Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China
Abstract
:1. Introduction
2. Material and Method
2.1. Study Area
2.2. Sampling and Analysis
2.3. Leaching Potential Assessment
2.4. Ecological Risk Assessment
2.5. Pseudo-Partitioning (P-PC)
3. Results and Discussion
3.1. Occurrence of PPCPs in Surface Sediments
3.2. Spatial Variation in PPCPs in Surface Sediments
3.3. Pearson Correlation Analysis of PPCP Concentration and Hydrochemical Parameters in Surface Sediments
3.4. The Relationship between PPCP Concentration in Surface Sediments and Water
3.5. Environmental Risks of PPCPs in Surface Sediments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Arpin-Pont, L.; Bueno, M.; Gomez, E.; Fenet, H. Occurrence of PPCPs in the marine environment: A review. Environ. Sci. Pollut. Res. 2016, 23, 4978–4991. [Google Scholar] [CrossRef] [PubMed]
- Cizmas, L.; Sharma, V.K.; Gray, C.M.; McDonald, T.J. Pharmaceuticals and personal care products in waters: Occurrence, toxicity, and risk. Environ. Chem. Lett. 2015, 13, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Caliman, F.A.; Gavrilescu, M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—A review. Clean–Soil Air Water 2009, 37, 277–303. [Google Scholar] [CrossRef]
- Ashfaq, M.; Nawaz Khan, K.; Saif Ur Rehman, M.; Mustafa, G.; Faizan Nazar, M.; Sun, Q.; Iqbal, J.; Mulla, S.I.; Yu, C.P. Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol. Environ. Saf. 2017, 136, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.J.S.; Barbosa, S.C.; Malinowski, M.M.; Volpato, D.; Castro, I.B.; Franco, T.; Primel, E.G. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Sci. Total Environ. 2020, 734, 139374. [Google Scholar] [CrossRef]
- Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. J. Environ. Manag. 2020, 253, 109741. [Google Scholar] [CrossRef]
- Pan, X.; Qiang, Z.; Wang, W. Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake. Environ. Chem. 2016, 35, 2234–2244. [Google Scholar]
- Chen, Y.; Xu, Y.N.; Xiang, S.; Chen, S.Q.; Huang, T.Y.; Pang, Y.; Huang, J.H. Occurrence characteristics and ecological risk assessment of PPCPs in surface sediments of Luoma Lake. Environ. Sci. Res. 2021, 34, 9. [Google Scholar] [CrossRef]
- Dai, G.; Wang, B.; Huang, J.; Dong, R.; Deng, S.; Yu, G. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 2015, 119, 1033–1039. [Google Scholar] [CrossRef]
- Tamura, I.; Kimura, K.; Kameda, Y.; Nakada, N.; Yamamoto, H. Ecological risk assessment of urban creek sediments contaminated by untreated domestic wastewater: Potential contribution of antimicrobials and a musk fragrance. Environ. Technol. 2013, 34, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, T.; Zhou, Y.; Shi, B.; Meng, J. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Sci. Total Environ. 2020, 760, 144080. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, J.; Teng, Y.; Chen, H.; Wang, Y. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. J. Hazard. Mater. 2019, 388, 121766. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hernández, V.; Meffe, R.; Herrera, S.; Arranz, E.; de Bustamante, I. Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Sci. Total Environ. 2014, 472, 273–281. [Google Scholar] [CrossRef]
- Long, E.R.; Dutch, M.; Weakland, S.; Chandramouli, B.; Benskin, J.P. Quantification of pharmaceuticals, personal care products, and perfluoroalkyl substances in the marine sediments of Puget Sound, Washington, USA. Environ. Toxicol. Chem. 2013, 32, 1701–1710. [Google Scholar] [CrossRef]
- Wu, D.; Sui, Q.; Yu, X.; Zhao, W.; Li, Q.; Fatta-Kassinos, D.; Lyu, S. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Sci. Total Environ. 2021, 753, 141653. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef]
- Dai, G.; Wang, B.; Fu, C.; Dong, R.; Huang, J.; Deng, S.; Wang, Y.; Yu, G. Pharmaceuticals and personal care products (PPCPs) in urban and suburban rivers of Beijing, China: Occurrence, source apportionment and potential ecological risk. Environ. Sci. Process. Impacts 2016, 18, 445–455. [Google Scholar] [CrossRef]
- Zhang, C.; Wan, Z.; Jing, Z.; Zhang, S.; Zhao, Y. Calculation of ecological water requirements of urban rivers using a hydrological model: A case study of Beiyun River. J. Clean. Prod. 2020, 262, 121368. [Google Scholar] [CrossRef]
- Ren, J.; Liang, J.; Ren, B.; Zheng, X.; Guo, C. New patterns of temporal and spatial variation in water quality of a highly artificialized urban river-course—A case study in the Tongzhou Section of the Beiyun River. Water 2018, 10, 1446. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS: EPA-821-R-08-002; US EPA: Washington, DC, USA, 2007.
