Assessment of Nutrient Loads into the Ryck River and Options for Their Reduction
Abstract
:1. Introduction
2. Methodology
2.1. Research Protocol
2.2. Site Description
2.3. Nitrogen Loss Modelling
2.4. Comparative Analysis and Model Modification
2.5. Proposal for Potential WBZs
- The proposed peatland site should have the deepest elevation.
- The site should potentially be able to intercept runoff from multiple agricultural lands.
- Riparian sites should be preferred.
- The peatland site should be sufficiently large to support a WBZ with a larger width and length.
- Trafficability of site; especially if it is planned to be managed under paludiculture.
3. Results and Analysis
3.1. Estimation of Variables Used in the Model
3.2. Nitrogen Loads Modelling
3.3. Calibration and Validation of Empirical Model
3.4. Wetland Buffer Zones and Their Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Develop Nutrient-balanced and “Low Nutrient Surplus” Agriculture in Baltic Sea Basin; Coalition Clean Baltic: Uppsala, Sweden, 2017.
- Novotny, V. Diffuse Pollution from Agriculture—A worldwide Outlook. Water Sci. Technol. 1999, 39, 1–13. [Google Scholar] [CrossRef]
- Svanbäck, A.; McCrackin, M.L.; Swaney, D.P.; Linefur, H.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C. Reducing agricultural nutrient surpluses in a large catchment–Links to livestock density. Sci. Total Environ. 2019, 648, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Weigelhofer, G.; Hein, T.; Bondar-Kunze, E. Phosphorus and nitrogen dynamics in riverine systems: Human impacts and management options. In Riverine Ecosystem Management, Aquatic Ecology Series 8; Schmutz, S., Sendzimir, J., Eds.; Springer: London, UK, 2018; pp. 187–202. [Google Scholar]
- Wichtmann, W. Stoffeintrag aus landwirtschaftlichen Dränflächen in Fließgewässer (Messung und Simulation). Dissertation an der CAU Kiel. Schriftenreihe des Instituts für Wasserwirtschaft, Heft 21, 203 S.; Shaker Verlag: Aachen, Germany, 1994. [Google Scholar]
- Zeitz, J. Drainage induced peat degradation processes, Chapter 2.2. In Paludiculture-Productive Use of Wet Peatlands; Wichtmann, W., Schröder, C., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2016; pp. 7–9. [Google Scholar]
- Clymo, R.S. Peat (1983), chapter 4, In Gore, A.J.P. Ecosystems of the World 4A. Mires: Swamps, Bog, Fen and Moor. Elsevier, Amsterdam, Netherlands, 1984, 159-224. In Holden, J.; Chapman, P.J.; Labadz, J.C. Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. 2004, 28, 95–123. [Google Scholar]
- Holden, J.; Chapman, P.J.; Labadz, J.C. Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. 2004, 28, 95–123. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Anderson, H.A.; Ray, D.; Anderson, A.R. Impact of some initial forestry practices on the drainage waters from blanket peatland. Forestry 1996, 69, 193–203. In Holden, J.; Chapman, P.J.; Labadz, J.C. Artificial drainage of peatlands: Hydrological and hydrochemical process and wetland restoration. Prog. Phys. Geogr. 2004, 28, 95–123. [Google Scholar]
- Holsten, B.; Trepel, M. Nutrient balance and water pollution control, Chapter 5.4. In Paludiculture- Productive Use of Wet Peatlands; Wichtmann, W., Schröder, C., Joosten, H., Eds.; Schweizerbart Science Publishers: Stuttgart, Germany, 2016; p. 104. [Google Scholar]
- Harrison, S.; McAree, C.; Mulville, W.; Sullivan, T. The problem of agricultural diffuse pollution: Getting to the point. Sci. Total Environ. 2019, 677, 700–717. [Google Scholar] [CrossRef]
- Kirschke, S.; Häger, A.; Kirschke, D.; Völker, J. Agricultural nitrogen pollution of freshwater in Germany, the governance of sustaining a complex problem. Water 2019, 11, 2450. [Google Scholar] [CrossRef] [Green Version]
