Rainwater Isotopic Composition in the Ecuadorian Andes and Amazon Reflects Cross-Equatorial Flow Seasonality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Local Monitoring Campaign
2.2. Stable Isotopes Datasets
2.3. Moisture Sources
2.4. Cross-Equatorial Flow over Western Amazon and Precipitation Gridded Products
3. Results and Discussion
3.1. Mera Site Isotopic Patterns
3.1.1. Local Meteoric Water Line (LMWL)
3.1.2. δ18Op Correlation with Local Temperature and Precipitation
3.1.3. δ18Op and Moisture Trajectories
3.1.4. Mera δ18Op and V-Index Region Precipitation
3.2. Andean and Amazon Isotopic Patterns
3.2.1. Local Altitude Effect
3.2.2. Regional Amount Effect at the V-Index Region
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, I. Groundwater Geochemistry and Isotopes; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1466591749. [Google Scholar]
- Araguás-Araguás, L.; Froehlich, K.; Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Kurita, N.; Ichiyanagi, K.; Matsumoto, J.; Yamanaka, M.D.; Ohata, T. The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J. Geochem. Explor. 2009, 102, 113–122. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L. Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bull. L’institut Français D’études Andin. 1995, 24, 379–390. [Google Scholar]
- Jiménez, A.; Ampuero, A.; Valencia, B.G.; Mayta, V.C.; Cruz, F.W.; Vuille, M.; Novello, V.F.; Misailidis Stríkis, N.; Aranda, N.; Conicelli, B. Stable isotope variability of precipitation and cave drip-water at Jumandy cave, western Amazon River basin (Ecuador). J. Hydrol. 2022, 610, 127848. [Google Scholar] [CrossRef]
- Garcia, M.; Villalba, F.; Araguas-Araguas, L.; Rozanski, K. The role of atmospheric circulation patterns in controlling the regional distribution of stable isotope contents in precipitation: Preliminary results from two transects in the Ecuadorian Andes. In Isotope Techniques in the Study of Environmental Change; International Atomic Energy Agency: Vienna, Austria, 1998; ISBN 92-0-100598-9. [Google Scholar]
- Zhiña, D.X.; Mosquera, G.M.; Esquivel-Hernández, G.; Córdova, M.; Sánchez-Murillo, R.; Orellana-Alvear, J.; Crespo, P. Hydrometeorological factors controlling the stable isotopic composition of precipitation in the highlands of south Ecuador. J. Hydrometeorol. 2022, 23, 1059–1074. [Google Scholar] [CrossRef]
- Windhorst, D.; Waltz, T.; Timbe, E.; Frede, H.-G.; Breuer, L. Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest. Hydrol. Earth Syst. Sci. 2013, 17, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.S. Paleoclimatology; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780123869135. [Google Scholar] [CrossRef]
- Guy, H.; Seimon, A.; Perry, L.B.; Konecky, B.L.; Rado, M.; Andrade, M.; Potocki, M.; Mayewski, P.A. Subseasonal Variations of Stable Isotopes in Tropical Andean Precipitation. J. Hydrometeorol. 2019, 20, 915–933. [Google Scholar] [CrossRef] [Green Version]
- Hastenrath, S. Climate Dynamics of the Tropics; Springer: Dordrecht, The Netherlands, 1991; Volume 8, ISBN 978-0-7923-1346-5. [Google Scholar] [CrossRef]
- Vargas, D.; Pucha-Cofrep, D.; Serrano-Vincenti, S.; Burneo, A.; Carlosama, L.; Herrera, M.; Cerna, M.; Molnár, M.; Jull, A.J.T.; Temovski, M.; et al. ITCZ precipitation and cloud cover excursions control Cedrela nebulosa tree-ring oxygen and carbon isotopes in the northwestern Amazon. Glob. Planet. Chang. 2022, 211, 103791. [Google Scholar] [CrossRef]
