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Abstract: Sensitive detection with cell biosensors requires optimization of their working conditions
and standardization of the response in variable physicochemical conditions. The introduction of an
analyte to a sensor, which contributes to this variability, may account for the modeling of microbial
metabolism. We constructed a multiparameter model of a water toxicity sensor of Automatic Biode-
tector for Water Toxicity (ABTOW), developed by our group and based on nitrifying bacteria. The
model describes the kinetics of nitrification as a function of four orthogonal parameters: temperature,
pH, oxygen and ammonium concentration. Furthermore, we characterized the signal-to-noise ratio
(SNR) of the ABTOW readout as a function of these parameters. Thus, a region of parameter space
corresponding to optimal ABTOW operation is identified and its sensitivity quantified. We applied
the model to describe the ABTOW performance in non-equilibrium conditions produced by rapid
changes in pH and temperature. In sum, the model based on four physicochemical parameters
describes changes in the biosensor’s activity, the biological element of which are nitrifying bacteria
characterized by simple chemolithoautotrophic metabolism. The description of reaction kinetics
through multiparameter modeling in combination with stability analysis can find application in
process control in biotechnology, biodetection and environmental research.

Keywords: ABTOW; nitrification kinetics; suboptimal conditions; modeling

1. Introduction

Mitigation of the risk caused by contamination of drinking water requires sensitive
and inexpensive detection methods compatible with continuous, long-term monitoring.
The former can be achieved with traditional physicochemical analysis. However, the classic
approach may not produce a real-time readout [1,2]. This problem can be solved with
biosensors based on microbial cells. For instance, standard methods include colorimetric
methods (e.g., cyanide detection); atomic absorption spectroscopy methods (e.g., heavy
metals detection); or chromatographic methods (e.g., using High-Performance Liquid Chro-
matography (HPLC) or Gas Chromatography (GC) for polycyclic aromatic hydrocarbons
(PAH) or insecticides detection, respectively) [3,4]. All of them require appropriate sample
preparation, and the analysis of each of them takes at least several minutes. Thus, biosen-
sors based on immobilized bacteria provide the opportunity for real-time water quality
monitoring. The application of microbial cells in water biosensing is a rapidly growing
field [5–8]. Bacteria may be easily immobilized without loss of metabolic activity, providing
durable and inexpensive sensing elements. The advantage of nitrifying bacteria is the high
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consumption of oxygen in their metabolism (especially during ammonium oxidation), with
a simultaneous slight increase in biomass which results from the low energy efficiency of
the nitrification processes. This allows for high metabolic stability of the microorganisms
used as the biological element of the biosensor for a relatively long period of time [9–12].

The Automatic Biodetector of Water Toxicity (ABTOW), developed by our group, is
an example of this approach. The dynamics of biofilm development, optimal working
conditions and the response of ABTOW to different xenobiotics have been determined
empirically [1,2,12,13]. The optimal state may be disturbed by the introduction of examined
water to ABTOW, resulting in a false positive signal. Changes in physicochemical conditions
(temperature, pH or oxygen concentration), caused by the introduction of the analyte, can
be accounted for in a model of microbial metabolism. Owing to the diversity of metabolites
and processes, only selected reactions (or relationships) are included and parameterized
in models [14]. The standard approach includes the determination of stoichiometric and
kinetic coefficients of each process separately [15–17]. Individual reactions are then com-
bined to form a numerical model of a sensor. We adopted this approach for ABTOW, where
nitrification is catalyzed by two groups of ubiquitous lithoautotrophic bacteria. The first
group comprises ammonium-oxidizing bacteria (AOB), and the second, nitrite-oxidizing
bacteria (NOB) [1,18]. We used stoichiometry proposed by Wiesmann et al. [19], which
takes into account both the anabolism and catabolism of 1 mol NH+

4 and NO−2 :

NH+
4 + 1.5O2 → NO−2 + H2O + 2H+ + ∆G0 (1)

NO−2 + 0.5O2 → NO−3 + ∆G0 (2)

This electron flow generates a proton gradient, which participates in adenosine triphos-
phate (ATP) synthesis [20]. When ammonium is the electron source, all the produced nitrite
is consumed immediately in ABTOW [1]. Hence, we focused on the first stage of nitrifica-
tion. We constructed a kinetic model of the ABTOW operation where oxygen consumption
was characterized as a function of pH, temperature and concentrations of substrates.

