng. 2016, 154, 1324–1332. [Google Scholar] [CrossRef] [Green Version]
- Fraga, I.; Cea, L.; Puertas, J.; Suárez, J.; Jiménez, V.; Jácome, A. Global Sensitivity and GLUE-Based Uncertainty Analysis of a 2D-1D Dual Urban Drainage Model. J. Hydrol. Eng. 2016, 21, 04016004. [Google Scholar] [CrossRef]
- Hodges, B.R. Conservative finite-volume forms of the Saint-Venant equations for hydrology and urban drainage. Hydrol. Earth Syst. Sci. 2019, 23, 1281–1304. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.W.; Hodges, B.R.; Liu, F. A new form of the Saint–Venant equations for variable topography. Hydrol. Earth Syst. Sci. 2020, 24, 4001–4024. [Google Scholar] [CrossRef]
- Yu, C.W.; Liu, F.; Hodges, B.R. Consistent initial conditions for the Saint-Venant equations in river network modeling. Hydrol. Earth Syst. Sci. 2017, 21, 4959–4972. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Xia, J.; Zhou, M.; Li, Q.; Ahmadian, R.; Falconer, R.A. Integrated modeling of 2D urban surface and 1D sewer hydrodynamic processes and flood risk assessment of people and vehicles. Sci. Total Environ. 2022, 827, 154098. [Google Scholar] [CrossRef]
- Sañudo, E.; Cea, L.; Puertas, J. Modelling Pluvial Flooding in Urban Areas Coupling the Models Iber and SWMM. Water 2020, 12, 2647. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Zhang, S. Urban Pluvial Flood Modeling by Coupling Raster-Based Two-Dimensional Hydrodynamic Model and SWMM. Water 2022, 14, 1760. [Google Scholar] [CrossRef]
- Chen, Z.; Han, S.; Zhou, F.Y.; Wang, K. A CFD Modeling Approach for Municipal Sewer System Design Optimization to Minimize Emissions into Receiving Water Body. Water Resour. Manag. 2013, 27, 2053–2069. [Google Scholar] [CrossRef]
- Dufresne, M.; Vazquez, J.; Terfous, A.; Ghenaim, A.; Poulet, J.-B. CFD Modeling of Solid Separation in Three Combined Sewer Overflow Chambers. J. Environ. Eng. 2009, 135, 776–787. [Google Scholar] [CrossRef]
- Stovin, V.R.; Saul, A.J. Computational Fluid Dynamics and the Design of Sewage Storage Chambers. Water Environ. J. 2000, 14, 103–110. [Google Scholar] [CrossRef]
- Scottish Water—Report a Problem. 2020. Controlled Sewerage Discharge into Scottish Rivers and Watercourses. Available online: https://www.lochlomondangling.com/news/2020/07/07/controlled-sewerage-discharge-into-scottish-rivers-and-watercourses/ (accessed on 24 December 2020).
- Martin, B. A Combined Sewer Overflow Control Alternative for Long Term Control Plans; New Jersey Department of Environmental Protection, Division of Water Quality Evaluating Green Infrastructure: Trenton, NJ, USA, 2018.
- Chanson, H.; Gualtieri, C. Similitude and scale effects of air entrainment in hydraulic jumps. J. Hydraul. Res. 2008, 46, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Beceiro, P.; Almeida, M.C.; Matos, J. Numerical modelling of air-water flows in sewer drops. Water Sci. Technol. 2017, 76, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Sepehri, M.; Malekinezhad, H.; Ilderomi, A.R.; Talebi, A.; Hosseini, S.Z. Studying the effect of rain water harvesting from roof surfaces on runoff and household consumption reduction. Sustain. Cities Soc. 2018, 43, 317–324. [Google Scholar] [CrossRef]
- Rossman, L.A. Modeling Low Impact Development Alternatives with SWMM. J. Water Manag. Model. 2010, 18, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Aronica, G.; Cannarozzo, M. Studying the hydrological response of urban catchments using a semi-distributed linear non-linear model. J. Hydrol. 2000, 238, 35–43. [Google Scholar] [CrossRef]
- Guo, J.C.Y.; Cheng, J.C.Y.; Wright, L. Field Test on Conversion of Natural Watershed into Kinematic Wave Rectangular Plane. J. Hydrol. Eng. 2012, 17, 944–951. [Google Scholar] [CrossRef]
- Guo, J.C. Storm-Water Predictions by Dimensionless Unit Hydrograph. J. Irrig. Drain. Eng. 2006, 132, 410–417. [Google Scholar] [CrossRef]
- Gironás, J.; Niemann, J.D.; Roesner, L.A.; Rodriguez, F.; Andrieu, H. A morpho-climatic instantaneous unit hydrograph model for urban catchments based on the kinematic wave approximation. J. Hydrol. 2009, 377, 317–334. [Google Scholar] [CrossRef]
- Nash, J.E. The form of the instantaneous unit hydrograph. Hydrol. Sci 1957, 45, 114–121. [Google Scholar]
- Venutelli, M. Analysis of Dynamic Wave Model for Unsteady Flow in an Open Channel. J. Hydraul. Eng. 2011, 137, 1072–1078. [Google Scholar] [CrossRef]
- Zoppou, C. Review of urban storm water models. Environ. Model. Softw. 2001, 16, 195–231. [Google Scholar] [CrossRef]
- Rossman, L.A. Storm Water Management Model: User’s Manual Version 5.1. EPA/600/R-14/413 (NTIS EPA/600/R-14/413b). Available online: https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf (accessed on 24 December 2020).
- Beven, K. Model Predictions: Uncertainty. Encyclopedia of Hydrology and Water Resources; Springer Netherlands: Dordrecht, The Netherlands, 1998; pp. 486–489. [Google Scholar] [CrossRef]
- Beven, K. How far can we go in distributed hydrological modelling? Hydrol. Earth Syst. Sci. 2001, 5, 1–12. [Google Scholar] [CrossRef]
- Martínez-Solano, F.; Iglesias-Rey, P.; Saldarriaga, J.; Vallejo, D. Creation of an SWMM Toolkit for Its Application in Urban Drainage Networks Optimization. Water 2016, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Butler, D.; Khu, S.-T.; Sun, S. Imprecise probabilistic evaluation of sewer flooding in urban drainage systems using random set theory. Water Resour. Res. 2011, 47, W02534. [Google Scholar] [CrossRef] [Green Version]
- Jato-Espino, D.; Sillanpää, N.; Andrés-Doménech, I.; Rodriguez-Hernandez, J. Flood Risk Assessment in Urban Catchments Using Multiple Regression Analysis. J. Water Resour. Plan. Manag. 2018, 144, 04017085. [Google Scholar] [CrossRef] [Green Version]
- PN-EN 752:2017-06; Drain and Sewer Systems Outside Buildings. Sewer System Management. Polish Committee for Standardization: Warsaw, Poland, 2017.