- Wu, J.; Liu, J.; Pan, Z.; Wang, B.; Zhang, D. Spatiotemporal distributions and ecological risk assessment of pharmaceuticals and personal care products in groundwater in north china. Hydrol. Res. 2020, 51, 911–924. [Google Scholar] [CrossRef]
- Harada, A.; Komori, K.; Nakada, N.; Kitamura, K.; Suzuki, Y. Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Sci. Technol. 2008, 58, 1541–1546. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Carlson, K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ. Sci. Technol. 2007, 41, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Bedoux, G.; Roig, B.; Thomas, O.; Dupont, V.; Le Bot, B. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. 2012, 19, 1044–1065. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.T.; Greenway, S.L.; Farris, J.L.; Guerra, B. Assessing caffeine as an emerging environmental concern using conventional approaches. Arch. Environ. Contam. Toxicol. 2008, 54, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Zhang, R.; Wang, Y.; Xiang, L.; Li, J.; Gan, Z. Antibiotic contamination in a typical developing city in South China: Occurrence and ecological risks in the Yong jiang river impacted by tributary discharge and anthropogenic activities. Ecotoxicol. Environ. Saf. 2013, 92, 229–236. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Zhou, C.; Guo, C.; Wang, D.; Du, P.; Luo, Y.; Wan, J.; Meng, W. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Sci. Total Environ. 2014, 497, 267–273. [Google Scholar] [CrossRef]
- Zhang, P.W.; Zhou, H.D.; Zhao, G.F.; Li, K.; Zhao, X.H.; Liu, Q.N.; Ren, M.; Zhao, D.D.; Li, D.J. Potential risk and distribution characteristics of PPCPs in surface water and sediment from rivers and lakes in Beijing, China. Environ. Sci. 2017, 38, 1852–1862. [Google Scholar] [CrossRef]
- Hu, Y.; Yan, X.; Shen, Y.; Di, M.; Wang, J. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol. Environ. Saf. 2018, 157, 150–158. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, H.; Li, K.; Zhao, X.; Liu, Q.; Li, D.; Zhao, G. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China. Environ. Geochem. Health 2018, 40, 1525–1539. [Google Scholar] [CrossRef]
- Xie, H.W.; Hao, H.S.; Xu, N.; Liang, X.X.; Gao, D.X.; Xu, Y.; Gao, Y.; Tao, H.C.; Wong, M.H. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the pearl river delta: Occurrence, distribution, potential sources, and health risk assessment. Sci. Total Environ. 2019, 659, 230–239. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, L.; Luo, Z.; Yan, C.; Zhang, X. Occurrence of selected antibiotics in Jiulongjiang River in various seasons, South China. J. Environ. Monit. 2011, 13, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of antibiotics in a large-scale river system of China: Occurrence pattern, spatiotemporal distribution and environmental risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lu, G.; Liu, J.; Yan, Z.; Ma, B.; Zhang, Z.; Chen, W. Occurrence, bioaccumulation, and trophic magnification of pharmaceutically active compounds in Taihu Lake, China. Chemosphere 2015, 138, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.J.; Pan, C.G.; Zhang, M.; Zhang, N.S.; Windfeld, R.; Salvito, D.; Selck, H.; Van den Brink, P.J.; Ying, G.-G. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. Sci. Total Environ. 2017, 589, 46–55. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Dong, D.; Zhang, X.; Sun, C.; Wang, C.; Hua, X.; Zhang, L.; Guo, Z. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China). Environ. Sci. Pollut. Res. 2018, 25, 24003–24012. [Google Scholar] [CrossRef]