The objective of this study was the optimization of the model for the search for opti-
mal pH and temperature values for measurement precision: reading changes in oxygen
concentration; shortening the retardation of the reaction time on the environmental changes
(e.g., pollutants, toxic substances); and standardization of the model enabling the recogni-
tion of types of environmental changes in various ranges for different concentrations.

2. Materials and Methods
2.1. Immobilization, Growth and Activity Quantification of Bacteria in ABTOW

Consortia of nitrifying bacteria were isolated from activated sludge from the wastewa-
ter treatment plant Klimzowiec, Katowice (Upper Silesia, Poland). Initially, the bacteria
were isolated after the activated sludge inoculation to the selection media specific for nitri-
fiers according to the protocol described by Mac Donald and Spokes [21]. The consortium of
nitrifiers was characterized previously using genetic and biochemical methods [1,12]. Next,
consortia of nitrifying bacteria were grown in an 8 L laboratory-scale reactor as a fed-batch
culture in physicochemical conditions described previously. The biomass from this biore-
actor was then immobilized in polyurethane sponges (length 100 mm, diameter 25 mm)
located horizontally in polystyrene tubes (120 mm long, diameter 25 mm) in a flow system
in ABTOW [1]. The layout of ABTOW, its calibration and its operation, were described
by Woznica et al. [1,2,12,13]. Briefly, the bacterial biofilms were grown in bioreactors for a
minimum of 14 days to obtain their stable structure and physiology. A mineral medium
with ammonium (3.4 mM) as an electron donor and oxygen (0.24 mM) as an electron
acceptor was used. The medium with tap water, pumped at a rate of 100 mL min−1, was
maintained at 295 K (22 ◦C) and pH of 7.5 [1]. Oxygen consumption rate (v) of AOB was
measured as a difference between the outlet and inlet oxygen concentration corrected for
flow retardation. The correction of the signal from the electrodes consisted in averaging the
measurements from four electrodes localized between the inlet and outlet of each of three
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sequentially connected reactors. In the experiment where the influence of temperature on
the activity of nitrifying bacteria was investigated, the medium and water were initially
incubated in an ice bath (278 K) and then gradually heated to higher temperatures (up to
318 K). The pH of the medium was regulated with sodium hydroxide and sulfuric acid.
The measurements were recorded in 5 s intervals, and the ABTOW activity was represented
as a function of time (v(t)) using quasi-Newton estimation [1,2,12,13].

2.2. Statistical Analysis

Coefficients of the kinetic equations were estimated using nonlinear curve fitting,
implemented in OriginPro 9.1 (OriginLab Corporation) or Statistica 13 (TIBCO software).
The quality of the fit of theoretical and measurement data was evaluated using Pearson’s
chi-squared test (χ2) and r2 statistics.

The signal-to-noise ratio (SNR) was estimated as ν/σ, where ν is the expected (mea-
sured) value of oxygen consumption rate, and σ is a measure of fluctuations resulting
from the stochastic nature of the processes [8]. The signal-to-noise ratio (SNR) is estimated
as ν/σ, where ν is the expected (measured) value of oxygen consumption rate as σ is a
measure of fluctuations resulting from the stochastic nature of the processes [22].

