SLONIP—A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The History of the SLONIP
2.2. SLONIP Platform Architecture
2.3. Selection of Stations and Data Attributes
2.4. Isotopes in Precipitation Data Acquisition
Station ID | Station Name | Latitude | Longitude | Altitude | Type of Station | Köppen–Geiger Climate Code [53] |
---|---|---|---|---|---|---|
° N | ° E | m | ||||
SLO_01 | Ljubljana–Bežigrad | 46.065507 | 14.512352 | 299 | Synoptic ARSO | |
SLO_02 | Ljubljana–JSI | 46.041944 | 14.487778 | 292 | Other at JSI | Cfb |
SLO_03 | Ljubljana–Reaktor 1 | 46.094612 | 14.597046 | 282 | Other at JSI | |
SLO_04 | Portorož | 45.475314 | 13.615985 | 2 | Synoptic ARSO | Cfa |
SLO_05 | Kozina | 45.604249 | 13.931941 | 484 | Precipitation ARSO | Cfa |
SLO_08 | Kredarica | 46.378784 | 13.848628 | 2514 | Synoptic ARSO | ET |
SLO_09 | Rateče | 46.497090 | 13.712891 | 864 | Synoptic ARSO | Dfb |
SLO_11 | Zg. Radovna | 46.428176 | 13.942715 | 750 | Precipitation ARSO | Dfb |
SLO_14 | Murska Sobota | 46.652078 | 16.191278 | 186 | Synoptic ARSO | Cfb |
SLO_16 | Sv. Urban | 46.183584 | 15.590748 | 283 | Other 2 | Cfb |
Attribute | Description |
---|---|
Sample_ID | Unique sample ID: Station_ID_MMYY (e.g., sample obtained at station SLO_01 and representing the average of January 2011 would be labelled SLO_01_0111) |
Station_ID | Unique station ID. SLO_xy for Slovenia (e.g., SLO_01, SLO_02, …) |
Name | Location name (e.g., Ljubljana–Reaktor, Portorož) |
Year | 2011, 2012, etc. |
Month | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 |
P_mm | Monthly amount of precipitation (mm to 1 decimal) |
Source of data | e.g., Ljubljana—Bežigrad, meteo.si, accessed 12 March 2018 |
T_°C | Average monthly air temperature where available (°C to 1 decimal), if not the nearest meteorological station |
Source of data | e.g., Ljubljana—Bežigrad, meteo.si, accessed 12 March 2018 |
RH_% | Monthly average relative humidity (in %) |
Source of data | e.g., Ljubljana—Bežigrad, meteo.si, accessed 12 March 2018 |
δ18O_‰ | Stable isotopic composition of oxygen (δ18O) reported in ‰ to 2 decimals |
Comment | e.g., technique used: DELTA DI—dual inlet isotope ratio mass spectrometer Finnigan MAT DELTA plus with automated CO2–H2O and H2–H2O equilibrator HDOEQ48 |
Lab name | Laboratory name (e.g., JSI O-2) |
Source of data | e.g., reference or laboratory name |
δ2H _‰ | Stable isotopic composition of hydrogen (δ2H) reported in ‰ to 1 decimal |
Comment | e.g., technique used: DELTA DI—dual inlet isotope ratio mass spectrometer Finnigan MAT DELTA plus with automated CO2–H2O and H2–H2O equilibrator HDOEQ48 |
Lab name | Laboratory name (e.g., JSI O-2) |
Source of data | e.g., reference or laboratory name |
d_‰ | Deuterium excess (d) reported in ‰ to 1 decimal, calculated as d = δ2H—8 × δ18O (Dansgaard, 1964), source of data |
Source of data | e.g., reference or laboratory name |
3H_ Bqkg−1 | Activity concentration of tritium (As) reported in Bqkg−1, to 2 or 3 decimals |
Uncertainty | Measurement uncertainty of the activity concentration of tritium in Bqkg−1 reported to 2 or 3 decimals |
Comment | e.g., technique used: LSC EE—electrolytic enrichment liquid scintillation counting |
Lab name | Laboratory name (e.g., JSI O-2) |
Source of data | e.g., reference or laboratory name |
3H_TU | Activity concentration of tritium (As) recalculated to Tritium Units (1 TU = 0.118 Bqkg−1), taking into account 1 kg = 1 L, reported to 1 decimal |
Uncertainty | Measurement uncertainty of the activity concentration of tritium in TU reported to 1 decimal |
Comment | e.g., 1 TU = 0.118 Bqkg−1 |
Lab name | Laboratory name (e.g., JSI O-2) |
Source of data | e.g., reference or laboratory name |
Remarks | Any additional remarks like information about the nearest meteorological station if samples are not collected at the ARSO station |
3. Results and Discussion
3.1. The Graphical User Interface of the SLONIP Platform
3.2. Functioning of the SLONIP Portal
3.3. Future Development and the Importance of the SLONIP Platform
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, X.; Liu, C.; Xie, F.; Lu, J.; Chiu, L.S.; Tintera, G.; Chen, B. Precipitation Characteristic Changes Due to Global Warming in a High-resolution (16 Km) ECMWF Simulation. Q. J. R. Meteorol. Soc. 2019, 145, 303–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, P.K.; Froehlich, K.F.; Gat, J.R. Isotopes in the Water Cycle; Springer: Dordrecht, The Netherlands, 2005; ISBN 1-4020-3010-X. [Google Scholar]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Dansgaard, W. Stable Isotopes in Precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- International Atomic Energy Agency; World Meteorological Organization. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: https://nucleus.iaea.org/wiser (accessed on 21 April 2022).