- Vuille, M.; Burns, S.J.; Taylor, B.L.; Cruz, F.W.; Bird, B.W.; Abbott, M.B.; Kanner, L.C.; Cheng, H.; Novello, V.F. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Clim. Past 2012, 8, 1309–1321. [Google Scholar] [CrossRef] [Green Version]
- Ilbay-Yupa, M.; Lavado-Casimiro, W.; Rau, P.; Zubieta, R.; Castillón, F. Updating regionalization of precipitation in Ecuador. Theor. Appl. Climatol. 2021, 143, 1513–1528. [Google Scholar] [CrossRef]
- Bendix, J.; Lauer, W. Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation (Rainy seasons in ecuador and their climate-dynamic interpretation). Erdkunde 1992, 46, 118–134. [Google Scholar] [CrossRef]
- Schneider, T.; Bischoff, T.; Haug, G.H. Migrations and dynamics of the intertropical convergence zone. Nature 2014, 513, 45–53. [Google Scholar] [CrossRef]
- Webster, P.J.; Fasullo, J. Tropical Meteorology and Climate|Monsoon: Dynamical Theory. In Encyclopedia of Atmospheric Sciences; Elsevier: Amsterdam, The Netherlands, 2015; pp. 151–164. [Google Scholar] [CrossRef]
- Campozano, L.; Célleri, R.; Trachte, K.; Bendix, J.; Samaniego, E. Rainfall and Cloud Dynamics in the Andes: A Southern Ecuador Case Study. Adv. Meteorol. 2016, 2016, 3192765. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.A.; Arias, P.A.; Junquas, C.; Espinoza, J.C.; Condom, T.; Dominguez, F.; Morales, J.S. The Orinoco Low-Level Jet and the Cross-Equatorial Moisture Transport over Tropical South America: Lessons from Seasonal WRF Simulations. J. Geophys. Res. Atmos. 2022, 127, e2021JD035603. [Google Scholar] [CrossRef]
- Murakami, T.; Nakazawa, T. Transition from the Southern to Northern Hemisphere Summer Monsoon. Mon. Weather Rev. 1985, 113, 1470–1486. [Google Scholar] [CrossRef]
- Hu, P.; Chen, W.; Huang, R.; Nath, D. On the weakening relationship between the South China Sea summer monsoon onset and cross-equatorial flow after the late 1990s. Int. J. Climatol. 2018, 38, 3202–3208. [Google Scholar] [CrossRef]
- Sturm, C.; Vimeux, F.; Krinner, G. Intraseasonal variability in South America recorded in stable water isotopes. J. Geophys. Res. 2007, 112, D20118. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Fu, R. Cross-Equatorial Flow and Seasonal Cycle of Precipitation over South America. J. Clim. 2002, 15, 1591–1608. [Google Scholar] [CrossRef]
- Builes-Jaramillo, A.; Yepes, J.; Salas, H.D. The Orinoco Low-Level Jet and its association with the hydroclimatology of northern South America. J. Hydrometeorol. 2021, 23, 209–223. [Google Scholar] [CrossRef]
- Gimeno, L.; Dominguez, F.; Nieto, R.; Trigo, R.; Drumond, A.; Reason, C.J.C.; Taschetto, A.S.; Ramos, A.M.; Kumar, R.; Marengo, J. Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annu. Rev. Environ. Resour. 2016, 41, 117–141. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Arias, P.A.; Wang, H. The Connection between the North and South American Monsoons BT. In The Monsoons and Climate Change: Observations and Modeling; de Carvalho, L.M.V., Jones, C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 187–206. ISBN 978-3-319-21650-8. [Google Scholar] [CrossRef]
- Arias, P.A.; Fu, R.; Vera, C.; Rojas, M. A correlated shortening of the North and South American monsoon seasons in the past few decades. Clim. Dyn. 2015, 45, 3183–3203. [Google Scholar] [CrossRef]
- Ruiz-Vásquez, M.; Arias, P.A.; Martínez, J.A.; Espinoza, J.C. Effects of Amazon basin deforestation on regional atmospheric circulation and water vapor transport towards tropical South America. Clim. Dyn. 2020, 54, 4169–4189. [Google Scholar] [CrossRef]