3. Results
3.1. Construction of the ABTOW Model

The performance of a microbial biosensor, including ABTOW is determined by
fixed parameters: biosensor architecture (the 3D spatial organization of immobilized
bacterial colonies in polyurethane sponge) and the density of bacteria and their distribu-
tion [1,2,12,23]. Substrate concentration, pH and temperature may vary during biosensor
operation (Figure 1A,B).
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Figure 1. Biosensor based on consortia of nitrifying bacteria (ABTOW). (A) spatial arrangement of
colonies of ammonium-oxidizing bacteria (AOB, red) and nitrite-oxidizing bacteria (NOB, green) in
an ABTOW. (B) Schematic view of nitrification, catalyzed by AOB (first stage of nitrification) and
NOB (second stage).
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We analyzed the influence of these variables on AOB activity. Ammonium oxi-
dation was assumed to follow Michaelis–Menten kinetics for a two-substrate reaction
(Equation (3)) in the absence of products [1,12]:

v-AO(cA, cO) =
cE

1
kE

+ 1
kAcA

+ 1
kOcO

+ 1
kAOcOcA

(3)

where: cA, cO, cE are concentrations of ammonium (mM), oxygen (mM) and the enzyme
(ammonium oxidase), respectively; kA, kO and kAO are second and third-order rate con-
stants and kE is the apparent first-order rate constant (saturated enzyme).

The equation can be rearranged to:

v-AO(cA, cO) =
kEcEcAcO

kE
kAO

+ kE
kA

cO + kE
kO

cA + cOcA
(4)

Substituting single-substrate Michaelis–Menten constants KA = kE/kA and KO = kE/kO
and the maximum rate of the two-substrate reaction (Vmax = kEcE), one obtains:

v-AO(cA, cO) =
VmaxcAcO

kE
kAO

+ KAcO + KOcA + cOcA
(5)

Approximating kE/kAO with a product of KA and KO, one may represent the rate of
the two-substrate reaction as a product of two single-substrate Michaelis–Menten equations:

v-AO(cA, cO) =
VAcA

KA + cA
∗ V0cO

KO + cO
= vA(cA) ∗ vO(cO) (6)

The maximum velocities (VA and VO) correspond to the situation where the other
substrate (ammonium (mM) and oxygen (mM), respectively) is present in excess and thus
does not limit the rate of the reaction. Hence, the measured values of KO and KA are
independent of the other substrate. It is assumed that temperature (K) and pH influence
Vmax but not the reaction constants of the substrates with ammonium oxidase. Thus, the
parameters (pH, temperature, ammonium and oxygen concentration) are regarded as
orthogonal, and their influence may be expressed using rate functions (v), with the maxima
normalized to unity. Accordingly, with Vmax measured in optimal temperature and pH,
one obtains a combined model of the reaction:

v(cA, cO, pH, T) = Vmax ∗ vA(cA) ∗ vO(cO) ∗ vpH(pH) ∗ vT(T) (7)

Correction for the temperature dependence of oxygen solubility in water was intro-
duced to ensure exact parameter orthogonality. Moreover, as kinetic studies were conducted
in the stationary phase of the biofilm growth, the biomass of bacteria is assumed to undergo
negligible changes during ABTOW operation [1,2].

3.2. Dependence of Nitrification Rate on the Substrate Concentration

Initial oxygen consumption rate (v) was measured at varying concentrations of 0
to 4 mM of ammonium as an electron donor (Figure 2A). One should note that v was
estimated by extrapolation to a time of 0 when nitrite was absent. Moreover, in ABTOW,
nitrite concentration was negligible when ammonium was added as an electron source [2].
Thus, the observed changes of v corresponded to AOB activity. The respective parameters
are: 63.87 ± 0.92 µmol ·min−1 (VA) and 0.045 ± 0.004 mM (KA). Small parameter fit errors
and a large correlation coefficient (r2 = 0.99) indicate that the Michaelis–Menten model was
sufficient to describe the observed kinetics (Figure 2A).
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Schoolfield and (D) pH v(pH) modelled with the GausAmp equation. Experimental data are marked
with symbols (error bars SD), and fitted model curves are marked with dotted lines.