- Zhao, J.L.; Ying, G.G.; Liu, Y.S.; Chen, F.; Yang, J.F.; Wang, L. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. J. Hazard. Mater. 2010, 179, 215–222. [Google Scholar] [CrossRef]
- Liu, W.R.; Zhao, J.L.; Liu, Y.S.; Chen, Z.F.; Yang, Y.Y.; Zhang, Q.Q.; Ying, G.G. Biocides in the Yangtze river of china: Spatiotemporal distribution, mass load and risk assessment. Environ. Pollut. 2015, 200, 53–63. [Google Scholar] [CrossRef]
- Gao, Y.; Jie, L.I.; Nan, X.U.; Jinren, N.I.; University, P. Pollution levels and ecological risks of PPCPs in water and sediment samples of Hanjiang river. Environ. Chem. 2018, 37, 1706–1719. [Google Scholar] [CrossRef]
- Zhang, P.W.; Zhou, H.D.; Zhao, G.F.; Li, K.; Liu, Q.N.; Ren, M.; Zhao, D.D.; Li, D.J. Spatial and temporal distribution characteristics and potential risks of PPCPs in surface sediments of Taihu Lake. Environ. Sci. 2016, 37, 3348–3355. [Google Scholar] [CrossRef]
- Lewandowski, J.; Putschew, A.; Schwesig, D.; Neumann, C.; Radke, M. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: Results of a preliminary field study. Sci. Total Environ. 2011, 409, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, K.; Tsujimura, M.; Song, X.; Zhang, J. Interaction between surface water and groundwater revealed by multi-tracer and statistical approaches in the Baiyangdian lake watershed, north china plain. Hydrol. Res. Lett. 2016, 10, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Marques, R.; Sampaio, M.J.; Carrapic, O.P.M.; Silva, C.G.; Morales-Torres, S.; Drazi, G.D.; Fariaa, J.L.; Silvaa, A.M.T. Photocatalytic degradation of caffeine: Developing solutions for emerging pollutants. Catal. Today 2013, 209, 108–115. [Google Scholar] [CrossRef]
- Ngo, T.H.; Van, D.A.; Tran, H.L.; Nakada, N.; Huynh, T.H. Occurrence of pharmaceutical and personal care products in Cau river, Vietnam. Environ. Sci. Pollut. Res. 2021, 28, 12082–12091. [Google Scholar] [CrossRef] [PubMed]
- Beretta, M.; Britto, V.; Tavares, T.M.; Silva, S.; Pletsch, A.L. Occurrence of pharmaceutical and personal care products (PPCPs) in marine sediments in the Todos os Santos Bay and the north coast of Salvador, Bahia, Brazil. J. Soils Sediments 2014, 14, 1278–1286. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Paule, A.L. Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA. Harmful Algae 2017, 70, 1–22. [Google Scholar] [CrossRef]
- Liang, X.; Chen, B.; Nie, X.; Shi, Z.; Huang, X.; Li, X. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China. Chemosphere 2013, 92, 1410–1416. [Google Scholar] [CrossRef]
- Zhang, P.W. Environmental Behavior and Potential Risk of PPCPs in Typical Water Bodies of Haihe River Basin. Ph.D. Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2018. [Google Scholar]
- Chen, X.Y.; Zhang, K.; Chao, L.J.; Liu, Z.Y.; Du, Y.H.; Xu, Q. Quantifying natural recharge characteristics of shallow aquifers in groundwater overexploitation zone of North China. Water Sci. Eng. 2021, 14, 184–192. [Google Scholar] [CrossRef]
- Morais, S.A.; Delerue-Matos, C.; Gabarrell, X. An uncertainty and sensitivity analysis applied to the prioritisation of pharmaceuticals as surface water contaminants from wastewater treatment plant direct emissions. Sci. Total Environ. 2014, 490, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Katsikaros, A.G.; Chrysikopoulos, C.V. Occurrence and distribution of pharmaceuticals and personal care products (PPCPs) detected in lakes around the world—A review. Environ. Adv. 2021, 6, 100131. [Google Scholar] [CrossRef]
- Barceló, D.; Petrovic, M. Pharmaceuticals and personal care products (PPCPs) in the environment. Anal. Bioanal. Chem. 2007, 387, 1141–1142. [Google Scholar] [CrossRef]