- Salati, E.; Dall’Olio, A.; Matsui, E.; Gat, J.R. Recycling of water in the Amazon basin: An isotopic study. Water Resour. Res. 1979, 15, 1250–1258. [Google Scholar] [CrossRef]
- Villacís, M.; Vimeux, F.; Taupin, J.D. Analysis of the climate controls on the isotopic composition of precipitation (δ18O) at Nuevo Rocafuerte, 74.5° W, 0.9° S, 250 m, Ecuador. Comptes Rendus Geosci. 2008, 340, 1–9. [Google Scholar] [CrossRef]
- Lima, P. Uso de Isotopos Estables para el Estudio de las Fuentes de Agua Superficiales en el Ecuador y sus Implicaciones para la Gestión de los Recursos Hídricos. INGENIO 2019, 2, 38–45. [Google Scholar] [CrossRef]
- Vuille, M.; Bradley, R.S.; Werner, M.; Healy, R.; Keimig, F. Modeling δ18O in precipitation over the tropical Americas: 1. Interannual variability and climatic controls. J. Geophys. Res. Atmos. 2003, 108, 4174. [Google Scholar] [CrossRef] [Green Version]
- Sturm, C.; Hoffmann, G.; Langmann, B. Simulation of the Stable Water Isotopes in Precipitation over South America: Comparing Regional to Global Circulation Models. J. Clim. 2007, 20, 3730–3750. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, K.; Kanamitsu, M.; Noone, D.; Oki, T. Historical isotope simulation using Reanalysis atmospheric data. J. Geophys. Res. 2008, 113, D19108. [Google Scholar] [CrossRef]
- Garcia, S.R.; Kayano, M.T. Some evidence on the relationship between the South American monsoon and the Atlantic ITCZ. Theor. Appl. Climatol. 2010, 99, 29–38. [Google Scholar] [CrossRef]
- Arraut, J.M.; Nobre, C.; Barbosa, H.M.J.; Obregon, G.; Marengo, J. Aerial Rivers and Lakes: Looking at Large-Scale Moisture Transport and Its Relation to Amazonia and to Subtropical Rainfall in South America. J. Clim. 2012, 25, 543–556. [Google Scholar] [CrossRef]
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2020. Available online: https://nucleus.iaea.org/wiser (accessed on 16 March 2022).
- Goller, R.; Wilcke, W.; Leng, M.J.; Tobschall, H.J.; Wagner, K.; Valarezo, C.; Zech, W. Tracing water paths through small catchments under a tropical montane rain forest in south Ecuador by an oxygen isotope approach. J. Hydrol. 2005, 308, 67–80. [Google Scholar] [CrossRef]
- Timbe, E.; Windhorst, D.; Crespo, P.; Frede, H.-G.; Feyen, J.; Breuer, L. Understanding uncertainties when inferring mean transit times of water trough tracer-based lumped-parameter models in Andean tropical montane cloud forest catchments. Hydrol. Earth Syst. Sci. 2014, 18, 1503–1523. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, G.M.; Segura, C.; Vaché, K.B.; Windhorst, D.; Breuer, L.; Crespo, P. Insights into the water mean transit time in a high-elevation tropical ecosystem. Hydrol. Earth Syst. Sci. 2016, 20, 2987–3004. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Hernández, G.; Mosquera, G.M.; Sánchez-Murillo, R.; Quesada-Román, A.; Birkel, C.; Crespo, P.; Célleri, R.; Windhorst, D.; Breuer, L.; Boll, J. Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015–2016). Hydrol. Process. 2019, 33, 1802–1817. [Google Scholar] [CrossRef]
- Bowen, G.J. The Online Isotopes in Precipitation Calculator, Version 3.1. Available online: https://wateriso.utah.edu/waterisotopes/pages/data_access/oipc.html (accessed on 25 February 2022).
- IAEA/WMO. Precipitation Sampling Guide V2. 2 September 2014. 2014. Available online: http://www-naweb.iaea.org/napc/ih/documents/other/gnip_manual_v2.02_en_hq.pdf (accessed on 22 January 2019).