Similarly, the rate was measured at varying initial concentrations of electron acceptor
(O2). It can be assumed that the nitrite produced by AOB is immediately consumed by
NOB and the ammonium oxidation corresponded to 75% of the total oxygen consumption
in ABTOW [1,2]. The consumption rate (v(cO)) was expressed as a function of oxygen
concentration (Figure 2B) using a standard Michaelis–Menten equation:

vO(cO) = VO·
cO

KO + cO
(8)

where: VO (µmol·min−1) is the maximum rate, cO (mM) is oxygen concentration and
KO (mM) is the Michaelis–Menten constant.

The equation parameters, determined by using nonlinear curve fitting are 88.41 ± 1.37 (VO)
and 0.100 ± 0.001 (KO). The model described well the observed kinetics (Figure 2B), as
indicated by a large correlation coefficient (r2 = 0.99). However, the range of measurements
was limited by the performed solubility of oxygen in a nutrient medium (0.24 mM at 295 K).
Thus, the rate plateau (predicted by the model) could not be reached. Therefore, other
measurements (pH, temperature and ammonium concentration) were performed at v(cO),
corresponding to 62.41 µmol min−1.
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3.3. Temperature Dependence of Ammonium Oxidation

To determine dependence of the activity on temperature, the reactor was thermally
isolated. The nutrient medium was cooled to 278 K (5 ◦C) and placed in a water bath at
318 K (45 ◦C). Thus, the rate (vT) was measured in the temperature range from 278–318 K
and described using the Arrhenius model, modified by Schoolfield [24]:

vT(T) = VT·
T
To
· exp

[
Ea
R ·

[
1

To
− 1

T

]]
1 + exp

[
El
R ·

[
1
Tl
− 1

T

]]
+ exp

[
Eh
R ·

[
1

Th
− 1

T

]] (9)

where: R (kJ·K−1·mol−1) is gas constant; Ea (kJ·mol−1) is the activation energy of nitri-
fication; To (K) is the optimal temperature of the process; El (kJ·mol−1) is the activation
energy of low-temperature enzyme denaturation, Tl (K) temperature of low-temperature
denaturation; and Eh (kJ·mol−1) is the activation energy of high-temperature enzyme
denaturation, Th (K) temperature of high-temperature denaturation.

The model combined three components: increase in the reaction rate with temperature
(numerator) and high- and low-temperature inactivation (denominator). The parameter
values used to calibrate the model, in the units we used, are given in Table 1.

Table 1. Parameters of the ABTOW model.

Equation Parameter Symbol Value Unit

maximum oxygen consumption rate Vmax 70.62 ± 6.9 µmol·min−1

O2 Michaelis constant KO 0.1 mM

NH4
+ Michaelis constant KA 0.04 mM

optimal pH pHopt 8.15 ± 0.05 -

difference between high pH and low pH when v is
equal to 0.5 VpH

U 1.9 ± 0.09 -

the activation energy of AOB nitrification process Ea 183 ± 23 kJ·mol−1

the activation energy of low-temperature
enzyme denaturation El 177 ± 22 kJ·mol−1

the activation energy of high-temperature
enzyme denaturation Eh 378 ± 21 kJ·mol−1

the optimal temperature of the process To 298 K

the temperature of low-temperature denaturation Tl 287 ± 0.7 K

the temperature of high-temperature denaturation Th 307 ± 12 K

The model adequately described the experimental data (Figure 2C). It may be noted
the enzyme retains activity within an interval of 14 K (difference between Tl = 286 K and
Th = 300 K), while the optimal temperature (T0) corresponds to 298 K (25 ◦C).