- Kendall, C.; McDonnell, J. Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998; ISBN 978-0-444-81546-0. [Google Scholar]
- Lucas, L.L.; Unterweger, M.P. Comprehensive Review and Critical Evaluation of the Half-Life of Tritium. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Schotterer, U.; Oldfield, F.; Fröhlich, K. GNIP: Global Network for Isotopes in Precipitation; Läderach: Bern, Switzerland, 1996; ISBN 978-3-9521078-0-5. [Google Scholar]
- West, J.B. (Ed.) Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-3353-6. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 1997; ISBN 978-0-429-06957-4. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation. In Climate Change in Continental Isotopic Records; American Geophysical Union: Washington, DC, USA, 1993; pp. 1–36. [Google Scholar]
- Araguas-Araguas, L.; Froehlich, K.; Rozanski, K. Deuterium and Oxygen-18 Isotope Composition of Precipitation and Atmospheric Moisture. Hydrol. Process. 2000, 14, 1341–1355. [Google Scholar] [CrossRef]
- Schürch, M.; Kozel, R.; Schotterer, U.; Tripet, J.-P. Observation of Isotopes in the Water Cycle—The Swiss National Network (NISOT). Environ. Geol. 2003, 45, 1–11. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. The Global Network of Isotopes in Precipitation. IAEA Bull. 2019, 60, 18–19. [Google Scholar]
- Hager, B.; Foelsche, U. Stable Isotope Composition of Precipitation in Austria. Austrian J. Earth Sci. 2015, 108, 2–13. [Google Scholar] [CrossRef]
- Hollins, S.E.; Hughes, C.E.; Crawford, J.; Cendón, D.I.; Meredith, K.T. Rainfall Isotope Variations over the Australian Continent—Implications for Hydrology and Isoscape Applications. Sci. Total Environ. 2018, 645, 630–645. [Google Scholar] [CrossRef]
- Gibson, J.J.; Edwards, T.W.D.; Birks, S.J.; Amour, N.A.S.; Buhay, W.M.; McEachern, P.; Wolfe, B.B.; Peters, D.L. Progress in Isotope Tracer Hydrology in Canada. Hydrol. Process. 2005, 19, 303–327. [Google Scholar] [CrossRef]
- Boschetti, T.; Cifuentes, J.; Iacumin, P.; Selmo, E. Local Meteoric Water Line of Northern Chile (18° S–30° S): An Application of Error-in-Variables Regression to the Oxygen and Hydrogen Stable Isotope Ratio of Precipitation. Water 2019, 11, 791. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Yang, L. Stable Isotopic Compositions of Precipitation in China. Tellus B Chem. Phys. Meteorol. 2014, 66, 22567. [Google Scholar] [CrossRef] [Green Version]
- Stumpp, C.; Klaus, J.; Stichler, W. Analysis of Long-Term Stable Isotopic Composition in German Precipitation. J. Hydrol. 2014, 517, 351–361. [Google Scholar] [CrossRef]
- Longinelli, A.; Selmo, E. Isotopic Composition of Precipitation in Italy: A First Overall Map. J. Hydrol. 2003, 270, 75–88. [Google Scholar] [CrossRef]
- Banda, L.C.; Rivett, M.O.; Zavison, A.S.K.; Kamtukule, S.; Kalin, R.M. National Stable Isotope Baseline for Precipitation in Malawi to Underpin Integrated Water Resources Management. Water 2021, 13, 1927. [Google Scholar] [CrossRef]
- Vachon, R.W.; Welker, J.M.; White, J.W.C.; Vaughn, B.H. Monthly Precipitation Isoscapes (δ18O) of the United States: Connections with Surface Temperatures, Moisture Source Conditions, and Air Mass Trajectories. J. Geophys. Res. 2010, 115, D21126. [Google Scholar] [CrossRef]