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information. Global Historical Climatology Network (GHCN). Available online: https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-monthly (accessed on 11 April 2022).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Trachte, K. Atmospheric Moisture Pathways to the Highlands of the Tropical Andes: Analyzing the Effects of Spectral Nudging on Different Driving Fields for Regional Climate Modeling. Atmosphere 2018, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.S.C. Introduction to PySPLIT: A Python Toolkit for NOAA ARL’s HYSPLIT Model. Comput. Sci. Eng. 2018, 20, 47–62. [Google Scholar] [CrossRef]
- Anders, A.M.; Nesbitt, S.W. Altitudinal Precipitation Gradients in the Tropics from Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. J. Hydrometeorol. 2015, 16, 441–448. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. 2008, 113, D03107. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, D.C.; Ropkins, K. openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Arias, P.A.; Martínez, J.A.; Vieira, S.C. Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim. Dyn. 2015, 45, 2861–2884. [Google Scholar] [CrossRef]
- Poveda, G.; Jaramillo, L.; Vallejo, L.F. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 2014, 50, 98–118. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, G.; Markowski, P.M.; Jewtoukoff, V.; Young, G.S.; Stensrud, D.J. The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. J. Geophys. Res. Atmos. 2019, 124, 10696–10711. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. Description of complete (interpolated) outgoing longwave radiation data set. Bull. Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Segura, H.; Espinoza, J.C.; Junquas, C.; Lebel, T.; Vuille, M.; Garreaud, R. Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon. Clim. Dyn. 2020, 54, 2613–2631. [Google Scholar] [CrossRef]
- Chimborazo, O.; Vuille, M. Present-day climate and projected future temperature and precipitation changes in Ecuador. Theor. Appl. Climatol. 2021, 143, 1581–1597. [Google Scholar] [CrossRef]
- EUMetrain Product Tutorial on TPW Content Products. Available online: http://www.eumetrain.org (accessed on 22 June 2022).
- Bendix, J.; Rollenbeck, R.; Göttlicher, D.; Cermak, J. Cloud occurrence and cloud properties in Ecuador. Clim. Res. 2006, 30, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Campozano, L.; Trachte, K.; Célleri, R.; Samaniego, E.; Bendix, J.; Albuja, C.; Mejia, J.F. Climatology and Teleconnections of Mesoscale Convective Systems in an Andean Basin in Southern Ecuador: The Case of the Paute Basin. Adv. Meteorol. 2018, 2018, 4259191. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, J.; Murakami, T. Annual Changes of Tropical Convective Activities as Revealed from Equatorially Symmetric OLR Data. J. Meteorol. Soc. Jpn. Ser. II 2000, 78, 543–561. [Google Scholar] [CrossRef] [Green Version]
- Hastenrath, S. Annual cycle of upper air circulation and convective activity over the tropical Americas. J. Geophys. Res. Atmos. 1997, 102, 4267–4274. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, G.; Markowski, P.M.; Young, G.S.; Stensrud, D.J. The Orinoco Low-Level Jet: An Investigation of Its Mechanisms of Formation Using the WRF Model. J. Geophys. Res. Atmos. 2020, 125, e2020JD032810. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, C.; Echeverry, G.; Jaramillo, A.; Ladino, L.A. The Negative Impact of Biomass Burning and the Orinoco Low-Level Jet on the Air Quality of the Orinoco River Basin. Atmósfera 2021, 35, 497–520. [Google Scholar] [CrossRef]
- Makowski Giannoni, S.; Trachte, K.; Rollenbeck, R.; Lehnert, L.; Fuchs, J.; Bendix, J. Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador—Pacific or Atlantic origin? Atmos. Chem. Phys. 2016, 16, 10241–10261. [Google Scholar] [CrossRef] [Green Version]
- Emck, P. A Climatology of South Ecuador-with Special Focus on the Major Andean Ridge as Atlantic-Pacific Climate Divide. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2007. [Google Scholar]