- EEA (European Environment Agency). European Waters Assessment of Status and Pressures; EEA report 7/2018; Publication office of the European Union: Luxembourg, 2018. [Google Scholar]
- Poikane, S.; Kelly, M.G.; Herrero, F.S.; Pitt, J.A.; Jarvie, H.P.; Claussen, U.; Leujak, W.; Solheim, A.L.; Teixeira, H.; Phillips, G. Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Sci. Total Environ. 2019, 695, 133888. [Google Scholar] [CrossRef]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; van de Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- Rath, S.; Zamora-Re, M.; Graham, W.; Dukes, M.; Kaplan, D. Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agric. Water Manag. 2021, 246, 106634. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 8566. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Amon, B.; Schulz, K.; Mehdi, B. Factors That Influence Nitrous Oxide Emissions from Agricultural Soils as Well as Their Representation in Simulation Models: A Review. Agronomy 2021, 11, 770. [Google Scholar] [CrossRef]
- Kunkel, R.; Herrmann, F.; Kape, H.E.; Keller, L.; Koch, F.; Tetzlaff, B.; Wendland, F. Simulation of terrestrial nitrogen fluxes in Mecklenburg-Vorpommern and scenario analyses how to reach N-quality targets for groundwater and the coastal waters. Environ. Earth Sci. 2017, 76, 146. [Google Scholar] [CrossRef]
- HELCOM. Thematic Assessment of Eutrophication 2011–2016. HELCOM BSEP Series, Baltic Sea Environment Proceedings 2018a, No. 156. Available online: https://helcom.fi/wp-content/uploads/2019/12/BSEP156.pdf (accessed on 26 November 2020).
- HELCOM. Sources and Pathways of Nutrients to the Baltic Sea. HELCOM BSEP Series, Baltic Sea Environment Proceedings 2018b, No. 153. Available online: https://helcom.fi/wp-content/uploads/2019/08/BSEP153.pdf (accessed on 26 November 2020).
- Conley, D.J.; Carstensen, J.; Aigars, J.; Axe, P.; Bonsdorff, E.; Eremina, T.; Haahti, B.M.; Humborg, C.; Jonsson, P.; Kotta, J.; et al. Hypoxia Is Increasing in the Coastal Zone of the Baltic Sea. Environ. Sci. Technol. 2011, 45, 6777–6783. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, W. Enough is enough! What are nutrients and what is wrong with them? Chapter 2. In Wetland Buffer Zones: The solution We Need, Guidelines of the CLEARANCE Project 2020; Kotowski, W., Jabłońska, E., Wilk, M., Zak, D., Eds.; The CLEARANCE Project: Warszawa, Poland, 2020; p. 8. Available online: https://www.moorwissen.de/doc/paludikultur/projekte/clearance/CLEARANCE_guidelines_EN.pdf (accessed on 4 January 2021).
- Sedl, A. Hydrogeochemical and Hydrodynamical Investigation of the Interaction between the River Ryck and Its Polder. Master’s Thesis, University of Greifswald, Greifswald, Germany, 2018. [Google Scholar]
- Rauppach, K. Die Beschaffenheit Ausgewählter Oberflächen- und Grundwässer im Einzugsgebiet des Rycks. Diploma Thesis, University of Greifswald, Greifswald, Germany, 2006. [Google Scholar]
- Nowoitnick, J. Ansatz einer Gewässergüteklassifizierung des Anthropogen- und Brackwasserbeeinflussten Rycks (Mecklenburg-Vorpommern) und Seiner Nährstoffe. Bachelor’s Thesis, University of Greifswald, Greifswald, Germany, 2017. [Google Scholar]
- Stegemann, H. Zustandsbewertung und Defizitanalyse des Ryck aus Sicht der Wasserrahmenrichtlinie; Landesamt für Umwelt, Naturschutz und Geologie, M-V: Greifswald, Germany, 2016. [Google Scholar]
- Naturstyrelsen. The Danish Nature Agency’s Guidelines for Nitrogen Calculations, Ministry of Environment, Denmark. 2014. Available online: https://mst.dk/media/121898/kvaelstofberegvejledningmaj2014.pdf (accessed on 7 September 2020).
- EU (2000) Establishing a Framework for Community Action in the Field of Water Policy, Directive EC/2000/60, European Parliament and of the Council 2000/60/EC. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32000L0060 (accessed on 27 November 2020).
