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Abstract: With the gradual opening of China’s electricity market, it is effective for cascade hy-
dropower plants to simultaneously participate in both the monthly contract market and the day-
ahead spot market to obtain higher power generation benefits. Hence, this paper studies the optimal
decomposition model for the monthly contracted electricity of cascade hydropower plants consid-
ering the bidding space in the day-ahead spot market. The close hydraulic and electric connection
between cascade hydropower plants, the implementation requirements of contracted electricity, and
the uncertainty of the day-ahead market clearing price are all well considered. Several linearization
techniques are proposed to address the nonlinear factors, including the objective function and the
power generation function. A successive approximation (SA) approach, along with a mixed-integer
linear programming (MILP) approach, is then developed to solve the proposed model. The presented
model is verified by taking the decomposition of the monthly contracted electricity of cascade hy-
dropower plants in China as an example. The results indicate that the developed model has high
computational efficiency and can increase the power generation benefits compared with the conven-
tional deterministic model. The effect of the penalty coefficient for imbalanced monthly contracted
electricity is also evaluated, which provides a practical reference for market managers.

Keywords: cascade hydropower plants; decomposition of the monthly contracted electricity; day-
ahead spot market; uncertainty of the clearing price; successive approximation; mixed-integer
linear programming

1. Introduction

Hydropower is a type of renewable energy with flexible operation and mature technol-
ogy, which is clean, low carbon, and has been favored by countries all over the world [1,2].
With more than 9000 hydropower dams registered across all continents, it supplies almost
70% of all renewable energy globally [3–5]. As of the end of 2019, the world’s total in-
stalled hydropower capacity stood at about 1308 GW. Clean electricity generation from
hydropower achieved a record 4306 TWh in 2019, the single greatest contribution from a
renewable energy source in history. Fifty countries added hydropower capacity in 2019.
Those with the highest individual increases in installed capacity were Brazil (4.92 GW),
China (4.17 GW), and Laos (1.89 GW). The 11,233 MW Belo Monte project in Brazil be-
came fully operational in 2019, while other major projects include the 1285 MW Xayaburi
project in Laos, followed by the 990 MW Wunonglong and 920 MW Dahuaqiao projects in
China [6].

China’s total installed hydropower capacity climbed to 300 GW, accounting for 27%
of the world’s installed hydropower capacity and 17% of China’s total installed power
capacity [7]. In 2015, China implemented a new round of power industry reform and
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established a medium- and long-term electricity market [8]. Since 2017, China has orga-
nized and promoted the construction of spot markets in eight regions, including Southern
China (starting from Guangdong Province) and Sichuan Province as the first batch of pilot
projects [9,10]. It has been a developing trend for hydropower plants to participate in both
the contract market and the day-ahead market [11,12]. Medium- and long-term contracts
can lock the electricity price to avoid the risk of price fluctuation, but the price is generally
low. The day-ahead market has created high profit opportunities for hydropower plants
involved in the transaction, but the price volatility and uncertainty are strong, so there is a
large profit risk. Because of the limitations of runoff, storage capacity, installed capacity, and
other factors of hydropower plants, as well as the complex hydraulic and electric coupling
relationship between cascade hydropower plants [13], there is a close internal relationship
between the contract market and the day-ahead market of power distribution. Medium-
and long-term contracts signed by the hydropower generation company (HGenCo) are
required be physically settled, which may affect the total revenue of the HGenCo and
bidding space of the day-ahead market. Hence, how to determine the power generation
of the cascade hydropower plants that participates in the contract market and day-ahead
market to obtain the maximum benefit is an extremely difficult problem for the HGenCo.