- Poveda, G.; Mesa, O. La corriente de chorro superficial del Oeste (“del Chocó”) y otras dos corrientes de chorro en Colombia: Climatología y variabilidad durante las fases del ENSO. Rev. Académica Colomb. Cienc. 1999, 23, 517–528. [Google Scholar]
- Hastenrath, S. Equatorial mid-tropospheric easterly jet over the eastern Pacific. J. Meteorol. Soc. Jpn. Ser. II 1999, 77, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Lee, X. The utility of near-surface water vapor deuterium excess as an indicator of atmospheric moisture source. J. Hydrol. 2019, 577, 123923. [Google Scholar] [CrossRef]
- Xia, Z.; Winnick, M.J. The competing effects of terrestrial evapotranspiration and raindrop re-evaporation on the deuterium excess of continental precipitation. Earth Planet. Sci. Lett. 2021, 572, 117120. [Google Scholar] [CrossRef]
- Staal, A.; Tuinenburg, O.A.; Bosmans, J.H.C.; Holmgren, M.; van Nes, E.H.; Scheffer, M.; Zemp, D.C.; Dekker, S.C. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Chang. 2018, 8, 539–543. [Google Scholar] [CrossRef]
- Landshuter, N.; Mölg, T.; Grießinger, J.; Bräuning, A.; Peters, T. 10-year Characteristics of Moisture Source Regions and Their Potential Effect on Seasonal Isotopic Signatures of δ18O in Tropical Trees of Southern Ecuador. Front. Earth Sci. 2020, 8, 604804. [Google Scholar] [CrossRef]
- Fabian, P.; Rollenbeck, R.; Spichtinger, N.; Brothers, L.; Dominguez, G.; Thiemens, M. Sahara dust, ocean spray, volcanoes, biomass burning: Pathways of nutrients into Andean rainforests. Adv. Geosci. 2009, 22, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Fabian, P.; Kohlpaintner, M.; Rollenbeck, R. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador. Environ. Sci. Pollut. Res. 2005, 12, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.C.A. Unravelling the Drivers of Short- and Long-Term Variability in the Amazon Hydrological Cycle Using Tree-Ring Oxygen Isotopes. Ph.D. Thesis, University of Leeds, Leeds, UK, 2017. [Google Scholar]
- Aggarwal, P.K.; Romatschke, U.; Araguas-Araguas, L.; Belachew, D.; Longstaffe, F.J.; Berg, P.; Schumacher, C.; Funk, A. Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nat. Geosci. 2016, 9, 624–629. [Google Scholar] [CrossRef] [Green Version]
- Gonfiantini, R.; Roche, M.-A.; Olivry, J.-C.; Fontes, J.-C.; Zuppi, G.M. The altitude effect on the isotopic composition of tropical rains. Chem. Geol. 2001, 181, 147–167. [Google Scholar] [CrossRef]
- Vimeux, F.; Gallaire, R.; Bony, S.; Hoffmann, G.; Chiang, J.C.H. What are the climate controls on δD in precipitation in the Zongo Valley (Bolivia)? Implications for the Illimani ice core interpretation. Earth Planet. Sci. Lett. 2005, 240, 205–220. [Google Scholar] [CrossRef]
- Wolf, A.; Roberts, W.H.G.; Ersek, V.; Johnson, K.R.; Griffiths, M.L. Rainwater isotopes in central Vietnam controlled by two oceanic moisture sources and rainout effects. Sci. Rep. 2020, 10, 16482. [Google Scholar] [CrossRef]
- Sakamoto, M.S.; Ambrizzi, T.; Poveda, G. Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Adv. Meteorol. 2011, 2011, 890759. [Google Scholar] [CrossRef]
- Chang, H.K.; Gonçalves, R.D.; Aggarwal, P.K.; Stradioto, M.R.; Hespanhol, E.C.B.; Sturchio, N.C.; Romatschke, U.; Araguas, L.J.A. Groundwater isotope ratios reflect convective and stratiform (paleo)precipitation fractions in Brazil. J. Hydrol. 2020, 585, 124801. [Google Scholar] [CrossRef]
- Uieda, L.; Tian, D.; Leong, W.J.; Toney, L.; Schlitzer, W.; Grund, M.; Newton, D.; Ziebarth, M.; Jones, M.; Wessel, P. PyGMT: A Python Interface for the Generic Mapping Tools. 2021. Available online: https://www.researchgate.net/project/PyGMT-A-Python-interface-for-the-Generic-Mapping-Tools (accessed on 22 June 2022).
- Wang, B.; Liu, J.; Kim, H.-J.; Webster, P.J.; Yim, S.-Y.; Xiang, B. Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. USA 2013, 110, 5347–5352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.P.; Arias, P.A.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.Y.; Gergis, J.; et al. Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.unep.org/resources/report/climate-change-2021-physical-science-basis-working-group-i-contribution-sixth (accessed on 22 June 2022).