3.4. Effect of pH on the Ammonium Oxidation

The rate (v) was measured in the pH range from 5.0 to 9.5. In order to describe
the pH dependence, several phenomenological models have been tested, including used
polynomial models proposed for other enzymatic reactions. An adequate fit was provided
by a modified Gaussian peak shape function (GaussAmp from Origin 9.1):

vpH(pH) = VpH· exp

{
(− ln(4) ·(pH− pHopt)

2)

U2

}
(10)

where: VpH is the rate at optimum pH (pHopt), and U is the difference between high pH
and low pH when v is equal to 0.5 VpH. The parameter values used to calibrate the model,
in the units we used, are given in Table 1.
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The model described well the experimental data (Figure 2D), as indicated by r2 = 0.98.
The optimal pH (pHopt) was 8.15 ± 0.09, which is higher than the standard value (see
Section 2). The width of the pH interval where activity was greater than 0.5 VpH is equal to
3.29 units. This value (U) indicates that the system is moderately sensitive to pH changes.

3.5. Dependence of ABTOW Sensitivity on the Stability of Measurement Conditions

It should be noted that, while the detected signal in the biodetector is proportional
to the oxygen consumption rate, the detection uncertainty (error) is determined by the
stability of the parameters (ammonium and oxygen concentration, pH and temperature):

σ2
v = σ2

Ca + σ2
Co + σ2

pH + σ2
T + σ2

n (11)

σ2
p =

∂v
∂p

∆p, p ∈ {Ca, Co, pH, T}, σ2
n = const. (12)

where: σ2
v is the total variance of the oxygen consumption rate (v, Equation (7)), σ2

{Ca,Co,ph,T}

are variances due to the instability of parameters (p) and σ2
n is the variance corresponding

to the detector noise (Equation (11)).
The sensitivity of the biodetector (dynamic range) may be expressed as the signal-to-

noise ratio (SNR):
SNR =

v√
σ2

v
(13)

The SNR increases with concentrations of ammonium and oxygen (Figure 3C,D).
Conversely, only small changes are observed when the concentrations are significantly
higher than their respective Michaelis–Menten constants (Figure 3C–E). Thus, SNR reaches
a plateau above 1.5 mM concentration of ammonium (Figure 3C–E). On the other hand,
SNR is limited by oxygen solubility (0.24 mM) since the plateau is not reached at this
concentration. Therefore, the optimal performance for these two factors cannot be deter-
mined (Figure 3E). Not surprisingly, maximum SNR with respect to temperature and pH
is reached within the range where these parameters provide a maximum oxidation rate
(Figure 3F). This is due to the fact that the variances σp (calculated as derivatives) are
equal to zero, and the total noise is only equal to σn (Equation (12)). However, as the rate
deviates from Vmax, fluctuations in temperature and pH produce increasing instability of
rate measurement (compare green and blue curves in Figure 3A,B).
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3.6. Performance of the Combined Model in Non-Equilibrium Conditions

The partial equations described in the previous paragraphs (Equations (8)–(10)) were
combined into a single model of the biodetector (Equation (14), see also Equation (7)):

v = Af ·Vmax·

 cA

KA + cA
· cO

KO + cO
·
(ln(4)· exp[−(pH− pHopt)

2])

U2 ·
T
To
· exp

[
Ea
R ·

[
1

To
− 1

T

]]
1 + exp

[
El
R ·

[
1
Tl
− 1

T

]]
+ exp

[
Eh
R ·

[
1

Th
− 1

T

]]
 (14)

The combined ABTOW model may be applied to account for changes in physicochem-
ical parameters during the continuous operation of the biosensor. In order to verify this
notion, the effects of varying temperature (Figure 4A) and pH (Figure 4B) were studied.
The model described the oxygen consumption rate adequately in the present temperature
increase from 281.55 K to 313.25 K. The rate increased initially with temperature to reach a
plateau; then, above the optimum (108 K), a decrease was observed. The maximum rate of
the temperature increase was 0.48 K per minute, which permitted the thermal equilibration
of the sensor during the experiment.
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Likewise, the model correctly described the response of ABTOW to stepwise changes
in pH (3–9.5) (Figure 4B). It may be noted that following pH change, oxygen consumption
rate ABTOW reached a stable level after approximately 1.5 min. Therefore, it may be
postulated that pH buffering contributes to the inertia of ABTOW, limiting its response
velocity. All estimated parameters of the ABTOW model are summarized in Table 1.