Because the power output of hydropower plants is limited by reservoir inflow and
storage capacity [14], it is difficult to directly apply research on the participation of other
types of power plants in the electricity market [15–17] to the present problem. Scholars
have carried out some research on the participation of hydropower plants in the electricity
market, and most of them can be broadly divided into two categories: (1) The first category
is the optimal decomposition of yearly or monthly contracted electricity. For example,
Lu et al. [18] proposed a long-term optimal operation method for cascade hydropower
plants considering the allocation of power generation in multiple markets and the uncer-
tainty of multiple variables. Li et al. [19] developed an information gap decision-making
theory-based method for optimal medium-term stochastic cascade hydropower operation
in a multimarket environment, which considers the hydrological and economic uncer-
tainties. Shrestha et al. [20] studied the optimal management of hydropower resources in
the medium term to maximize the expected revenue of a Nordic hydropower producer.
Luo et al. [21] developed an optimal scheduling model for long-term generation sched-
ules of a cascade hydropower plant, which takes into account the uncertainty of multiple
market prices. Chen et al. [12] proposed an integrated solution methodology based on a
multi-core parallel tabu genetic algorithm to provide the optimal assignment of bilateral
contracts, considering the simulation of a hydro-dominated market. (2) The second cate-
gory is the trading and dispatching strategy of hydropower plants in the day-ahead spot
market. Yuan et al. [22] proposed an efficient method to solve the benefit-based optimal
self-scheduling of several cascaded hydro plants in a pool-based day-ahead electricity
market. Conejo et al. [23] addressed the self-scheduling of a hydro generating company
to maximize the benefit from selling energy in the day-ahead market. Pousinho et al. [24]
established a stochastic mixed-integer linear programming (MILP) model to maximize the
expected total benefit of a HGenCo in the pool-based day-ahead market. Kongelf et al. [25]
proposed a stochastic MILP approach to formulate a coordinated planning problem for a
hydropower producer, considering the uncertainty of portfolio size in multiple electricity
markets. However, there are few studies on the decomposition of monthly contracted
electricity for cascade hydropower plants connected with the bidding in the day-ahead
spot market.

The optimal decomposition of monthly contract electricity is part of the mid- and
long-term optimal operation problem of cascade hydropower plants, which is a typical
nonlinear programming (NLP) problem with multiple variables, high dimensionality, and
complex constraints. At present, the methods of solving such an NLP problem can be
divided into three categories: dynamic programming (DP) and its improved algorithm [26],
intelligent algorithms represented by particle swarm optimization algorithm [27], and the
mathematical programming methods [28,29]. The model constructed in this paper struggles
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to meet the requirement of having no aftereffect because it takes into account the uncertainty
of the day-ahead market clearing price and involves the coupling relationship between
monthly contract electricity and day-ahead market trading electricity. Thus, DP would be
a hindrance in formulating the present problem as a multi-stage optimization problem.
The intelligent algorithms would struggle to effectively handle the complex operation
constraints and cannot guarantee a global optimal solution within finite iterations. The
computational efficiency of NLP algorithm is affected by the initial solution and easily falls
into the local optimal solution, and therefore are also unsuitable for solving the present
problem. Among mathematical programming methods, the MILP approach becomes more
and more mature and has been widely used in in the field of optimal reservoir operation
due to its good performance in addressing complex constraints and producing stable
calculation results [30–32].

Aiming at the above problems, this paper emphasizes on the optimal decomposition
model for the monthly contract electricity of cascade hydropower plants considering the
bidding space in the day-ahead spot market. In this model, the generation benefits of
cascade hydropower plant participating in both the monthly contract market and the day-
ahead spot market are maximized. The uncertainty of the day-ahead market clearing price
is modeled by a scenario analysis technique. An efficient and novel method, coupling a
successive approximation (SA) approach and a MILP approach is then proposed to solve
the proposed model. The rationality and validity of the proposed model and method are
verified by an example of monthly contracted electricity decomposition plan of a cascade
hydropower plant in China. The major contributions of this paper are clarified as follows:
(1) An optimal scheduling model for cascade hydropower plants participating in both
the monthly contract market and the day-ahead spot market is established, considering
the uncertainty of the day-ahead market electricity price. This model mirrors the real-life
situation of cascade hydropower plants participating in China’s electricity market. (2) SA
along with a MILP approach is developed to solve this complex issue, which guarantees an
optimal or near-optimal solution and significantly improves the solving efficiency.

The organization of the remaining parts of this paper is shown as follows. The
mathematical formulation of this problem is established in Section 2. Section 3 provides the
solution technique for the optimization model. The optimization results of the case study
are presented and discussed in Section 3. Finally, conclusions are drawn in Section 4.