- Welker, J.M. Isotopic (δ18O) Characteristics of Weekly Precipitation Collected across the USA: An Initial Analysis with Application to Water Source Studies. Hydrol. Process. 2000, 14, 1449–1464. [Google Scholar] [CrossRef]
- Kostrova, S.S.; Meyer, H.; Fernandoy, F.; Werner, M.; Tarasov, P.E. Moisture Origin and Stable Isotope Characteristics of Precipitation in Southeast Siberia. Hydrol. Process. 2020, 34, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Hatvani, I.G.; Szatmári, G.; Kern, Z.; Erdélyi, D.; Vreča, P.; Kanduč, T.; Czuppon, G.; Lojen, S.; Kohán, B. Geostatistical Evaluation of the Design of the Precipitation Stable Isotope Monitoring Network for Slovenia and Hungary. Environ. Int. 2021, 146, 106263. [Google Scholar] [CrossRef]
- Kern, Z.; Hatvani, I.G.; Czuppon, G.; Fórizs, I.; Erdélyi, D.; Kanduč, T.; Palcsu, L.; Vreča, P. Isotopic ‘Altitude’ and ‘Continental’ Effects in Modern Precipitation across the Adriatic–Pannonian Region. Water 2020, 12, 1797. [Google Scholar] [CrossRef]
- Kern, Z.; Erdélyi, D.; Vreča, P.; Bronić, I.K.; Fórizs, I.; Kanduč, T.; Štrok, M.; Palcsu, L.; Süveges, M.; Czuppon, G.; et al. Isoscape of Amount-Weighted Annual Mean Precipitation Tritium (3H) Activity from 1976 to 2017 for the Adriatic–Pannonian Region—AP3H_v1 Database. Earth Syst. Sci. Data 2020, 12, 2061–2073. [Google Scholar] [CrossRef]
- Nelson, D.B.; Basler, D.; Kahmen, A. Precipitation Isotope Time Series Predictions from Machine Learning Applied in Europe. Proc. Natl. Acad. Sci. USA 2021, 118, e2024107118. [Google Scholar] [CrossRef] [PubMed]
- Sturm, K.; Hoffmann, G.; Langmann, B.; Stichler, W. Simulation of δ18O in Precipitation by the Regional Circulation Model REMOiso. Hydrol. Process. 2005, 19, 3425–3444. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Erdélyi, D.; Vreča, P.; Kern, Z. Analysis of the Spatial Distribution of Stable Oxygen and Hydrogen Isotopes in Precipitation across the Iberian Peninsula. Water 2020, 12, 481. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Wang, K.; Li, J.; Pang, Z. Stable Isotopes of Precipitation in China: A Consideration of Moisture Sources. Water 2019, 11, 1239. [Google Scholar] [CrossRef] [Green Version]
- Balk, T.; Kukkonen, J.; Karatzas, K.; Bassoukos, T.; Epitropou, V. A European Open Access Chemical Weather Forecasting Portal. Atmos. Environ. 2011, 45, 6917–6922. [Google Scholar] [CrossRef]
- Shi, Y.; Ren, C.; Luo, M.; Ching, J.; Li, X.; Bilal, M.; Fang, X.; Ren, Z. Utilizing World Urban Database and Access Portal Tools (WUDAPT) and Machine Learning to Facilitate Spatial Estimation of Heatwave Patterns. Urban Clim. 2021, 36, 100797. [Google Scholar] [CrossRef]
- Pučnik, J. Velika knjiga o Vremenu; Cankarjeva Založba: Ljubljana, Slovenia, 1980; p. 366. [Google Scholar]
- Dolinar, M.; Frantar, P.; Kurnik, B. Značilnosti Vodne Bilance Slovenije v Obdobju 1971–2000; Vodnogospodarski Biro: Maribor, Slovenia, 2008; pp. 19–25. [Google Scholar]
- Vreča, P.; Malenšek, N. Slovenian Network of Isotopes in Precipitation (SLONIP)—A Review of Activities in the Period 1981–2015. Geologija 2016, 59, 67–84. [Google Scholar] [CrossRef]
- Pavšek, A.; Vreča, P. Isotopes-in-Precipitation-Statistics. Available online: https://github.com/nyuhanc/Isotopes-in-precipitation-statistics (accessed on 6 May 2022).