- Schmitt, T.G.; Thomas, M.; Ettrich, N. Analysis and modeling of flooding in urban drainage systems. J. Hydrol. 2004, 299, 300–311. [Google Scholar] [CrossRef]
- Djordjević, S.; Prodanović, D.; Maksimović, C.; Ivetić, M.; Savić, D. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks. Water Sci. Technol. 2005, 52, 275–283. [Google Scholar] [CrossRef]
- Bellos, V.; Tsakiris, G. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques. J. Hydrol. 2016, 540, 331–339. [Google Scholar] [CrossRef]
- El-Sharif, A.; Hansen, D. Application of SWMM to the Flooding Problem in Truro, Nova Scotia. Can. Water Resour. J. 2001, 26, 439–459. [Google Scholar] [CrossRef]
- Hsu, M.; Chen, S.; Chang, T. Inundation simulation for urban drainage basin with storm sewer system. J. Hydrol. 2000, 234, 21–37. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual Volume I—Hydrology (revised) (EPA/600/R-15/162A); U.S. Environmental Protection Agency: Washington, DC, USA, 2016; Volume I, p. 231. [Google Scholar]
- Sart, C.; Baume, J.-P.; Malaterre, P.-O.; Guinot, V. Adaptation of Preissmann’s scheme for transcritical open channel flows. J. Hydraul. Res. 2010, 48, 428–440. [Google Scholar] [CrossRef] [Green Version]
- Niazi, M.; Nietch, C.; Maghrebi, M.; Jackson, N.; Bennett, B.R.; Tryby, M.; Massoudieh, A. Storm Water Management Model: Performance Review and Gap Analysis. J. Sustain. Water Built Environ. 2017, 3, 04017002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Brüggemann, K.; Seguya, K.D.; Ahmed, E.; Kaeseberg, T.; Dai, H.; Hua, P.; Zhang, J.; Krebs, P. Measuring performance of low impact development practices for the surface runoff management. Environ. Sci. Ecotechnol. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y. SWMM Simulation of the Storm Water Volume Control Performance of Permeable Pavement Systems. J. Hydrol. Eng. 2015, 20, 06014010. [Google Scholar] [CrossRef]
- Saher, R.; Rind, M.A.; Stephen, H.; Ahmad, S.; Rind, U.A. Analysis of the Effects of Retrofitting Low Impact Developments on Urban Runoff and Pollutant Load. In Proceedings of the World Environmental and Water Resources Congress 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 178–190. [Google Scholar]
- Radinja, M.; Škerjanec, M.; Šraj, M.; Džeroski, S.; Todorovski, L.; Atanasova, N. Automated modelling of urban runoff based on domain knowledge and equation discovery. J. Hydrol. P 2021, 603, 127077. Available online: https://www.sciencedirect.com/science/article/pii/S0022169421011276 (accessed on 10 May 2022). [CrossRef]
- Liu, Q.; Cui, W.; Tian, Z.; Tang, Y.; Tillotson, M.; Liu, J. Stormwater Management Modeling in “Sponge City” Construction: Current State and Future Directions. Front. Environ. Sci. 2022, 9, 1–16. [Google Scholar] [CrossRef]
- Haris, H.; Chow, M.F.; Usman, F.; Sidek, L.M.; Roseli, Z.A.; Norlida, M.D. Urban Stormwater Management Model and Tools for Designing Stormwater Management of Green Infrastructure Practices. IOP Conf. Ser. Earth Environ. Sci. 2016, 32, 012022. [Google Scholar] [CrossRef]
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Model. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- Wijesiri, B.; Bandala, E.; Liu, A.; Goonetilleke, A. A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse. Sustainability 2020, 12, 10463. [Google Scholar] [CrossRef]
- Dotto, C.B.S.; Mannina, G.; Kleidorfer, M.; Vezzaro, L.; Henrichs, M.; McCarthy, D.T.; Freni, G.; Rauch, W.; Deletic, A. Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Res. 2012, 46, 2545–2558. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Dotto, C.B.S.; Kleidorfer, M.; Deletic, A.; Rauch, W.; McCarthy, D.T.; Fletcher, T.D. Performance and sensitivity analysis of stormwater models using a Bayesian approach and long-term high resolution data. Environ. Model. Softw. 2011, 26, 1225–1239. [Google Scholar] [CrossRef]
- Schellart, A.N.A.; Shepherd, W.J.; Saul, A.J. Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale. Adv. Water Resour. 2012, 45, 65–75. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Kuczera, G.; Thyer, M.; Franks, S.W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 2010, 46, W05521. [Google Scholar] [CrossRef]
- Obled, C.; Wendling, J.; Beven, K. The sensitivity of hydrological models to spatial rainfall patterns: An evaluation using observed data. J. Hydrol. 1994, 159, 305–333. [Google Scholar] [CrossRef]
- Knighton, J.; Lennon, E.; Bastidas, L.; White, E. Stormwater Detention System Parameter Sensitivity and Uncertainty Analysis Using SWMM. J. Hydrol. Eng. 2016, 21, 05016014. [Google Scholar] [CrossRef]
- Sun, N.; Hong, B.; Hall, M. Assessment of the SWMM model uncertainties within the generalized likelihood uncertainty estimation (GLUE) framework for a high-resolution urban sewershed. Hydrol. Process. 2013, 28, 3018–3034. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Szelag, B.; Kiczko, A.; Dabek, L. Sensitivity and uncertainty analysis of hydrodynamic model (SWMM) for storm water runoff forecasting in an urban basin—A case study. Ochr. Sr. 2016, 38, 15–22. [Google Scholar]