2. Mathematical Formulation
2.1. Problem Description

According to the trading rules of the electricity market, each hydropower plant signs
the monthly electricity contract for the next month with the power purchasing user in
the current month, and the contract stipulates the amount of electricity to be traded
and the settlement price. In order to improve the consumption of renewable energy
sources like hydropower, hydropower plants are allowed to participate in the day-ahead
market according to the market situation and their own power generation capacity by
self-scheduling during their operation within a month. In this case, the hydropower plant
only declares the electricity quantity, not the price, and uses the market clearing price as
the settlement price for the electricity quantity traded in the day-ahead market (i.e., as the
price-taker). According to the settlement rules, the trading electricity in the day-ahead
market will be settled the next day, while the monthly contract electricity will be settled at
the beginning of the next month. Therefore, the monthly contracted electricity that has been
agreed in advance by the hydropower plants can still bide in the day-ahead market, but the
imbalanced portion of the monthly contracted electricity will be compensated to the power
purchasing user according to the market rules or the contract agreement. At present, the
medium- and long-term market is the energy market, and the power generation curves of
the power plants are not agreed. Therefore, the power market operation institution or the
power grid dispatching center will require the hydropower plants to report the water level
process for the next month, the daily electricity generation, and the monthly and day-ahead
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market combined transaction electricity at the end of the month. To get more benefits, it
is necessary for cascade hydropower plants to optimize the decomposition scheme for
monthly contract electricity and the trading electricity in the day-ahead market based on
their power generation capacity and predicted day-ahead market clearing price. Due to the
inevitable deviation between the predicted day-ahead market clearing price and the actual
value, it is challenging to develop a decomposition scheme for the monthly contracted
electricity. Therefore, the uncertainty of the day-ahead market clearing price need to be
well considered when the decomposition scheme for the monthly contract electricity of
cascade hydropower plants is formulated.

In this paper, it is assumed that the day-ahead market clearing price is given. Moreover,
cascade hydropower plants belong to the same HGenCo, and each hydropower plant
participates in the market transaction independently. However, in order to give full play to
the compensation and regulation function between cascade plants, all hydropower plants
are uniformly operated by their owners.

2.2. Uncertainty Treatment of Day-Ahead Market Clearing Price

This section uses the scenario analysis technique to generate a series of scenarios
to model and analyze the randomness of day-ahead market clearing price, in order to
transform the stochastic optimization problem into an equivalent deterministic one.

(1) It is assumed that the forecasted error of the clearing price series
{

pd f
1 , pd f

2 , . . . , pd f
T

}
obeys the normal distribution N(µ, σ2) at any time period, where µ and σ are the
mean and standard deviation of the forecasted error, respectively, and they satisfy
that µ = 0, σ = 0.1× pd f

t .
(2) The Latin Hypercube Sampling (LHS) method [31] is adopted for generating the

scenarios for the forecasted error of the day-ahead market price. In this method, the
sampling probability distribution is stratified first, and then samples are randomly
selected from each layer in turn, which can effectively improve the coverage degree
of sampling samples to the distribution space of random variables.

(3) To adequately reflect the stochastic characteristics of the day-ahead market clearing
price, more price scenarios will be generated through LHS, which mainly aims to
avoid a low calculation accuracy due to a small number of scenarios. In this paper, the
fast backward/forward method [33] is adopted to balance the solving accuracy and
efficiency, that is, to minimize the number of scenarios while maintaining the main
characteristics of price scenarios.

2.3. Objective Function

The goal of optimal monthly contract electricity decomposition is to maximize the
expected monthly income, whilst meeting various operational constraints. The cost of
cascade hydropower plants is mainly construction cost; thus, power generation cost is not
considered in this model. According to the electricity market trading rules, the monthly
contract is a physical contract. This implies that although part of the monthly contracted
electricity quantity of from hydropower plants can participate in the day-ahead market
bidding, it needs to accept a certain penalty. The mathematical expression of the objective
function is presented as follows:

maxF = F1 + F2 − F3 + F4 (1)

F1 =
I

∑
i=1

Pm
i × Emb

i (2)

F2 =
I

∑
i=1

Ppm
i ×max(Ema

i − Emb
i , 0) (3)
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F3 =
I

∑
i=1

Pnm
i ×max(Emb

i − Ema
i , 0) (4)

F4 =
S

∑
s=1

I

∑
i=1

T

∑
t=1

ps×Ed
i,t × Pd

s,t (5)

where F denotes the target total monthly benefits (in CNY); F1 denotes the basic income
according to the monthly electricity contract (in CNY); F2 denotes the extra income obtained
from the excess settlement of the monthly contracted electricity (in CNY); F3 denotes the
penalty cost for an insufficient amount of monthly contracted electricity (in CNY); F4
denotes the expected benefits of cascade power plants from participating in the day-ahead
market (in CNY); I and i are the total number and index of plants, respectively; T and
t denote the dispatching cycle and dispatching period, respectively; Emb

i and Pm
i are the

monthly contract electricity and electricity price, respectively, of the hydropower plant i (in
MWh and CNY/MWh); Ema

i denotes monthly contract electricity that actually completed
(in MWh); Ppm

i and Pnm
i are the electricity prices corresponding to the excess and deficiency

of monthly contracted electric quantity, respectively (in CNY/MWh). They satisfy that
Ppm

i = (1− τ)× Pm
i , Pnm

i = (1 + τ)× Pm
i , and τ is the penalty coefficient of imbalanced

contracted electricity; S and s are the total number and index of scenarios for day-ahead
market clearing price; ps denotes the probability of price scenario s; Pd

s,t denotes the day-
ahead market clearing price in scenario s; Ed

i,t denotes the trading electricity of plant i in the
day-ahead market in time period t (in MWh).