- Zielke, D.; Kinzelbach, R.; Kampen, H.; Werner, D.; Scheuch, D. Mosquito species distribution along the rivers Ryck and Warnow in Mecklenburg-Western Pomerania, Germany (Diptera: Culicidae). Conference Paper. In Proceedings of the Entomologist Conference, Göttingen, Germany, 18–21 March 2013; Volume 19. [Google Scholar]
- Weber, E. Population size and structure of three mussel species (Bivalvia: Unionidae) in a northeastern German river with special regard to influences of environmental factors. Hydrobiologia 2005, 537, 169–183. [Google Scholar] [CrossRef]
- Jabłonska, E.; Wisniewska, M.; Marcinkowski, P.; Grygoruk, M.; Walton, C.R.; Zak, D.; Hoffmann, C.C.; Larsen, S.E.; Trepel, M.; Kotowski, W. Catchment-scale analysis reveals high cost-effectiveness of Wetland Buffer Zones as a remedy to non-point nutrient pollution in North-Eastern Poland. Water 2020, 12, 629. [Google Scholar] [CrossRef] [Green Version]
- Lewandowska, M. Potential for Wetland Restoration in Odense River Catchment and Nitrogen Removal. Master thesis, Aarhus University, Aarhus, Denmark, 2019. [Google Scholar]
- Stachowicz, M. Assessing Ecosystem Services of Wetlands in the Neman Catchment in the Perspective of Their Restoration. Master’s Thesis, Warsaw University of Life Sciences, Warsaw, Poland, 2020. [Google Scholar]
- Stachý, J. (red.); Atlas Hydrologiczny Polski, IMGW, Wyd; Komunikacji i Łączności: Warszawa, Poland, 1987. [Google Scholar]
- Byczkowski, A. Hydrologia. T. II; Str. 213, Table no. 4.17; SGGW: Warsaw, Poland, 1991. [Google Scholar]
- Ostojski, M.S.; Niedbala, J.; Orlińska-Woźniak, P.; Wilk, P.; Gębala, J. Soil and Water Assessment Tool Model Calibration Results for Different Catchment Sizes in Poland. J. Environ. Qual. 2014, 43, 132–144. [Google Scholar] [CrossRef]
- Sedláček, J.; Kapustová, V.; Šimíček, D.; Bábek, O.; Sekanina, M. Initial stages and evolution of recently abandoned meanders revealed by multi-proxy methods in the Odra River (Czech Republic). Geomorphology 2019, 333, 16–29. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E.; et al. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef]
- Øygarden, L.; Deelstra, J.; Lagzdins, A.; Bechmann, M.; Greipsland, I.; Kyllmar, K.; Povilaitis, A.; Iital, A. Climate change and the potential effects on runoff and nitrogen losses in the Nordic–Baltic region, Agriculture. Ecosyst. Environ. 2014, 198, 114–126. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Kahle, P.; Lennartz, B. Nutrient losses from artificially drained catchments in North-Eastern Germany at different scales. Agric. Water Manag. 2006, 85, 47–57. [Google Scholar] [CrossRef]
- Bechmann, M.; Greipsland, I.; Riley, H.; Eggestad, H.O. Nitrogen Losses from Agricultural Areas—A Fraction of Applied Fertilizer and Manure (FracLEACH); 2012; Bioforsk Report no. 7(50). Available online: https://nibio.brage.unit.no/nibio-xmlui/bitstream/handle/11250/2451437/Bioforsk-Rapport-2012-07-50.pdf?sequence=1&isAllowed=y (accessed on 14 January 2021).
- Schulz, M.; Kozerski, H.P.; Pluntke, T.; Rinke, K. The influence of macrophytes on sedimentation and nutrient retention in the lower River Spree (Germany). Water Res. 2003, 37, 569–578. [Google Scholar] [CrossRef]
- Fischer, H.; Sukhodolov, A.; Wilczek, S.; Engelhardt, C. Effects of flow dynamics and sediment movement on microbial activity in a lowland river. River Res. Appl. 2003, 19, 473–482. [Google Scholar] [CrossRef]
- Šaulys, V.; Oksana, S.; Stankevičienė, R. An Assessment of Self-Purification in Streams. Water 2020, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Ostojski, M.S.; Gebala, J.; Orlińska-Woźniak, P.; Wilk, P. Implementation of robust statistics in the calibration, verification and validation step of model evaluation to better reflect processes concerning total phosphorus load occurring in the catchment. Ecol. Model. 2016, 332, 83–93. [Google Scholar] [CrossRef]
- Correll, D.L. Principles of planning and establishment of buffer zones. Ecol. Eng. 2005, 24, 433–439. [Google Scholar] [CrossRef]
- Jabłońska, E.; Kotowski, W.; Zak, D. Fantastic beasts and where to find them? Few words about wetland buffer zones, Chapter 3. In Wetland Buffer Zones: The Solution We Need, Guidelines of the CLEARANCE Project; Kotowski, W., Jabłońska, E., Wilk, M., Zak, D., Eds.; The CLEARANCE Project: Warszawa, Poland, 2020; pp. 9–12. Available online: https://www.moorwissen.de/doc/paludikultur/projekte/clearance/CLEARANCE_guidelines_EN.pdf (accessed on 4 January 2021).