- Mirzaei, M.; Huang, Y.F.; El-Shafie, A.; Shatirah, A. Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: A review. Stoch. Env. Res. Risk Assess. 2015, 29, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Kiczko, A.; Szeląg, B.; Kozioł, A.P.; Krukowski, M.; Kubrak, E.; Kubrak, J.; Romanowicz, R.J. Optimal Capacity of a Stormwater Reservoir for Flood Peak Reduction. J. Hydrol. Eng. 2018, 23, 04018008. [Google Scholar] [CrossRef]
- Szeląg, B.; Kiczko, A.; Dąbek, L. Stormwater Reservoir Sizing in Respect of Uncertainty. Water 2019, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.J. The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models. Water Resour. Res. 1991, 27, 2467–2471. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method; Information Science and Statistics; Springer: New York, NY, USA, 2004; ISBN 978-1-4419-1940-3. [Google Scholar]
- Bates, B.C.; Campbell, E.P. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-runoff modeling. Water Resour. Res. 2001, 37, 937–947. [Google Scholar] [CrossRef]
- Fang, T.; Ball, J.E. Evaluation of spatially variable control parameters in a complex catchment modelling system: A genetic algorithm application. J. Hydroinform. 2007, 9, 163–173. [Google Scholar] [CrossRef]
- Tayfur, G.; Singh, V.; Moramarco, T.; Barbetta, S. Flood Hydrograph Prediction Using Machine Learning Methods. Water 2018, 10, 968. [Google Scholar] [CrossRef] [Green Version]
- Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Ke, Q.; Tian, X.; Bricker, J.; Tian, Z.; Guan, G.; Cai, H.; Huang, X.; Yang, H.; Liu, J. Urban pluvial flooding prediction by machine learning approaches—A case study of Shenzhen city, China. Adv. Water Resour. 2020, 145, 103719. [Google Scholar] [CrossRef]
- Szeląg, B.; Suligowski, R.; Studziński, J.; De Paola, F. Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: A probabilistic approach. Hydrol. Earth Syst. Sci. 2020, 24, 595–614. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chui, T.F.M. Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods. Hydrol. Earth Syst. Sci. 2021, 25, 5839–5858. [Google Scholar] [CrossRef]
- Fatone, F.; Szeląg, B.; Kiczko, A.; Majerek, D.; Majewska, M.; Drewnowski, J.; Łagód, G. Advanced sensitivity analysis of the impact of the temporal distribution and intensity of rainfall on hydrograph parameters in urban catchments. Hydrol. Earth Syst. Sci. 2021, 25, 5493–5516. [Google Scholar] [CrossRef]
- Li, X.; Willems, P. Probabilistic flood prediction for urban sub-catchments using sewer models combined with logistic regression models. Urban Water J. 2019, 16, 687–697. [Google Scholar] [CrossRef]
- Saget, A.; Chebbo, G.; Bertrand-Krajewski, J.L. The first flush in sewer systems. Water Sci. Technol. 1996, 33, 101–108. [Google Scholar] [CrossRef]
- Barco, J.; Wong, K.M.; Stenstrom, M.K. Automatic Calibration of the U.S. EPA SWMM Model for a Large Urban Catchment. J. Hydraul. Eng. 2008, 134, 466–474. [Google Scholar] [CrossRef]
- Sun, S.; Barraud, S.; Castebrunet, H.; Aubin, J.-B.; Marmonier, P. Long-term stormwater quantity and quality analysis using continuous measurements in a French urban catchment. Water Res. 2015, 85, 432–442. [Google Scholar] [CrossRef]
- Kechavarzi, C.; Keenan, P.; Xu, X.; Rui, Y. Monitoring the Hydraulic Performance of Sewers Using Fibre Optic Distributed Temperature Sensing. Water 2020, 12, 2451. [Google Scholar] [CrossRef]
- Bruni, G.; Reinoso, R.; van de Giesen, N.C.; Clemens, F.H.L.R.; ten Veldhuis, J.A.E. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2015, 19, 691–709. [Google Scholar] [CrossRef] [Green Version]
- Buahin, C.A.; Horsburgh, J.S. Evaluating the simulation times and mass balance errors of component-based models: An application of OpenMI 2.0 to an urban stormwater system. Environ. Model. Softw. 2015, 72, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Pina, R.; Ochoa-Rodriguez, S.; Simões, N.; Mijic, A.; Marques, A.; Maksimović, Č. Semi- vs. Fully-Distributed Urban Stormwater Models: Model Set Up and Comparison with Two Real Case Studies. Water 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Sun, N.; Hall, M.; Hong, B.; Zhang, L. Impact of SWMM Catchment Discretization: Case Study in Syracuse, New York. J. Hydrol. Eng. 2014, 19, 223–234. [Google Scholar] [CrossRef]
- Nowakowska, M.; Kaźmierczak, B.; Kotowski, A.; Wartalska, K. Calibration and validation of hydrodynamic model of urban drainage system in the example of the city of Wroclaw. Ochr. Sr. 2017, 39, 51–60. [Google Scholar]
- Skotnicki, M.; Sowiński, M. Wpływ Własności Modelu Opad-Odpływ Na Relację Pomiędzy Dokładnością Odwzorowania Zlewni a Charakterystykami Odpływu. J. Civ. Eng. Environ. Archit. 2016, 175, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Skotnicki, M.; Sowiński, M. Dokładność odwzorowania struktury systemu kanalizacji deszczowej na potrzeby modelowania odpływu ze zlewni miejskiej. Gaz. Woda I Tech. Sanit. 2015, 1, 15–19. [Google Scholar] [CrossRef]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Koivusalo, H.; Setälä, H. A high resolution application of a stormwater management model (SWMM) using genetic parameter optimization. Urban Water J. 2013, 10, 394–410. [Google Scholar] [CrossRef]