- Xie, P.; Arkin, P.A. Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs. Bull. Am. Meteorol. Soc. 1997, 78, 2539–2558. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/ (accessed on 10 July 2021). [CrossRef]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef] [Green Version]
Site | Lat | Lon | Elev. m. asl | Period | Local Amount | V-CRU | V-CHIRPS | V-ERA5 | V-OLR | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Baeza | −0.46 | −77.89 | 1960 | 1992–1993 | −0.50 | −0.85 | −0.91 | −0.77 | 0.62 | [7] |
El Chaco | −0.33 | −77.81 | 1600 | 1993–1996 | 0.20 | −0.67 | −0.56 | −0.34 | 0.29 | |
Cuyuja | −0.41 | −78.02 | 2380 | 1992–1993 | 0.29 | −0.13 | −0.40 | −0.42 | 0.20 | |
Mendez | −2.71 | −78.33 | 665 | 1992–1994 | −0.62 | −0.55 | −0.74 | −0.66 | 0.65 | |
Cuenca | −2.88 | −78.98 | 2510 | 1992–1996 | −0.67 | −0.26 | −0.47 | −0.60 | 0.76 | |
Papallacta | −0.37 | −78.14 | 3150 | 1992–1994 | −0.10 | −0.56 | −0.70 | −0.68 | 0.68 | |
Lago Agrio | −0.08 | −76.86 | 297 | 1992–1996 | −0.33 | −0.74 | −0.74 | −0.61 | 0.31 | |
Amaluza | −2.60 | −78.56 | 1720 | 1992–1994 | −0.14 | −0.65 | −0.81 | −0.78 | 0.59 | |
Alluriquin | −0.31 | −78.96 | 850 | 1992–1996 | −0.47 | −0.44 | −0.54 | −0.64 | 0.46 | |
Mean | −0.26 | −0.54 | −0.65 | −0.61 | 0.51 | |||||
Izobamba | −0.37 | −78.53 | 3058 | 1998–2008 | −0.48 | −0.47 | −0.47 | −0.57 | 0.38 | [38] |
Quito | −0.16 | −78.48 | 2850 | 1998–2014 | −0.54 | −0.64 | −0.64 | −0.69 | 0.38 | |
Bogota | 4.7 | −74.12 | 2547 | 1998–2016 | −0.39 | −0.52 | −0.56 | −0.50 | 0.12 | |
N. Rocafuerte | −0.89 | −75.49 | 250 | 2001–2002 | −0.49 | −0.78 | −0.85 | −0.86 | 0.48 | [31] |
Zhurucay | −3.06 | −79.23 | 3400 | 2011–2014 | −0.57 | −0.54 | −0.57 | −0.69 | 0.54 | [41] |
† Mean | −0.49 | −0.62 | −0.64 | −0.70 | 0.53 | |||||
Mera | −1.40 | −78.05 | 1200 | 2019–2021 | −0.46 | −0.71 | −0.63 | −0.69 | 0.47 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, D.; Chimborazo, O.; László, E.; Temovski, M.; Palcsu, L. Rainwater Isotopic Composition in the Ecuadorian Andes and Amazon Reflects Cross-Equatorial Flow Seasonality. Water 2022, 14, 2121. https://doi.org/10.3390/w14132121
Vargas D, Chimborazo O, László E, Temovski M, Palcsu L. Rainwater Isotopic Composition in the Ecuadorian Andes and Amazon Reflects Cross-Equatorial Flow Seasonality. Water. 2022; 14(13):2121. https://doi.org/10.3390/w14132121
Chicago/Turabian StyleVargas, Danny, Oscar Chimborazo, Elemér László, Marjan Temovski, and László Palcsu. 2022. "Rainwater Isotopic Composition in the Ecuadorian Andes and Amazon Reflects Cross-Equatorial Flow Seasonality" Water 14, no. 13: 2121. https://doi.org/10.3390/w14132121
APA StyleVargas, D., Chimborazo, O., László, E., Temovski, M., & Palcsu, L. (2022). Rainwater Isotopic Composition in the Ecuadorian Andes and Amazon Reflects Cross-Equatorial Flow Seasonality. Water, 14(13), 2121. https://doi.org/10.3390/w14132121