- Gospodarič, R.; Habič, P. Underground Water Tracing; Investigations in Slovenia 1972–1975; ZRC SAZU: Postojna, Slovenia, 1976; p. 309. [Google Scholar]
- Pezdič, J. Isotope Fractionation of Long Term Precipitation Averages in Ljubljana (Slovenia). RMZ Mater. Geoenviron. 2003, 50, 641–650. [Google Scholar]
- Pezdič, J. Izotopi in Geokemijski Procesi; Univerza v Ljubljani: Ljubljana, Slovenia, 1999; ISBN 961-6047-10-8. [Google Scholar]
- Vreča, P.; Bronić, I.K.; Leis, A.; Demšar, M. Isotopic Composition of Precipitation at the Station Ljubljana (Reaktor), Slovenia—Period 2007–2010. Geologija 2014, 57, 217–230. [Google Scholar] [CrossRef]
- Vreča, P.; Bronić, I.K.; Leis, A.; Brenčič, M. Isotopic Composition of Precipitation in Ljubljana (Slovenia). Geologija 2008, 51, 169–180. [Google Scholar] [CrossRef]
- Vreča, P.; Bronić, I.K.; Horvatinčić, N.; Barešić, J. Isotopic Characteristics of Precipitation in Slovenia and Croatia: Comparison of Continental and Maritime Stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Vreča, P.; Brenčič, M.; Leis, A. Comparison of Monthly and Daily Isotopic Composition of Precipitation in the Coastal Area of Slovenia. Isot. Environ. Health Stud. 2007, 43, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Vreča, P.; Bronić, I.K.; Leis, A. Isotopic Composition of Precipitation in Portorož (Slovenia). Geologija 2011, 54, 129–138. [Google Scholar] [CrossRef]
- Vreča, P.; Pavšek, A. Slovenska mreža opazovanj izotopske sestave padavin (SLONIP)—Predstavitev spletne strani. In Proceedings of the Raziskave s Področja Geodezije in Geofizike 2021; Slovensko Združenje za Geodezijo in Geofiziko: Ljubljana, Slovenia, 2022; Volume 27, pp. 45–53. (In Slovene). Available online: http://fgg-web.fgg.uni-lj.si/SUGG/referati/2022/SZGG_2022_Vreca_Pavsek.pdf (accessed on 8 May 2022).
- Django Software Foundation. Django, Version 3.0.3; Django Software Foundation: Lawrence, KS, USA, 2019. [Google Scholar]
- Brenčič, M.; Kononova, N.K.; Vreča, P. Relation between Isotopic Composition of Precipitation and Atmospheric Circulation Patterns. J. Hydrol. 2015, 529, 1422–1432. [Google Scholar] [CrossRef]
- Slovenian Environmental Agency (ARSO). ARSO METEO. Available online: http://www.meteo.si/ (accessed on 4 May 2022).
- Kanduč, T.; Kocman, D.; Lojen, S.; Štrok, M.; Svetek, B.; Žigon, S.; Vreča, P. Working Report on Isotope Composition of Precipitation at Stations Velenje, Sv. Urban at Podčetrtek and Murska Sobota—Rakičan, NE Slovenia—Period 2012–2016; Jožef Stefan Institute, Department of Environmental Sciences: Ljubljana, Slovenia, 2018; p. 25. [Google Scholar]
- Jožef Stefan Institute. SLONIP: Slovenian Network of Isotopes in Precipitation. Available online: https://slonip.ijs.si/ (accessed on 10 April 2022).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Vreča, P.; Bronić, I.K.; Leis, A. Isotopic Composition of Precipitation at the Station Portorož, Slovenia—Period 2007–2010. Geologija 2015, 58, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Coplen, T.B. Guidelines and Recommended Terms for Expression of Stable-Isotope-Ratio and Gas-Ratio Measurement Results: Guidelines and Recommended Terms for Expressing Stable Isotope Results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef]
- Coplen, T.B. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances (Technical Report). Pure Appl. Chem. 1994, 66, 273–276. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Reference Sheet for VSMOW2 and SLAP2 International Measurement Standards; IAEA: Vienna, Austria, 2017; p. 8. [Google Scholar]