- Muleta, M.K.; McMillan, J.; Amenu, G.G.; Burian, S.J. Bayesian Approach for Uncertainty Analysis of an Urban Storm Water Model and Its Application to a Heavily Urbanized Watershed. J. Hydrol. Eng. 2013, 18, 1360–1371. [Google Scholar] [CrossRef]
- Broekhuizen, I.; Leonhardt, G.; Marsalek, J.; Viklander, M. Event selection and two-stage approach for calibrating models of green urban drainage systems. Hydrol. Earth Syst. Sci. 2020, 24, 869–885. [Google Scholar] [CrossRef] [Green Version]
- Chormanski, J.; Van de Voorde, T.; De Roeck, T.; Batelaan, O.; Canters, F. Improving Distributed Runoff Prediction in Urbanized Catchments with Remote Sensing based Estimates of Impervious Surface Cover. Sensors 2008, 8, 910–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Sande, C.J.; de Jong, S.M.; de Roo, A.P.J. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 217–229. [Google Scholar] [CrossRef]
- As-syakur, A.R.; Adnyana, I.W.S.; Arthana, I.W.; Nuarsa, I.W. Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area. Remote Sens. 2012, 4, 2957–2970. [Google Scholar] [CrossRef] [Green Version]
- Bellal, M.; Sillen, X.; Zech, Y. Coupling GIS with a Distributed Hydrological Model for Studying the Effect of Various Urban Planning Options on Rainfall-Runoff Relationship in Urbanized Watersheds; International Association of Hydrological Sciences: Vienna, Austria, 1996; pp. 99–106. [Google Scholar]
- Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H. Spatial resolution considerations for urban hydrological modelling. J. Hydrol. 2014, 512, 482–497. [Google Scholar] [CrossRef]
- Price, R.K.; Vojinovic, Z. Urban. Hydroinformatics: Data, Models and Decision Support for Integrated Urban. Water Management; Urban Hydroinformatics Series; IWA Publishing: London, UK, 2011; ISBN 978-1-84339-274-3. [Google Scholar]
- Stanić, N.; Clemens, F.H.L.R.; Langeveld, J.G. Estimation of Hydraulic Roughness of Concrete Sewer Pipes by Laser Scanning. J. Hydraul. Eng. 2017, 143, 04016079. [Google Scholar] [CrossRef]
- Dirksen, J.; Clemens, F.H.L.R.; Korving, H.; Cherqui, F.; Le Gauffre, P.; Ertl, T.; Plihal, H.; Müller, K.; Snaterse, C.T.M. The consistency of visual sewer inspection data. Struct. Infrastruct. Eng. 2013, 9, 214–228. [Google Scholar] [CrossRef] [Green Version]
- Duran, O.; Althoefer, K.; Seneviratne, L.D. Pipe inspection using a laser-based transducer and automated analysis techniques. IEEE/ASME Trans. Mechatr. 2003, 8, 401–409. [Google Scholar] [CrossRef]
- Pegram, G.G.S.; Pennington, M.S. A Method for Estimating the Hydraulic Roughness of Unlined Bored Tunnels; Report WRC No. 579/1/96; Department Of Civil Engineering, University of Natal: Durban, South Africa, 1996. [Google Scholar]
- Idelchik, I.E. Handbook of Hydraulic Resistance 4th Edition Revised and Augmented; Research Institute for Gas Purification: Moscow, Russia, 2007. [Google Scholar]
- ASCE. Gravity Sanitary Sewer Design and Construction; ASCE Manual of Practice, No.60; ASCE: New York, NY, USA, 1982. [Google Scholar]
- Schilling, W. Rainfall data for urban hydrology: What do we need? Atmos. Res. 1991, 27, 5–21. [Google Scholar] [CrossRef]
- Gaitan, S.; Calderoni, L.; Palmieri, P.; Veldhuis, M.-C.; Maio, D.; van Riemsdijk, M.B. From Sensing to Action: Quick and Reliable Access to Information in Cities Vulnerable to Heavy Rain. IEEE Sens. J. 2014, 14, 4175–4184. [Google Scholar] [CrossRef] [Green Version]
- Girons lopez, M.; Wennerström, H.; Nordén, L.; Seibert, J. Location and density of rain gauges for the estimation of spatial varying precipitation. Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Kittel, C.M.M.; Nielsen, K.; Tøttrup, C.; Bauer-Gottwein, P. Informing a hydrological model of the Ogooué with multi-mission remote sensing data. Hydrol. Earth Syst. Sci. 2018, 22, 1453–1472. [Google Scholar] [CrossRef] [Green Version]
- Einfalt, T.; Arnbjerg-Nielsen, K.; Golz, C.; Jensen, N.-E.; Quirmbach, M.; Vaes, G.; Vieux, B. Towards a roadmap for use of radar rainfall data in urban drainage. J. Hydrol. 2004, 299, 186–202. [Google Scholar] [CrossRef]
- Thorndahl, S.; Einfalt, T.; Willems, P.; Nielsen, J.E.; ten Veldhuis, M.-C.; Arnbjerg-Nielsen, K.; Rasmussen, M.R.; Molnar, P. Weather radar rainfall data in urban hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 1359–1380. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Huang, M.-L. ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps. Environ. Model. Softw. 2004, 19, 875–879. [Google Scholar] [CrossRef]
- Han, W.S.; Burian, S.J. Determining Effective Impervious Area for Urban Hydrologic Modeling. J. Hydrol. Eng. 2009, 14, 111–120. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Gulliver, J.S.; Wilson, B.N. Estimating effective impervious area in urban watersheds using land cover, soil character and asymptotic curve number. Hydrol. Sci. J. 2018, 63, 513–526. [Google Scholar] [CrossRef]
- Berezowski, T.; Chormański, J.; Batelaan, O.; Canters, F.; Van de Voorde, T. Impact of remotely sensed land-cover proportions on urban runoff prediction. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 54–65. [Google Scholar] [CrossRef]
- Available online: https://swmm5.org/2017/11/06/runoff-coefficient-in-infosewer-and-infoswmm/#respond (accessed on 10 May 2022).