2.4. Constraints

(1) Water balance constraints

Vi,t = Vi,t−1 + 3600 · (Qin
i,t −Qi,t)× ∆t (6)

where Qin
i,t denote the total inflow of plant i in period t (in m3/s); Qi,t denotes the total

water discharge of plant i in period t (in m3/s); ∆t is the duration of period t (in h); Vi,t is
the water storage at the end of period t (in m3).

(2) Hydraulic connection constraints

Qin
i,t = Qi−1,t + Qlin

i,t = Qg
i−1,t + Qs

i−1,t + Qlin
i,t (7)

where Qlin
i,t denote the local inflow of plant i in period t (in m3/s); Qg

i−1,t and Qs
i−1,t denote

the generating water flow and water spillage, respectively (in m3/s). Note that Qs
i,t is set

to 0 in this paper because hydropower curtailment is generally not allowed according to
China’s clean energy consumption policy.

(3) Water level constraints

Zi,min ≤ Zi,t ≤ Zi,max (8)

Zi,0 = Zi,begin (9)

Zi,T = Zi,end (10)

where Zi,max and Zi,min denote the upper and lower bounds of the reservoir water level
(in m); Zi,t is the reservoir water level in period t (in m); Zi,begin is the initial water level and
Zi,end is the target water level at the end of the planning horizon (in m).
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(4) Water discharge constraints

Qi,min ≤ Qi,t ≤ Qi,max (11)

where Qi,min and Qi,max denote the lower and upper bounds of the total water discharge of
plant i, respectively (in m3/s).

(5) Power output constraint

Pi,min ≤ Pi,t ≤ Pi,max (12)

where Pi,max and Pi,min represent the upper and lower bounds of the power output of plant
i, respectively (in MW); Pi,t represents the power output of plant i in period t (in MW),
which satisfies Equation (13).

Pi,t = ki,t ·Q
g
i,t × Hi,t/1000 (13)

ki,t = fi,kh(Hi,t) (14)

where ki,t is the output factor of plant i, and is related to the water head [34,35]; Hi,t is the
water head of plant i in period t (in m).

(6) Water head constraints

Hi,t = (Zi,t−1 + Zi,t)/2− zdi,t (15)

where zdi,t denotes the tailwater level in period t (in m).

(7) Forebay water level–water storage relationship

Vi,t = fi,zv(Zi,t) (16)

fi,zv(·) represents the forebay water level–water storage relationship function of plant i.

(8) Tailwater level–water discharge relationship

zdi,t = fi,zq(Qi,t) (17)

fi,zq(·) represents the tailwater level–water discharge relationship function of plant i.

(9) Constraints on trading electricity in the day-ahead market

Ed
i,t ≤ Pi,t × ∆t (18)

The above formula indicates that the trading electricity of plant i in the day-ahead
market in time period t shall not exceed the power generation of the day.

(10) Trading electricity constraints

Ema
i +

T

∑
t=1

Ed
i,t =

T

∑
t=1

Pi,t × ∆t (19)

The above formula indicates that the sum of the actually completed monthly contracted
electricity and the trading electricity in the day-ahead market of the current month shall be
equal to the total monthly power generation of the power plant.

3. Solving Technique

According to the analysis in Section 1, the optimized model is nonlinear and non-
convex, making it difficult to solve by conventional algorithms. To solve such a complex
problem, a good idea is to approximate each nonlinear function by a series of linear
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functions. Hence, in this model, the nonlinear functions are linearized through several
linearization techniques, so that the original NLP model is transformed into an MILP
formulation. Based on this, a mature optimization solver can be adopted to solve the
MILP model.

In the established model, Equations (3) and (4) contain a max(·) function. The water
head function (i.e., Equation (15)) and power generation function (i.e., Equation (13)) are
also nonlinear functions. Considering that the linear approximation of the water head
constraint has been well established by many studies [29,30], this work aims to study the
linearization of the objective function (Equations (3) and (4)) and the power production
function (Equation (13)).