- Coplen, T.B.; Wildman, J.D.; Chen, J. Improvements in the Gaseous Hydrogen-Water Equilibration Technique for Hydrogen Isotope-Ratio Analysis. Anal. Chem. 1991, 63, 910–912. [Google Scholar] [CrossRef]
- Epstein, S.; Mayeda, T. Variations of 18O content of waters from natural sources. Geochim Cosmochim Acta 1953, 4, 213–224. [Google Scholar] [CrossRef]
- Avak, H.; Brand, W.A. The Finning MAT HDO-Equilibration—A fully automated H2O/gas phase equilibration system for hydrogen and oxygen isotope analyses. Thermo Electron. Corp. Appl. News 1995, 11, 1–13. [Google Scholar]
- Nagode, K.; Kanduč, T.; Zuliani, T.; Bračič Železnik, B.; Jamnik, B.; Vreča, P. Daily Fluctuations in the Isotope and Elemental Composition of Tap Water in Ljubljana, Slovenia. Water 2021, 13, 1451. [Google Scholar] [CrossRef]
- Serianz, L.; Cerar, S.; Vreča, P. Using Stable Isotopes and Major Ions to Identify Recharge Characteristics of the Alpine Groundwater-Flow Dominated Triglavska Bistrica River. Geologija 2021, 64, 205–220. [Google Scholar] [CrossRef]
- Zuliani, T.; Kanduč, T.; Novak, R.; Vreča, P. Characterization of Bottled Waters by Multielemental Analysis, Stable and Radiogenic Isotopes. Water 2020, 12, 2454. [Google Scholar] [CrossRef]
- Žvab Rožič, P.; Polenšek, T.; Verbovšek, T.; Kanduč, T.; Mulec, J.; Vreča, P.; Strahovnik, L.; Rožič, B. An Integrated Approach to Characterising Sulphur Karst Springs: A Case Study of the Žvepovnik Spring in NE Slovenia. Water 2022, 14, 1249. [Google Scholar] [CrossRef]
- Crawford, J.; Hughes, C.E.; Lykoudis, S. Alternative Least Squares Methods for Determining the Meteoric Water Line, Demonstrated Using GNIP Data. J. Hydrol. 2014, 519, 2331–2340. [Google Scholar] [CrossRef]
- Putman, A.L.; Fiorella, R.P.; Bowen, G.J.; Cai, Z. A Global Perspective on Local Meteoric Water Lines: Meta-analytic Insight Into Fundamental Controls and Practical Constraints. Water Resour. Res. 2019, 55, 6896–6910. [Google Scholar] [CrossRef]
- Hughes, C.E.; Crawford, J. A New Precipitation Weighted Method for Determining the Meteoric Water Line for Hydrological Applications Demonstrated Using Australian and Global GNIP Data. J. Hydrol. 2012, 464–465, 344–351. [Google Scholar] [CrossRef]
- Vodila, G.; Palcsu, L.; Futó, I.; Szántó, Z. A 9-Year Record of Stable Isotope Ratios of Precipitation in Eastern Hungary: Implications on Isotope Hydrology and Regional Palaeoclimatology. J. Hydrol. 2011, 400, 144–153. [Google Scholar] [CrossRef]
- Liotta, M.; Bellissimo, S.; Favara, R.; Valenza, M. Isotopic Composition of Single Rain Events in the Central Mediterranean. J. Geophys. Res. 2008, 113, D16304. [Google Scholar] [CrossRef] [Green Version]
- Brenčič, M. Hydrogeochemistry of Coastal Carbonate Aquifer in Lucija–Portorož (Gulf of Trieste, Northern Adriatic Sea, Slovenia). Acta Carsol. 2009, 38, 179–186. [Google Scholar] [CrossRef]
- Torkar, A.; Brenčič, M.; Vreča, P. Chemical and Isotopic Characteristics of Groundwater-Dominated Radovna River (NW Slovenia). Environ. Earth Sci. 2016, 75, 1296. [Google Scholar] [CrossRef]
- Marković, T.; Brkić, Ž.; Larva, O. Using Hydrochemical Data and Modelling to Enhance the Knowledge of Groundwater Flow and Quality in an Alluvial Aquifer of Zagreb, Croatia. Sci. Total Environ. 2013, 458–460, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Mezga, K.; Urbanc, J.; Cerar, S. The Isotope Altitude Effect Reflected in Groundwater: A Case Study from Slovenia. Isot. Environ. Health Stud. 2014, 50, 33–51. [Google Scholar] [CrossRef]