- Hamdan, S.M.; Troeger, U.; Nassar, A. Stormwater availability in the Gaza Strip, Palestine. Int. J. Environ. Health 2007, 1, 580–594. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Jinno, K.; Berndtsson, R. Surface and subsurface water balance estimation by the groundwater recharge model and a 3-D two-phase flow model/Estimation de bilan hydrologique de surface et de subsurface à l’aide de modèles de recharge de nappe et d’écoulement diphasique 3-D. Hydrol. Sci. J. 2004, 49, 226. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.; Johnson, P.A.; Ragan, R.M. Highway Hydrology. In Hydraulic Design, Series Number 2, 2nd ed.; Federal Highway Administration: Washington, DC, USA, 2002. [Google Scholar]
- Bellos, V.; Kourtis, I.M.; Tsihrintzis, V.A. A simplified methodology for flood simulation in urban catchments. Eur. Water 2017, 57, 307–313. [Google Scholar]
- Guo, Y.; Adams, B.J. Hydrologic analysis of urban catchments with event-based probabilistic models. 1, runoff volume. Water Resour. Res. 1998, 34, 3421–3431. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Xia, J.; Xu, J.; She, D. The Effect of Sponge City Construction for Reducing Directly Connected Impervious Areas on Hydrological Responses at the Urban Catchment Scale. Water 2020, 12, 1163. [Google Scholar] [CrossRef] [Green Version]
- Starzec, M.; Dziopak, J. A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System. Resources 2020, 9, 108. [Google Scholar] [CrossRef]
- Marchioni, M.; Becciu, G.; Oliveira, C. Infiltration-Exfiltration System for Stormwater Control: A Full Scale Test. Proceedings 2020, 48, 11. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zhang, Q. Parameter estimation method for SWMM under the condition of incomplete information based on GIS and RS. Electron. J. Geotech. Eng. 2015, 20, 6095–6108. [Google Scholar]
- Zhu, H.; Yu, M.; Zhu, J.; Lu, H.; Cao, R. Simulation study on effect of permeable pavement on reducing flood risk of urban runoff. Int. J. Transp. Sci. 2019, 8, 373–382. [Google Scholar] [CrossRef]
- Guan, M.; Sillanpää, N.; Koivusalo, H. Modelling and assessment of hydrological changes in a developing urban catchment. Hydrol. Process. 2015, 29, 2880–2894. [Google Scholar] [CrossRef]
- Liu, C.Y.; Chui, T.F.M. Factors Influencing Stormwater Mitigation in Permeable Pavement. Water 2017, 9, 988. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, G.; Efstratiadis, A.; Vasiliades, L.; Loukas, A.; Papalexiou, S.M.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. An Operational Method for Flood Directive Implementation in Ungauged Urban Areas. Hydrology 2018, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Hager, W.H. Wastewater Hydraulics; Springer: London, UK, 2010; ISBN 9783642113826. [Google Scholar]
- Ji, Z. General Hydrodynamic Model for Sewer/Channel Network Systems. J. Hydraul. Eng. 1998, 124, 307–315. [Google Scholar] [CrossRef]
- Ji, Z.; Vitasovic, Z.; Zhou, S. A fast hydraulic numerical model for large sewer collection systems. Water Sci. Technol. 1996, 34, 17–24. [Google Scholar] [CrossRef]
- Łagód, G.; Sobczuk, H.; Suchorab, Z.; Widomski, M. Advection-dispersion pollutant and dissolved oxygen transport as a part of sewage biodegradation model. Environ. Prot. Eng. 2009, 35, 305–317. [Google Scholar]
- Caradot, N.; Riechel, M.; Rouault, P.; Caradot, A.; Lengemann, N.; Eckert, E.; Ringe, A.; Clemens, F.; Cherqui, F. The influence of condition assessment uncertainties on sewer deterioration modelling. Struct. Infrastruct. Eng. 2020, 16, 287–296. [Google Scholar] [CrossRef]
- Van Bijnen, M.; Korving, H.; Clemens, F. Impact of sewer condition on urban flooding: An uncertainty analysis based on field observations and Monte Carlo simulations on full hydrodynamic models. Water Sci. Technol. 2012, 65, 2219–2227. [Google Scholar] [CrossRef]
- Łagód, G.; Suchorab, Z.; Widomski, M.; Sobczuk, H. Biofilm in Gravitational Sewer System and Its Influence on Wastewater Biodegradation. Ecol. Chem. Eng. A 2010, 17, 1645–1654. [Google Scholar]
- Caradot, N.; Rouault, P.; Clemens, F.; Cherqui, F. Evaluation of uncertainties in sewer condition assessment. Struct. Infrastruct. Eng. 2018, 14, 264–273. [Google Scholar] [CrossRef]
- Shortridge, J.E.; Guikema, S.D.; Zaitchik, B.F. Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci. 2016, 20, 2611–2628. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.K.; Upadhyay, A.; Singh, V.P. Effect of variable roughness on runoff. J. Hydrol. 2010, 382, 115–127. [Google Scholar] [CrossRef]
- Rouault, P.; Waschnewski, J.; Schmitt, T.G.; Thamsen, P.U. Zukunftsorientierte Anpassung der Urbanen Abwasserinfrastruktur- Leitfaden zum Methodischen Vorgehen. Projekt KURAS, Schwerpunkt “Abwassersysteme”; Technische Universität Kaiserslautern: Berlin, Germany, 2016. [Google Scholar]
- Skotnicki, M.; Sowiński, M. Verification of subcatchment hydraulic width evaluation method exemplified by real urban catchment [Weryfikacja metody wyznaczania szerokości hydraulicznej zlewni cząstkowej na przykładzie wybranej zlewni miejskiej]. Prace Naukowe Politechniki Warszawskiej. Inżynieria Sr. 2009, 57, 27–43. [Google Scholar]
- Choi, K.; Ball, J.E. Parameter estimation for urban runoff modelling. Urban Water 2002, 4, 31–41. [Google Scholar] [CrossRef]
- Grari, A.; Chourak, M.; Boushaba, F.; Cherif, S.; Alonso, E.G. Numerical characterization of torrential floods in the plain of Saïdia (North-East of Morocco). Arab. J. Geosci. 2019, 12, 321. [Google Scholar] [CrossRef]
- Nowogoński, I.; Ogiołda, E.; Musielak, M. Estimation of the Hydraulic Width of the Subcatchment Depending on the Degree of Detail of the Drainage System Model. Civ. Environ. Eng. Rep. 2019, 29, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Henrichs, M.; Langner, J.; Uhl, M. Development of a simplified urban water balance model (WABILA). Water Sci. Technol. 2016, 73, 1785–1795. [Google Scholar] [CrossRef]
- Morbidelli, R.; Corradini, C.; Saltalippi, C.; Flammini, A.; Dari, J.; Govindaraju, R. Rainfall Infiltration Modeling: A Review. Water 2018, 10, 1873. [Google Scholar] [CrossRef] [Green Version]
- Valinski, N.A. Infiltration Performance of Engineered Surfaces Commonly Used Infiltration Performance of Engineered Surfaces Commonly Used for Distributed Stormwater Management for Distributed Stormwater Management. (2014). Theses—ALL. 72. Available online: https://surface.syr.edu/thesis/72 (accessed on 10 May 2022).