3.1. Linear Approximation of the Objective Function

We introduce a binary variable µi ∈ {0, 1}, and Equations (3) and (4) can be converted
into the following constraints.

F2 =
I

∑
i=1

µi × Ppm
i × (Ema

i − Emb
i ) (20)

F3 =
I

∑
i=1

(1− µi)× Pnm
i × (Emb

i − Ema
i ) (21)

Ema
i − Emb

i ≤ M× µi (22)

Emb
i − Ema

i ≤ M× (1− µi) (23)

where M is a very large number; µi is a binary indicator variable, which is equal to 1 if the
amount of monthly contracted electricity that is actually settled is higher than the amount
signed off, and otherwise, it is equal to 0.

Equations (20) and (21) are still nonlinear because there is still multiplication of integer
variables and continuous variables (i.e., µi × Ema

i ). Hence, we introduce two auxiliary
variables, Xi and Ki, to convert Equations (20) and (21) into the following linear constraints.

F2 =
I

∑
i=1

Ppm
i × (Xi − µi × Emb

i ) (24)

F3 =
I

∑
i=1

Ppm
i ×

[
(1− µi)× Emb

i − Ki

]
(25)

Xi = Ema
i − Ki (26)

Xi ≤ M× µi (27)

Xi ≥ −M× µi (28)

Ki ≤ M× (1− µi) (29)

Ki ≥ −M× (1− µi) (30)

When µi = 1, i.e., the monthly contracted electricity that is actually settled is higher
than the amount signed for in the contract, Ki is equal to 0 because of Equations (29)
and (30). F3 is then equal to 0 according to Equation (25), which is consistent with the
fact that the penalty cost is 0 when then monthly contracted electricity has been settled.
Equations (24) and (20) are equivalent at this time due to the constraint of Equation (32).
Similarly, when µi = 0, F2 is equal to 0 and Equations (25) and (21) are equivalent. To
sum up, the combination of linear constraints in Equations (22)–(30) is the equivalent
transformation of Equations (3) and (4).
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3.2. Linear Approximation of the Power Generation Function

The output factor ki,t is closely related to the water head Hi,t, while Hi,t depends on the
generation water flow [34,35]. Hence, the power generation function is a very complicated
nonlinear function for the generation water flow. If the generation water flow is chosen
as a decision variable and the net water head is fixed, the power generation function will
become a linear one. Based on the above analysis, the successive approximation (SA)
approach is introduced, which is an efficient and practical method to deal with complex
nonlinear optimization problems [36–38]. The basic idea of this method is to solve a
series of fixed water head subproblems using the MILP approach, and the solution for the
original complex problem can be obtained after successive calculations. A flow chart for the
proposed SA approach is illustrated in Figure 1, and the specific procedures are as follows.

(1) Set the convergence precision δ of the SA approach and let the index of iterations
n = 1.

(2) The initial solution has a great influence on the computational efficiency of the SA
approach. Thus, to enhance the convergence speed, the initial water head of all the
hydropower plants from upstream to downstream

{
H0

i,0, H0
i,1, · · · , H0

i,T

}
is gener-

ated using Equations (31)–(33). The initial output factor of each hydropower plant{
k0

i,0, k0
i,1, · · · , k0

i,T

}
is then calculated using Equation (14).

∆Wi = Vi,begin −Vi,end +
T

∑
t=1

Qin
i,t × ∆t (31)

Qi = ∆Wi/
T

∑
t=1

∆t (32)

Hi,t = (Zi,begin + Zi,end)/2− fi,zq(Qi)∀t ∈ [1, T] (33)

where ∆Wi and Qi denotes the total discharge volume and average water discharge,
respectively, during the scheduling horizon. Hi,t is the average water head of hy-
dropower plant i during the scheduling horizon.

(3) Based on the given water head and the output factor of each hydropower plant, the
MILP based model for the optimal decomposition of monthly contracted electricity
for cascade hydropower plants is established by using the linearization techniques
presented in Section 3.1 and Ref. [30].

(4) An efficient optimization solver is adopted to solve the MILP model, and the dispatch-
ing schemes, including the water discharge, forebay water level, and power output of
each hydropower plant, can be obtained.