- Verbovšek, T.; Kanduč, T. Isotope Geochemistry of Groundwater from Fractured Dolomite Aquifers in Central Slovenia. Aquat. Geochem. 2016, 22, 131–151. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kanduč, T.; Stichler, W.; Vreča, P. Spatial and Seasonal Variations in δ18O and δD Values in the River Sava in Slovenia. J. Hydrol. 2008, 359, 303–312. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kocman, D.; Miljević, N.; Vreča, P.; Vrzel, J.; Povinec, P. Distribution of H and O Stable Isotopes in the Surface Waters of the Sava River, the Major Tributary of the Danube River. J. Hydrol. 2018, 565, 365–373. [Google Scholar] [CrossRef]
- Cerar, S.; Urbanc, J. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia. Sci. World J. 2013, 2013, 948394. [Google Scholar] [CrossRef]
- Koren, K.; Serianz, L.; Janža, M. Characterizing the Groundwater Flow Regime in a Landslide Recharge Area Using Stable Isotopes: A Case Study of the Urbas Landslide Area in NW Slovenia. Water 2022, 14, 912. [Google Scholar] [CrossRef]
- Cucchi, F.; Franceschini, G.; Zini, L. Hydrogeochemical Investigations and Groundwater Provinces of the Friuli Venezia Giulia Plain Aquifers, Northeastern Italy. Environ. Geol. 2008, 55, 985–999. [Google Scholar] [CrossRef]
- Froehlich, K.; Kralik, M.; Papesch, W.; Rank, D.; Scheifinger, H.; Stichler, W. Deuterium Excess in Precipitation of Alpine Regions—Moisture Recycling. Isot. Environ. Health Stud. 2008, 44, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Brencic, M.; Vreca, P. Identification of Sources and Production Processes of Bottled Waters by Stable Hydrogen and Oxygen Isotope Ratios. Rapid Commun. Mass Spectrom. 2006, 20, 3205–3212. [Google Scholar] [CrossRef] [PubMed]
- Saccon, P.; Leis, A.; Marca, A.; Kaiser, J.; Campisi, L.; Böttcher, M.E.; Savarino, J.; Escher, P.; Eisenhauer, A.; Erbland, J. Multi-Isotope Approach for the Identification and Characterisation of Nitrate Pollution Sources in the Marano Lagoon (Italy) and Parts of Its Catchment Area. Appl. Geochem. 2013, 34, 75–89. [Google Scholar] [CrossRef] [Green Version]
Station Name | Data Available in SLONIP | N | P | T | δ18O | δ2H | d | 3H | |
---|---|---|---|---|---|---|---|---|---|
since | to | mm | °C | ‰ | ‰ | ‰ | T.U. | ||
Ljubljana 1 | 1981 | 2010 | 1291 | 1363 2 | 10.7 2 | −8.71 | −60.1 | 9.6 | 15.2 |
Portorož | 2000 | 2010 | 482 | 986 | 13.7 | −6.31 | −42.2 | 8.4 | 7.3 |
Kozina | 2000 | 2003 | 153 | 1235 | n.d. | −7.24 | −46.3 | 11.6 | 5.6 |
Kredarica | 2016 | 2018 | 136 | 2088 | 0.7 | −10.93 | −73.4 | 14.0 | 6.7 |
Rateče | 2016 | 2018 | 127 | 1691 | 7.5 | −9.55 | −65.3 | 11.1 | 6.4 |
Zg. Radovna | 2016 | 2018 | 139 | 1779 | n.d. | −8.94 | −60.6 | 10.9 | 6.7 |
Murska Sobota | 2016 | 2018 | 119 | 823 | 11.5 | −9.28 | −65.8 | 8.4 | 7.5 |
Sv. Urban | 2016 | 2018 | 125 | 1024 3 | 11.2 3 | −8.53 | −59.2 | 9.0 | 7.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vreča, P.; Pavšek, A.; Kocman, D. SLONIP—A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water 2022, 14, 2127. https://doi.org/10.3390/w14132127
Vreča P, Pavšek A, Kocman D. SLONIP—A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water. 2022; 14(13):2127. https://doi.org/10.3390/w14132127
Chicago/Turabian StyleVreča, Polona, Aljaž Pavšek, and David Kocman. 2022. "SLONIP—A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation" Water 14, no. 13: 2127. https://doi.org/10.3390/w14132127
APA StyleVreča, P., Pavšek, A., & Kocman, D. (2022). SLONIP—A Slovenian Web-Based Interactive Research Platform on Water Isotopes in Precipitation. Water, 14(13), 2127. https://doi.org/10.3390/w14132127