4. Discussion

Reproducible on-line analysis of water quality requires standardization of the sensor
output. Two approaches may be used to realize this goal in a biosensor based on live
bacterial cells. First, the water entering the sensor may be pre-processed to maintain
constant measurement conditions, for example: pH, temperature and concentration of
reactants. Second, mathematical models can be used in post-processing to correct for the
changes induced by the introduction of the analyte [25,26]. One can combine these two
strategies to reduce the cost of operation and ensure the robust operation of a sensor. In
particular, a model may drive the optimization of conditions at the pre-processing stage.
Model performance depends on the proper selection of the parameters, which should be
independent (orthogonal) and have a clear biological interpretation. The model complexity
should be minimal to ensure its robust performance, which needs to be ascertained in
a quantitative manner. The ABTOW model described here meets these requirements,
making it possible to account for changes in physicochemical parameters of water in
real-time during biosensor operation. Two approaches may be used to meet this goal in a
biosensor based on live bacterial cells. First, water entering the sensor may be pre-processed
to maintain constant measurement conditions: pH, temperature and concentration of
reactants. Second, the results may be post-processed using appropriate mathematical
models [25,26]. One can combine pre- and post-processing to increase the reliability of
biosensors, reduce the cost of operation and quantify their detection limits. These factors
are of particular importance in the detection of contaminants, where interpretation of
the results is often automated. Moreover, pre-processing (optimization of conditions) is
facilitated if the response of a biosensor can be predicted precisely. This task depends on the
proper selection of the model parameters, which should be independent (orthogonal) and
have a clear biological interpretation. The model complexity should be minimal to ensure
robust performance, which needs to be ascertained in a quantitative manner. The ABTOW
model presented here meets these requirements, thus making it possible to account for
changes in physicochemical parameters of water during biosensor operation. Therefore,
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it may be used to correct these changes in real-time and quantify the response caused
by toxins.

The presented approach may be easily adapted to other microbial sensing systems.
Similar models, which included the concentration of two substrates as parameters, have
been described before [27,28]. However, an approximation of two-substrate reaction kinet-
ics with a product of single-substrate Michaelis–Menten equations was provided without
any justification in these papers. Here, we describe a two-substrate model for a single class
of nitrifying bacteria [1,2] that may be adapted for other microbial species. Simultaneously,
it should be noted that the model calibration (a set of parameters shown in Table 1 allowing
for calculating the oxygen concentration) may be different for other bacteria. The parameter
list may be expanded (e.g., ionic strength), and a combination of several models of this
class may provide a general framework for the description of heterogeneous microbial
communities. This bottom-up approach to complex systems may be applicable in model-
ing aquatic ecosystems, where simplifications are used to describe bacterial metabolism.
Supplementing Estuary and Lake Computer Model (ELCOM) and Computational Aquatic
Ecosystem Dynamics Model (CAEDYM) with modeling changes in biomass provides an
example of this approach. Moreover, the characterization of stability and dynamic range
of the output of the component models may improve the robustness of the composite
ecosystem models. Quantification of sensitivity (SNR) is a simple and flexible way to
approach this task.