(5) Calculate the new water head Hn
i,t and corresponding output factor kn

i,t after the nth

iteration using Equations (14)–(17). Judge if max
∣∣∣Hn

i,t − Hn−1
i,t

∣∣∣/Hn
i,t ≤ δ, ∀i, ∀t. If true,

end the iteration and output the latest solution as the optimal dispatching scheme,
otherwise let n = n + 1 and repeat steps (3)–(5).
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4. Case Studies

In this paper, the monthly contracted electricity decomposition for two cascade hy-
dropower plants was taken as an example to test the proposed model and method. The
cascade power plants involved in the calculation include two hydropower plants, upstream
plant A and downstream plant B, whose main operating parameters are shown in Table 1.
The actual operational conditions of the cascade hydropower plants during March 2020,
including local inflow, monthly contract electricity, contract price, water level at the begin-
ning of month, and control water level at the end of month, were considered as references
for the case study. The day-ahead market clearing price is forecast by each hydropower
plant at the end of February 2020. The operational control conditions of each hydropower
plant are shown in Table 2. The local inflow of each plant and the forecasted day-ahead
market clearing price are shown in Figures 2 and 3, respectively. The allowable deviation
of control water level at the end of the month was set to 0.01 m.

Table 1. Characteristic parameters of the cascade hydropower plants.

Plant
Regulation

Perfor-
mance

Normal
Water

Level/m

Dead
Water

Level/m

Installed
Capacity

/MW

Maximum
Generat-

ing Water
Flow/(m3/s)

Minimum
Total Water
Discharge

/(m3/s)

A Seasonal 835 818 2 × 60 260 5
B Weekly 756 740 2 × 65 209 5



Water 2022, 14, 2347 10 of 17

Table 2. Operation control conditions of each plant.

Plant
Monthly
Contract

Electricity/kWh

Contract
Price/(CNY/kWh)

Water Level at the
Beginning of

Month/m

Control Water
Level at the End

of Month/m

A 673 × 104 0.19062 822.29 821.86
B 832 × 104 0.19039 751.04 752.76
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In total, 300 scenarios were generated using the LHS method, and the fast back-
ward/forward method was used to reduce the number of scenarios to 50. In the calculation,
the scheduling cycle was 1 month, and the dispatching period was 1 day. The penalty
coefficient for imbalanced contracted electricity τ was set as 0.3. A commercial optimiza-
tion software package, LINGO solver, was used for solving the proposed model, and the
computing environment was a ThinkPad PC with quad-core CPU and 16 GB memory.

The total revenue of the cascade hydropower plants is 578.92 × 104 CNY, including
286.62 × 104 CNY from the monthly contracted electricity revenue and 291.3 × 104 CNY
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from the day-ahead market trading electricity revenue. The calculation time of the model is
137 s, which fully meets the timeliness requirements of medium- and long-term scheduling
of cascade hydropower plants, reflecting the high solving efficiency of the optimization
model established in this paper.

The power generation and water level process of each hydropower plant obtained by
the optimized calculation are shown in Figure 4. As can be seen, the upstream plant A can
make full use of its own seasonal regulating storage capacity to realize the temporal and
spatial redistribution of runoff, so as to respond to the change of day-ahead market clearing
price and improve its own income. During periods with high electricity prices, plant A
uses its limited power generation capacity to participate in day-ahead market trading and
increase its power output as much as possible to generate more electricity. Conversely, in
periods with low electricity prices, plant A only generates electricity with the minimum
generating water flow, and almost all the generated electricity goes towards the settlement
of the monthly contracted electricity due to the penalty that can be incurred for an imbalance
from the contracted electricity. Downstream plant B needs the upstream plant for flow
compensation due to its small, regulated storage capacity and almost no local inflow. In
periods with low electricity prices, plant B only generates electricity with the minimum
flow, continuously raises the water level for water storage, and increases the water head.
When electricity prices are high, the highest possible water level is maintained at plant B in
order to participate in day-ahead market trading and maximize power generation before
the water level gradually falls back to the control water level at the end of the month.
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The benefits of the stochastic scheduling model established in this paper (hereinafter
referred to as Model (1)), are compared with the traditional deterministic scheduling model
based on predicted values (hereinafter referred to as Model (2)). In Model 2, the predicted
value of day-ahead market electricity price is taken as the determined input value for
scheduling. The two models adopt the same control objectives and constraints, and a com-
parison of the results is shown in Table 3. It can be seen that, on the basis of guaranteeing
the monthly contracted electricity, the total power generation and the total generation
revenue of the cascade hydropower plants optimized by Model 1 is 2720 × 104 kWh and
578.92 × 104 CNY, respectively, while under Model 2, the values are 2731 × 104 kWh and
567.49 × 104 CNY, respectively. Compared to the deterministic model, the total revenue of
the proposed model increases by 2% when power generation is reduced. This shows that
when making a monthly contract electricity decomposition plan, taking into account the
uncertainty of the day-ahead market clearing price can significantly increase the expected
benefits of the HGenCo.