- Alizadehtazi, B.; DiGiovanni, K.; Foti, R.; Morin, T. Comparison of Observed Infiltration Rates of Different Permeable Urban Surfaces Using a Cornell Sprinkle Infiltrometer. J. Hydrol. Eng. 2016, 21, 06016003. [Google Scholar] [CrossRef]
- McCarthy, D.T.; Zhang, K.; Westerlund, C.; Viklander, M.; Bertrand-Krajewski, J.-L.; Fletcher, T.D.; Deletic, A. Assessment of sampling strategies for estimation of site mean concentrations of stormwater pollutants. Water Res. 2018, 129, 297–304. [Google Scholar] [CrossRef]
- Mancipe-Munoz, N.A.; Buchberger, S.G.; Suidan, M.T.; Lu, T. Calibration of Rainfall-Runoff Model in Urban Watersheds for Stormwater Management Assessment. J. Water Resour. Plan. Manag. 2014, 140, 05014001. [Google Scholar] [CrossRef]
- Bajracharya, A.; Awoye, H.; Stadnyk, T.; Asadzadeh, M. Time Variant Sensitivity Analysis of Hydrological Model Parameters in a Cold Region Using Flow Signatures. Water 2020, 12, 961. [Google Scholar] [CrossRef] [Green Version]
- Rammal, M.; Berthier, E. Runoff Losses on Urban Surfaces during Frequent Rainfall Events: A Review of Observations and Modeling Attempts. Water 2020, 12, 2777. [Google Scholar] [CrossRef]
- Geberemariam, T. Urban Drainage Infrastructure Design Model Calibration and Output Uncertainty Minimization. Int. J. Sci. Eng. Res. 2015, 3, 2347–3878. [Google Scholar]
- Mrowiec, M. The Effective Dimensioning and Dynamic Regulation Sewage Reservoirs; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2009; ISBN 9788371934247. [Google Scholar]
- Kumarasamy, K.; Belmont, P. Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains. Water 2018, 10, 710. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Ghasemi, A. Hydraulic performance analysis of sewer systems with uncertain parameters. J. Hydroinform. 2012, 14, 682–696. [Google Scholar] [CrossRef] [Green Version]
- Pang, B.; Shi, S.; Zhao, G.; Shi, R.; Peng, D.; Zhu, Z. Uncertainty Assessment of Urban Hydrological Modelling from a Multiple Objective Perspective. Water 2020, 12, 1393. [Google Scholar] [CrossRef]
- Del Giudice, G.; Padulano, R. Sensitivity Analysis and Calibration of a Rainfall-Runoff Model with the Combined Use of EPA-SWMM and Genetic Algorithm. Acta Geophys. 2016, 64, 1755–1778. [Google Scholar] [CrossRef] [Green Version]
- Aron, G.; Ball, J.E.; Smith, T.A. Fractal Concept Used in Time-of-Concentration Estimates. J. Irrig. Drain. Eng. 1991, 117, 635–641. [Google Scholar] [CrossRef]
- Jeffers, S.; Montalto, F. Modeling Urban Sewers with Artificial Fractal Geometries. CHI JWMM 2018, 26, C455. [Google Scholar] [CrossRef]
- Strahler, A.N.; Chow, V.T. Quantitative Geomorphology of Drainage Basins and Channel Networks; Handbook of Applied Hydrology; McGraw Hill: New York, NY, USA, 1964; pp. 439–476. [Google Scholar]
- Myronidis, D.; Ioannou, K. Forecasting the Urban Expansion Effects on the Design Storm Hydrograph and Sediment Yield using Artificial Neural Networks. Water 2018, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Salavati, B.; Oudin, L.; Furusho-Percot, C.; Ribstein, P. Modeling approaches to detect land-use changes: Urbanization analyzed on a set of 43 US catchments. J. Hydrol. 2016, 538, 138–151. [Google Scholar] [CrossRef] [Green Version]
- Vandenberghe, S.; Verhoest, N.E.C.; Buyse, E.; De Baets, B. A stochastic design rainfall generator based on copulas and mass curves. Hydrol. Earth Syst. Sci. 2010, 14, 2429–2442. [Google Scholar] [CrossRef] [Green Version]
- Vernieuwe, H.; Vandenberghe, S.; De Baets, B.; Verhoest, N.E.C. A continuous rainfall model based on vine copulas. Hydrol. Earth Syst. Sci. 2015, 19, 2685–2699. [Google Scholar] [CrossRef] [Green Version]
- DWA-A 118E; Hydraulische Bemessung und Nachweis von Entwässerungssystemen. DWA: Hennef, Germany, 2006; ISBN 3924063494.