- Kotowski, W. WBZs serve as habitats for threatened wildlife–why should we care? Chapter 8. In Wetland Buffer Zones: The Solution We Need, Guidelines of the CLEARANCE Project; Kotowski, W., Jabłońska, E., Wilk, M., Zak, D., Eds.; The CLEARANCE Project: Warszawa, Poland, 2020; pp. 24–26. Available online: https://www.moorwissen.de/doc/paludikultur/projekte/clearance/CLEARANCE_guidelines_EN.pdf (accessed on 4 January 2021).
- Review of Riparian Buffer Zone Effectiveness; Technical Paper No: 2004/05; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2004.
- McElfish, J.M.; Kihslinger, R.L.; Nichols, S.S. Planner’s Guide to Wetland Buffers for Local Governments; Environmental Law Institute: Washington, DC, USA, 2008; p. 10. [Google Scholar]
Land Use Categories | Agriculture in Ryck Catchment | Agriculture on Peatlands | ||
---|---|---|---|---|
Area (Hectares) | Share (%) | Catchment Scale (%) | Share (%) | |
Total Agriculture | 18,029 | 75.3 | 12.3 | 75.6 |
Arable Land | 14,263 | 59.6 | 3.9 | 24 |
Grasslands | 3631 | 15.7 | 8.4 | 51.6 |
Statistical Function | Value |
---|---|
Coefficient of Correlation (R) | 0.848 |
Coefficient of Determination (R2) | 0.718 |
Root Mean Square Error (RMSE) | 1.334 |
Year | TN kg ha−1 year−1 | TNe2 kg ha−1 year−1 | Difference (%) (TN vs. TNe2) |
---|---|---|---|
2000 | 8.3 | 9 | 7.8 |
2001 | 9.2 | 10.5 | 13.8 |
2002 | 13 | 11.1 | −15.6 |
2003 | 6.6 | 6.6 | 0.4 |
2004 | 10.2 | 11 | 7.6 |
2005 | 11.6 | 9.9 | −16.1 |
Statistical Function | Value |
---|---|
Coefficient of Correlation (R) | 0.808 |
Coefficient of Determination (R2) | 0.653 |
Root Mean Square Error (RMSE) | 0.279 |
Area of Sub-Catchment (ha) | Total Nitrogen Loads Generated from Sub-Catchment (kg/year) | Total Nitrogen Removed by WBZs (kg/year) | Minimum Total Nitrogen Removal (kg/year) | Maximum Total Nitrogen Removal (kg/year) |
---|---|---|---|---|
983 | 9744 | 4190 | 1267 | 7113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trehan, M.; Wichtmann, W.; Grygoruk, M. Assessment of Nutrient Loads into the Ryck River and Options for Their Reduction. Water 2022, 14, 2055. https://doi.org/10.3390/w14132055
Trehan M, Wichtmann W, Grygoruk M. Assessment of Nutrient Loads into the Ryck River and Options for Their Reduction. Water. 2022; 14(13):2055. https://doi.org/10.3390/w14132055
Chicago/Turabian StyleTrehan, Mridul, Wendelin Wichtmann, and Mateusz Grygoruk. 2022. "Assessment of Nutrient Loads into the Ryck River and Options for Their Reduction" Water 14, no. 13: 2055. https://doi.org/10.3390/w14132055
APA StyleTrehan, M., Wichtmann, W., & Grygoruk, M. (2022). Assessment of Nutrient Loads into the Ryck River and Options for Their Reduction. Water, 14(13), 2055. https://doi.org/10.3390/w14132055