Table 3. The comparison results of the Model 1 and Model 2.

Model F1/×104 CNY F2/×104 CNY F3/×104 CNY F4/×104 CNY F/×104 CNY

Model 1 286.62 0 0 292.3 578.92
Model 2 286.62 0 0 280.87 567.49

To verify the impact of penalty coefficient for imbalanced monthly contracted electric-
ity (τ) on the optimal scheduling results, optimization results with different τ values are
compared and analyzed, which are presented in Table 4. When τ is small (τ = 0.1 or 0.2),
the negative deviation penalty price of monthly contracted electricity of plant A and B is
generally lower than the day-ahead market clearing price. In this case, cascade hydropower
plants will choose to violate the monthly electricity transaction contract and compensate
the contract buyer and allow for more generation to participate in the day-ahead market
transaction to obtain higher profits. However, when τ = 0.3 or 0.4, the negative deviation
penalty price of the monthly contracted electricity of plant A and B is relatively high. In
this case, the cascade hydropower plants will fulfill the monthly contract, and only the
remaining generation will participate in the day-ahead market. Therefore, the dispatching
agencies should analyze all possible situations when making power trading rules and for-
mulate reasonable penalty coefficients for imbalances of the monthly contracted electricity
so as to avoid a large number of defaults and ensure the long-term stable operation of the
electricity market.

Table 4. Optimization results with different τ values.

τ
Completed Monthly

Contracted
Electricity/×104 kWh

Day-Ahead Market
Trading

Electricity/×104 kWh

Total Power
Generation
/×104 kWh

Total
Revenue/×104 CNY

0.1 0 2711 2711 609.45
0.2 282 2430 2712 581.90
0.3 1505 1215 2720 578.92
0.4 1505 1215 2720 578.92

5. Discussion

As shown in Figure 3, the periods with the highest forecasted prices are days 7–13.
However, there is always an inevitable deviation between the predicted day-ahead market
clearing price and the actual value. In this paper, 50 scenarios are generated to represent
all possible actual day-ahead market clearing prices. After careful analysis, we found that
in most of the scenarios, the high electricity price is mainly concentrated in days 22–30.
To obtain higher expected power generation benefits, it is recommended to participate in
day-ahead market trading and increase its power output as much as possible to generate
more electricity during days 22–30.
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To the best of our knowledge, there are very few studies on the decomposition of
monthly contracted electricity for cascade hydropower plants connected with the bidding
in the day-ahead spot market. Thus, we cannot find other relevant optimization models and
compare them. The deterministic scheduling model based on predicted values is usually
adopted by the operators of the hydropower plants in practical engineering applications,
and the deterministic scheduling model is compared with the proposed optimization
model as benchmark model in many literatures [39–41]. For deterministic operation, we
considered the day-ahead market clearing prices to be a known input of the operation
model, assuming that the market clearing prices could be forecast accurately. However,
there is always an inevitable deviation between the predicted day-ahead market clearing
price and the actual value. To consider the impact of forecast errors on the decision-making
process, the stochastic model was adopted to produce operational decisions using multiple
day-ahead market clearing price processes to characterize forecast uncertainty. Since the
operational decisions were required to satisfy all the scenarios, the total generation profit of
the stochastic model is inevitably affected and is only 2% higher than those of deterministic
model. However, as the forecast errors of the day-ahead market clearing price are inevitable
in actual operation, the proposed model can avoid solutions that imply small profits or
major costs, hedging against risk and uncertainty.

As a consequence of the market power of some producers, two types of generation
companies can be listed: price-takers [42] and price-makers [39]. Price-takers accept market
clearing prices without being able to affect them. Instead, price-makers have market power,
thus being able to influence market prices to increase profit. In competitive electricity
markets, the profit of the generation companies depends not only on their own decisions,
but also on the decisions of the other companies. Under perfect competition, the market
share of every generation company is small, and no company can affect the market price. In
this case, every company takes market prices for granted when devising its offering strategy,
acting as a price-taker. However, some generation companies may have a relatively high
market share and are capable of exercising their market power, influencing market prices
for their own benefit. It means that a perfect competition model cannot be used, since the
companies act as price-makers. When devising its offering strategy, a price-maker hydro
producer takes into account the fact that it can affect market prices with its offers. Our
focus is to obtain the mid-term scheduling strategy of a price-taker hydropower generation
company (HGenCo). The case studies in this paper include two hydropower plants with a
total installed capacity of 250 MW. The market share of this HGenCo is small and cannot
affect the market price.