To conclude, the presented modeling allows tracking the relationship between four
parameters simultaneously. These parameters (concentration of oxygen and ammonium
ions, temperature and pH) are crucial for the nitrification process. As a consequence,
it enables the correction of biosensing determinations under changing initial conditions.
Multiparameter modeling, combined with stability analysis, provides a simple, flexible
and robust description of bioreaction kinetics and can be used for process control. This
approach may be used in biotechnology, biosensing and environmental studies.
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Performance of Adsorption–based Microfluidic Biosensors. Biosensors 2021, 11, 194. [CrossRef]

23. Karcz, J.; Bernas, T.; Nowak, A.; Talik, E.; Woznica, A. Application of Lyophilization to Prepare the Nitrifying Bacterial Biofilm for
Imaging with Scanning Electron Microscopy. Scanning 2012, 34, 26–36. [CrossRef]

24. Zwietering, M.H.; de Koos, J.T.; Hasenack, B.E.; de Witt, J.C.; van’t Riet, K. Modeling of Bacterial Growth as a Function of
Temperature. Appl. Environ. Microbiol. 1991, 57, 1094–1101. [CrossRef]

25. Rinken, T.; Rinken, A.; Tenno, T.; Järv, J. Calibration of Glucose Biosensors by Using Pre-Steady State Kinetic Data.
Biosens. Bioelectron. 1998, 13, 801–807. [CrossRef]

26. Van Hulle, S.W.; Volcke, E.I.; Teruel, J.L.; Donckels, B.; van Loosdrecht, M.C.; Vanrolleghem, P. a Influence of Temperature and PH
on the Kinetics of the Sharon Nitritation Process. J. Chem. Technol. Biotechnol. 2007, 82, 471–480. [CrossRef]

27. Davidson, E.A.; Samanta, S.; Caramori, S.S.; Savage, K. The Dual Arrhenius and Michaelis-Menten Kinetics Model for Decompo-
sition of Soil Organic Matter at Hourly to Seasonal Time Scales. Glob. Chang. Biol. 2012, 18, 371–384. [CrossRef]

28. Rosso, L.; Lobry, J.R.; Bajard, S.; Flandrois, J.P. Convenient Model to Describe the Combined Effects of Temperature and pH on
Microbial Growth. Appl. Environ. Microbiol. 1995, 61, 610–616. [CrossRef] [PubMed]

http://doi.org/10.1016/j.watres.2015.11.020
http://doi.org/10.1016/j.bios.2018.07.019
http://www.ncbi.nlm.nih.gov/pubmed/30056302
http://doi.org/10.1080/25765299.2019.1691434
http://doi.org/10.1111/j.1574-6968.1996.tb08181.x
http://doi.org/10.1007/s002030050565
http://doi.org/10.1371/journal.pone
http://doi.org/10.1017/S1431927610093815
http://doi.org/10.1016/S0032-9592(03)00214-0
http://doi.org/10.1016/j.cej.2008.02.010
http://doi.org/10.1016/j.watres.2009.03.022
http://doi.org/10.1128/AEM.71.12.8565-8572.2005
https://books.google.vg/books?id=ccIKuXYNlBMC&printsec=frontcover#v=onepage&q&f=false
http://doi.org/10.1111/j.1574-6968.1980.tb05067.x
http://doi.org/10.3390/bios11060194
http://doi.org/10.1002/sca.20275
http://doi.org/10.1128/aem.57.4.1094-1101.1991
http://doi.org/10.1016/S0956-5663(98)00045-1
http://doi.org/10.1002/jctb.1692
http://doi.org/10.1111/j.1365-2486.2011.02546.x
http://doi.org/10.1128/aem.61.2.610-616.1995
http://www.ncbi.nlm.nih.gov/pubmed/16534932

	Introduction 
	Materials and Methods 
	Immobilization, Growth and Activity Quantification of Bacteria in ABTOW 
	Statistical Analysis 

	Results 
	Construction of the ABTOW Model 
	Dependence of Nitrification Rate on the Substrate Concentration 
	Temperature Dependence of Ammonium Oxidation 
	Effect of pH on the Ammonium Oxidation 
	Dependence of ABTOW Sensitivity on the Stability of Measurement Conditions 
	Performance of the Combined Model in Non-Equilibrium Conditions 

	Discussion 
	References