- Rupp, D.E.; Licznar, P.; Adamowski, W.; Leśniewski, M. Multiplicative cascade models for fine spatial downscaling of rainfall: Parameterization with rain gauge data. Hydrol. Earth Syst. Sci. 2012, 16, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Licznar, P.; Schmitt, T.G.; Rupp, D.E. Distributions of microcanonical cascade weights of rainfall at small timescales. Acta Geophys. 2011, 59, 1013–1043. [Google Scholar] [CrossRef]
- Licznar, P.; Łomotowski, J.; Rupp, D.E. Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator. Atmos. Res. 2011, 99, 563–578. [Google Scholar] [CrossRef]
- De Paola, F.; Ranucci, A. Analysis of spatial variability for stormwater capture tank assessment. Irrig. Drain. 2012, 61, 682–690. [Google Scholar] [CrossRef]
- Fu, G.; Butler, D. Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 2014, 510, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Cong, R.-G.; Brady, M. The Interdependence between Rainfall and Temperature: Copula Analyses. Sci. World J. 2012, 2012, 405675. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Kapelan, Z. Flood analysis of urban drainage systems: Probabilistic dependence structure of rainfall characteristics and fuzzy model parameters. J. Hydroinform. 2013, 15, 687–699. [Google Scholar] [CrossRef] [Green Version]
- De Paola, F.; De Martino, F. Stormwater Tank Performance: Design and Management Criteria for Capture Tanks Using a Continuous Simulation and a Semi-Probabilistic Analytical Approach. Water 2013, 5, 1699–1711. [Google Scholar] [CrossRef] [Green Version]
- Szeląg, B.; Chmielowski, K.; Dacewicz, E. Simulation of a storm overflow with probabilistic and hydrodynamic models. Urban Water J. 2018, 15, 662–670. [Google Scholar] [CrossRef]
- Szeląg, B.; Bąk, Ł.; Suligowski, R.; Górski, J. Statistical models to predict discharge overflow. Water Sci. Technol. 2018, 78, 1208–1218. [Google Scholar] [CrossRef] [Green Version]
- Holman-Dodds, J.K.; Bradley, A.A.; Potter, K.W. Evaluation of hydrologic benefits of infiltration based urban storm water management. JAWRA 2003, 39, 205–215. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.J.; Hu, M.; Yang, H.; Tanaka, K. Design of low impact development in the urban context considering hydrological performance and life-cycle cost. Flood Risk Manag. 2020, 13, e12625. [Google Scholar] [CrossRef]
- Zanandrea, F.; da Silveira, A.L.L. Effects of LID Implementation on Hydrological Processes in an Urban Catchment under Consolidation in Brazil. J. Environ. Eng. 2018, 144, 04018072. [Google Scholar] [CrossRef]
- Jackisch, N.; Weiler, M. The hydrologic outcome of a Low Impact Development (LID) site including superposition with streamflow peaks. Urban Water J. 2015, 14, 143–159. [Google Scholar] [CrossRef]
- Kim, H.; Kim, G. An Effectiveness Study on the Use of Different Types of LID for Water Cycle Recovery in a Small Catchment. Land 2021, 10, 1055. [Google Scholar] [CrossRef]
- Garbanzos, S.; Maniquiz-Redillas, M. Modeling the Hydrologic Performance and Cost-Effectiveness of LID in a Residential Park Area Using a Decentralized Design Approach. Hydrology 2022, 9, 62. [Google Scholar] [CrossRef]
- Zhou, Q. A Review of Sustainable Urban Drainage Systems Considering the Climate Change and Urbanization Impacts. Water 2014, 6, 976–992. [Google Scholar] [CrossRef]
- Joksimovic, D.; Alam, Z. Cost Efficiency of Low Impact Development (LID) Stormwater Management Practices. Procedia Eng. 2014, 89, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, Y.; Yang, R.; Zhao, Y. Exploring the Optimal Cost-Benefit Solution for a Low Impact Development Layout by Zoning, as Well as Considering the Inundation Duration and Inundation Depth. Sustainability 2020, 12, 4990. [Google Scholar] [CrossRef]
- Bhattarai, R.; Yoshimura, K.; Seto, S.; Nakamura, S.; Oki, T. Statistical model for economic damage from pluvial floods in Japan using rainfall data and socioeconomic parameters. Nat. Hazards Earth Syst. Sci. 2016, 16, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Bonneau, J.; Fletcher, T.D.; Costelloe, J.F.; Poelsma, P.J.; James, R.B.; Burns, M.J. Where Does Infiltrated Stormwater Go? Interactions with Vegetation and Sub-surface Anthropogenic Features. J. Hydrol. 2018, 567, 121–132. [Google Scholar] [CrossRef]
- Bosseler, B.; Brüggemann, T.; Dyrbusch, A.; Beck, D.; Kohler, T.; Kramp, T.; Klippstein, C.; Stolpe, H.; Borgmann, A.; Disse, M.; et al. Sealing of Sewer Pipes—Effects on the Purification Performance of Wastewater Treatment Plants and Their Impact on the Local Water Balance. Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety 2015, 21. Available online: http://www.umweltbundesamt.de/publikationen/kanalabdichtungenauswirkungen-auf-die (accessed on 10 May 2022).
- Rodríguez-Rojas, M.I.; Huertas-Fernández, F.; Moreno, B.; Martínez, G.; Grindlay, A.L. A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain. J. Environ. Manag. 2018, 205, 151–162. [Google Scholar] [CrossRef]
- Fuchs, L. Hydrologische Leistungsfähigkeit Städtischer Kanalnetze; Institut für Wasserwirtschaft, Hydrologie und Landwirtschaftlichen Wasserbau der Universität Hannover, Itwh GmbH: Hannover, Germany, 1987; Heft 63; pp. 1–178. [Google Scholar]
- Ballinas-González, H.; Alcocer-Yamanaka, V.; Pedrozo-Acuña, A. Uncertainty Analysis in Data-Scarce Urban Catchments. Water 2016, 8, 524. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Program Name | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EPA SWMM | MIKE URBAN | SWAT | STORM | HSPF | MUSIC | DRAINS | Civil 3D | MOUSE | Infowork SD | |||
Accessibility | Public domain | X | X | X | X | X | ||||||
Commercial | X | X | X | |||||||||
Functionality | Planning | X | X | X | X | X | X | |||||
Operational | X | X | X | X | X | |||||||
Design | X | X | X | X | X | X | X | |||||