- Quinn, B.; Gagné, F.; Blaise, C. An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Sci. Total Environ. 2008, 389, 306–314. [Google Scholar] [CrossRef]
- Ando, T.; Nagase, H.; Eguchi, K.; Hirooka, T.; Nakamura, T.; Miyamoto, K.; Hirata, K. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environ. Toxicol. Chem. Int. J. 2007, 26, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Kim, Y.; Jung, J.; Kim, M.H.; Kim, C.S.; Kim, N.H.; Park, J. Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environ. Toxicol. Chem. Int. J. 2008, 27, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Parolini, M.; Pedriali, A.; Binelli, A. Application of a biomarker response index for ranking the toxicity of five pharmaceutical and personal care products (PPCPs) to the bivalve Dreissena polymorpha. Arch. Environ. Contam. Toxicol. 2013, 64, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.D.; Li, W.; Kan, X.L.; Li, J.Y. Research advances on the pollution of pharmaceutical and personal care products (PPCPs) in natural waters and their toxicity to freshwater algae. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2019, 30, 3252–3264. [Google Scholar]
- Białk-Bielińska, A.; Stolte, S.; Arning, J.; Uebers, U.; Böschen, A.; Stepnowski, P.; Matzke, M. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 2011, 85, 928–933. [Google Scholar] [CrossRef]
- Park, S.; Choi, K. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 2008, 17, 526–538. [Google Scholar] [CrossRef]
- Brain, R.A.; Ramirez, A.J.; Fulton, B.A.; Chambliss, C.K.; Brooks, B.W. Herbicidal Effects of Sulfamethoxazole in Lemna gibba: Using p-Aminobenzoic Acid As a Biomarker of Effect. Environ. Sci. Technol. 2008, 42, 8965–8970. [Google Scholar] [CrossRef]
- Han, G.H.; Hur, H.G.; Kim, S.D. Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in Korea: Occurrence and toxicity to Daphnia magna. Environ. Toxicol. Chem. 2006, 25, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Choi, K.; Kim, J.; Ji, K.; Kim, S.; Ahn, B.; Yun, J.; Choi, K.; Kjim, J.S.; Zhang, X.; et al. Endocrine disruption and consequences of chronic exposure to ibuprofen in Japanese medaka (Oryzias latipes) and freshwater cladocerans Daphnia magna and Moina macrocopa. Aquat. Toxicol. 2010, 98, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Dussault, È.B.; Balakrishnan, V.K.; Sverko, E.D.; Solomon, K.R.; Sibley, P.K. Toxicity of human pharmaceuticals and personal care products to benthic invertebrates. Environ. Toxicol. Chem. Int. J. 2008, 27, 425–432. [Google Scholar] [CrossRef]
- Yang, L.H.; Ying, G.G.; Su, H.C.; Stauber, J.L.; Adams, M.S.; Binet, M.T. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 2010, 27, 1201–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lower, N. The effects of contaminants on various life-cycle stages of Atlantic salmon (Salmo salar L.). Ph.D. Thesis, University of Portsmouth, Portsmouth, UK, 2008. [Google Scholar]
Chemical | Location | Range | Reference |
---|---|---|---|
TMP | Nanjing | ND–1.07 | Xue et al. 2013 [27] |
Taihu Lake | ND–39.3 | Xu et al., 2014 [28] | |
Beijing | ND–5.02 | Zhang et al. 2017 [29] | |
Hanjiang River | ND–10 | Hu et al., 2018 [30] | |
Baiyang Lake | ND–7.26 | Zhang et al., 2018 [31] | |
Pearl River | 0.1–0.2 | Xie et al., 2019 [32] | |
This study | ND–1.55 | ||
SMX | Jiulong River | 1.2–3.4 | Zhang et al., 2011 [33] |
Baiyang Lake | ND–7.9 | Li et al., 2012 [34] | |
Taihu Lake | ND–49.3 | Xu et al., 2014 [28] | |
Beijing | ND–0.35 | Zhang et al., 2017 [29] | |
Hanjiang River | ND–1.2 | Hu et al., 2018 [30] | |
Haihe River | 1.2–2.54 | Chen et al., 2018 [35] | |
Pearl River | ND | Xie et al., 2019 [32] | |
This study | ND–0.46 | ||