Model characteristic | Water quality model | X | X | X | X | X | X | X | X | |||
Hydrologic Model | X | X | X | X | X | X | X | X | X | |||
Hydraulic Model | X | X | X | X | X | X | ||||||
Symulation types | Event | X | X | X | X | X | X | X | ||||
Continuous | X | X | X | X | X | X | ||||||
Green infrastructure modelling | X | X | X | X | X | |||||||
Model quantity components | Pipes | X | X | X | X | X | ||||||
Open channel | X | X | X | X | X | X | ||||||
Retarding basins | X | X | X | |||||||||
Natural streams | X | X | X | X | X | |||||||
Rainfall runoff | X | X | X | X | X | X |
Pipeline Material | Mannig Coefficient, n [s/m1/3] | References |
---|---|---|
Asbestos—cement pipe | 0.011–0.015 | [127] |
Brick | 0.013–0.017 | |
Cast iron pipe—cement-lined and seal coated | 0.011–0.015 | |
Concrete (monolithic) | ||
| 0.012–0.014 | |
| 0.015–0.017 | |
Concrete pipe | 0.011–0.015 | |
Corrugated-metal pipe (1/2-in.x2/3-in. corrugations) | ||
| 0.022–0.026 | |
| 0.018–0.022 | |
| 0.011–0.015 | |
Plastic pipe (smooth) | 0.011–0.015 | |
Vitrified clay | 0.011–0.015 | |
Corrugated polyethylene (PE)pipe with smooth inner walls | 0.009–0.015 | [25] |
Corrugated polyethylene (PE)pipe with corrugated inner walls | 0.018–0.025 | |
Polyvinyl chlooride (PVC) pipe with smooth inner walls | 0.005–0.009 | |
Cast iron pipe | 0.013 |
Description of Area | Runoff Coefficient (-) | References |
---|---|---|
Downtown | 0.70–0.95 | [138] |
Neighborhood | 0.50–0.70 | |
Residental single—family | 0.30–0.50 | |
Residential multiunits, detached | 0.40–0.60 | |
Residential multiunits, attached | 0.60–0.75 | |
Residential (suburban) | 0.25–0.40 | |
Apartment | 0.50–0.70 | |
Industrial—light | 0.50–0.80 | |
Industrial—heavy | 0.60–0.90 | |
Parks, cementaries | 0.10–0.25 | |
Playgrounds | 0.20–0.35 | |
Railroad yard | 0.20–0.30 | |
Unimproved | 0.10–0.30 | |
Parks, cementaries | 0.10–0.25 | |
Asphaltic and concreto road | 0.70–0.95 | |
Brick road/pavement | 0.70–0.85 | |
Industrial area | 0.865 | [139] |
Airport | 0.8 | |
Built-up areas | 0.865 | |
Harbour | 0.865 | |
Recreation | 0.075 | |
Solid waste disposal site | 0 | |
Tourism development | 0.325 | |
Pavement | 0.70–0.90 | [140] |
Permeable pavement | 0.30–0.40 | |
Gravel road | 0.30–0.70 | |
Shoulder or top of slope: | ||
Fine soil | 0.40–0.65 | |
Coarse soil | 0.10–0.30 | |
Hard rock | 0.70–0.85 | |
Soft rock | 0.50–0.75 | |
Unused bare land | 0.20–0.40 | |
Athletic field | 0.40–0.80 | |
Park with vegetation | 0.10–0.25 | |
Mountain with a gentle slope | 0.30 | |
Mountain with a steep slope | 0.50 | |
Farmland | 0.10–0.30 | |
Roofs | 0.75–0.95 | [138,140] |
1.00 | ||
Lawns, sandy soil: | ||
Flat, 2% | 0.05–0.10 | |
Avarage, 2–7% | 0.10–0.15 | |
Steep, 7% | 0.15–0.20 | |
Lawns, heavy soil: | ||
Flat, 2% | 0.13–0.17 | |
Avarage, 2–7% | 0.18–0.22 | |
Steep, 7% | 0.25–0.35 |
Imprevious Material | Mannig Coefficient, n [s/m1/3] | References |
---|---|---|
Concrete or asphalt | 0.011 | [25] |
Smooth asphalt | 0.011 | [141] |
Smooth concrete | 0.012 | |
Brick with cement mortar | 0.014 | |
Cement ruble Surface | 0.024 | |
Short grass | 0.15 | |
Pervious area | 0.02 to 0.05 (0.2 *) | [142] |
Impervious area | 0.03 to 0.08 (0.015 *) | |
Pervious area | 0.25 | [143] |
Impervious area | 0.05 | |
Permeable pavement | 0.013 | [144] |
Vegetated Swale | 0.15 | |
Rain Garden | 0.1 | |
Rooftop | 0.011–0.012 | [145] |
Road, pavement and other impervious | 0.011–0.013 | |
Green area | 0.15 | |
Concrete block pavement area | 0.01 | [146] |
Grasses | 0.2 | [147] |
Woods | 0.4 | |
Concrete Buildings | 0.015 | |
Asphalt or Cement Paved Surface | 0.011 | |
Pavement cross section | 0.03 | [148] |
Asphalt/concrete | 0.011–0.013 (0.014 *) | [149] |
Grass/tree | 0.18–0.8 (0.3 *) | |
Porous concrete block paving | 0.06–0.1 (0.05 *) | [150] |
Impervious surfaces | 0.1 | |
Green urban areas Sport and leisure facilities | 0.025 | [151] |
Road and rail networks and associated land | 0.013 |
Type of Area | Maximum Infiltration Rate (mm/h) | Minimum Infiltration Rate (mm/h) | References |
---|---|---|---|
Rooftop, Road, pavement and other impervious, Green area | 122.0 | 17.5 | [145] |
Pavement cross section | 76.2 | 3.18 | [148] |
Flexible Porous Pavement | 217.20 | 73.20 | [169] |
Small Porous Brick Pavers | 259.20 | 59.40 | |
Large Porous Brick Pavers | 339 | 145.80 | |
Engineered Soil | 348 | 72 | |
Vegetated Soil | 152.40 | 46.80 | |
Cast in Place Porous Concrete | 270 | 21.60 | |
Precast Porous Concrete | 241.80 | 58.20 | |
Porous Asphalt | 327.6 | 56.40 | [169] |
180 | 0 | [170] | |
Porous Concrete | 450 | 348 | [170] |
Vegetated courtyards | 234 | 84 | |
Urban parks | 48 | 30 | |
Porous rubberized safety materials | 324 | 12 | |
Porous pavers | 90 | 60 | |
Backyards | 204 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szeląg, B.; Łagód, G.; Musz-Pomorska, A.; Widomski, M.K.; Stránský, D.; Sokáč, M.; Pokrývková, J.; Babko, R. Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments. Water 2022, 14, 1997. https://doi.org/10.3390/w14131997
Szeląg B, Łagód G, Musz-Pomorska A, Widomski MK, Stránský D, Sokáč M, Pokrývková J, Babko R. Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments. Water. 2022; 14(13):1997. https://doi.org/10.3390/w14131997
Chicago/Turabian StyleSzeląg, Bartosz, Grzegorz Łagód, Anna Musz-Pomorska, Marcin K. Widomski, David Stránský, Marek Sokáč, Jozefína Pokrývková, and Roman Babko. 2022. "Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments" Water 14, no. 13: 1997. https://doi.org/10.3390/w14131997
APA StyleSzeląg, B., Łagód, G., Musz-Pomorska, A., Widomski, M. K., Stránský, D., Sokáč, M., Pokrývková, J., & Babko, R. (2022). Development of Rainfall-Runoff Models for Sustainable Stormwater Management in Urbanized Catchments. Water, 14(13), 1997. https://doi.org/10.3390/w14131997