IBU | Taihu Lake | ND–21 | Xie et al., 2015 [36] |
Guangzhou | ND–3.19 | Peng et al., 2017 [37] | |
Songhua River | 25.2–95.0 | He et al., 2018 [38] | |
Pearl River | ND–0.02 | Xie et al., 2019 [32] | |
This study | ND–7.47 | ||
TCS | Liuxi River | ND–116 | Zhao et al., 2010 [39] |
Zhujiang River | 12.2–196 | Zhao et al., 2010 [39] | |
Shijing River | 345–1329 | Zhao et al., 2010 [39] | |
Yangtze River | 0.18–0.63 | Liu et al., 2015 [40] | |
Guangzhou | 0.84–689 | Peng et al., 2017 [37] | |
Hanjiang River | 0–7.73 | Gao et al., 2018 [41] | |
Pearl River | ND–0.1 | Xie et al., 2019 [32] | |
This study | 1.45–697.63 | ||
CAF | Taihu Lake | 25.4–482 | Zhang et al., 2016 [42] |
Chaohu Lake | 1.87–3.27 | Pan et al., 2016 [14] | |
Beijing | ND–1.74 | Zhang et al., 2017 [29] | |
Songhua River | ND–63.7 | He et al., 2018 [38] | |
Baiyang Lake | 1.37–30.51 | Zhang et al., 2018 [31] | |
This study | ND–246.59 |
Site | TMP | SMX | IBU | TCS | CAF |
---|---|---|---|---|---|
A1 | 1.21 | 1.12 | 14.58 | ND | 22.69 |
A2 | 1.13 | 1.17 | 20.99 | 11.46 × 102 | ND |
A3 | 7.64 | 8.52 | 18.30 | 74.50 | 26.02 × 102 |
A4 | 5.34 | ND | ND | 45.38 | ND |
A5 | 0.18 | 10.76 | 12.20 | 18.01 × 103 | 17.40 × 10 |
A6 | 0.56 | ND | ND | 16.67 × 102 | ND |
A7 | 1.60 | ND | 11.44 × 10 | 34.93 × 10 | ND |
A8 | 0.47 | ND | 12.91 | 80.59 × 10 | 11.59 × 102 |
A9 | 2.71 | ND | 20.18 × 10 | 51.08 × 102 | 66.5 × 10 |
A10 | 1.36 | 1.06 | ND | 7.31 | ND |
A11 | 2.22 | 1.78 | ND | 7.39 | ND |
A12 | 93.74 | 3.66 | ND | 18.96 × 10 | 11.58 × 10 |
A13 | 12.49 | 14.80 | ND | 29.10 | ND |
Name | log T1/2 | logKOC | GUS | Leaching Potential |
---|---|---|---|---|
TMP | 1.89 | 2.857 | 2.16 | Middle |
SMX | 1.88 | 2.412 | 2.98 | High |
IBU | 1.48 | 2.626 | 2.03 | Middle |
TCS | 2.08 | 4.369 | −0.77 | Low |
CAF | 1.48 | 1 | 4.43 | High |
Site | Type | TMP | SMX | IBU | TCS | CAF |
---|---|---|---|---|---|---|
A12 | surface water (ng/L) | 0.45 | 10.02 | 176.79 | 133.67 | 304.02 |
sediment (0–20) (μg/kg) | 0.04 | 0.02 | 0.00 | 22.64 | 0.00 | |
sediment (20–40) (μg/kg) | 0.55 | 0.04 | 0.00 | 75.75 | 0.00 | |
sediment (40–60) (μg/kg) | 1.56 | 0.15 | 0.00 | 7.41 | 18.73 | |
groundwater (ng/L) | 0.17 | 7.32 | 189.07 | 6.49 | 612.30 | |
A10 | surface water (ng/L) | 0.64 | 14.10 | 172.18 | 171.16 | 280.75 |
sediment (0–20) (μg/kg) | 0.01 | 0.03 | 0.00 | 2.83 | 0.00 | |
sediment (20–40) (μg/kg) | 0.07 | 0.04 | 0.00 | 1.16 | 12.04 | |
sediment (40–60) (μg/kg) | 0.02 | 0.04 | 0.00 | 0.34 | 0.00 | |
groundwater (ng/L) | 0.01 | 0.74 | 144.70 | 13.05 | 170.67 | |
A3 | surface water (ng/L) | 0.12 | 4.49 | 369.06 | 79.13 | 444.68 |
sediment (0–20) (μg/kg) | 0.05 | 0.04 | 5.54 | 16.63 | 0.00 | |
sediment (20–40) (μg/kg) | 0.03 | 0.06 | 2.62 | 0.74 | 0.00 | |
sediment (40–60) (μg/kg) | 0.07 | 0.13 | 7.48 | 1.18 | 178.51 | |
groundwater (ng/L) | ND | ND | 10.93 | 2.67 | 153.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, S.; Li, B.; Wang, B.; Liu, J.; Song, X. Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China. Water 2022, 14, 1999. https://doi.org/10.3390/w14131999
Pei S, Li B, Wang B, Liu J, Song X. Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China. Water. 2022; 14(13):1999. https://doi.org/10.3390/w14131999
Chicago/Turabian StylePei, Shasha, Binghua Li, Boxin Wang, Jingchao Liu, and Xuanying Song. 2022. "Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China" Water 14, no. 13: 1999. https://doi.org/10.3390/w14131999
APA StylePei, S., Li, B., Wang, B., Liu, J., & Song, X. (2022). Distribution and Ecological Risk Assessment of Pharmaceuticals and Personal Care Products in Sediments of North Canal, China. Water, 14(13), 1999. https://doi.org/10.3390/w14131999