The penalty coefficient for imbalanced monthly contracted electricity (τ) is very im-
portant for the smooth settlement of the monthly contracted electricity. When τ is small
(τ = 0.1 or 0.2), cascade hydropower plants will choose to violate the monthly electricity
transaction contract and allow for more generation to participate in the day-ahead market
transaction to obtain higher profits. While when τ = 0.3 or 0.4, the cascade hydropower
plants will fulfill the monthly contract. The value of penalty coefficient depends on the
interest tendency of market managers. If the market managers hope to avoid large defaults
on medium-and long-term contracts, they can set the penalty coefficient to 0.3 or 0.4. If they
want to encourage power plants to participate freely in various markets to reap greater
benefits, they can set the penalty coefficient very low, such as 0.1.

The establishment of an optimal scheduling model is based on the operation mech-
anism of medium- and long-term market and day-ahead spot market. China’s power
supply structure and power consumption characteristics have certain uniqueness, and the
construction of China’s electricity market is still in the initial stage, so China’s electricity
market mechanism has certain differences from other countries. For example, the Nordic
electricity market has developed a model of financial contracts plus spot trading. The
time span of trading in the financial contract market includes weeks, quarters, and years.
Financial contracts do not require physical delivery and are primarily used as a means
of price hedging and risk management. This means that, after signing a medium- and
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long-term contract, the power plants can participate in the spot market without default
penalty. Hence this model cannot be generalized to other countries’ markets in our opinion.
However, it can provide some reference for other countries that are in the initial stage of
electricity market construction, such as India and Brazil.

National and foreign direct investments are needed for economic developments and
national projects, including hydropower works, mainly in relation to less-favored economic
areas where social risk could appear [43]. Such hydropower plants are useful to alleviate
areas with poverty and solve urban and rural issues of electricity for poor communi-
ties [44,45]. However, when more cascade hydropower plants are included in the proposed
model, the computational efficiency will be reduced to some extent, and the calculation
may take several hours due to the consideration of the day-ahead market clearing price
uncertainty and multiple iterations of the SA approach. Hence, model decomposition
techniques and parallel techniques should be integrated into the solution method in the
future research to further improve the solution efficiency and increase the engineering
application value of the proposed model.

6. Conclusions

In view of the coexistence of the medium- and long-term contract markets and the
day-ahead spot market in China’s electricity market, an optimal decomposition model for
the monthly contracted electricity of cascade hydropower plants is established, considering
the bidding space of day-ahead market. The validation of the proposal model is applied to
the decomposition of the monthly contracted electricity of China’s cascade hydropower
plants as an example. The following conclusions are drawn:

(1) A scenario analysis technique and several effective linearization strategies are put
forward to address the uncertain and nonlinear factors in the optimization model,
including the uncertain day-ahead market clearing price, the nonlinear objective
function, and the nonlinear power generation function of each hydropower plant. For
such a complex research problem, the combination of the SA approach and MILP
approach is computationally efficient with a calculation time of 137 s.

(2) The total revenue obtained from the proposed stochastic optimization model is
578.92 × 104 CNY. Compared to the deterministic model, the total revenue of the
proposed model increases by 2% when power generation is reduced. Furthermore,
as the forecast errors of the day-ahead market clearing price are inevitable in actual
operation, the proposed model can avoid solutions that imply small profits or major
costs, hedging against risk and uncertainty.

(3) The penalty coefficient for imbalanced monthly contracted electricity (τ) is very
important for the smooth settlement of the monthly contracted electricity. When τ is
small (τ = 0.1 or 0.2), cascade hydropower plants will choose to violate the monthly
electricity transaction contract and allow for more generation to participate in the
day-ahead market transaction to obtain higher profits. While, when τ = 0.3 or 0.4,
the cascade hydropower plants will fulfill the monthly contract. Therefore, market
managers need to formulate a reasonable penalty coefficient to avoid a large number
of defaults and ensure the long-term stable operation of the electricity market.

At present, China’s electricity market construction is still in the preliminary stage, and
many factors are still to be studied and tested in practice. Due to the complex operation
constraints of cascade hydropower plants and multiple uncertainties, it is challenging
to develop a decomposition scheme for the monthly contracted electricity of cascade
hydropower plants. This paper can provide guidance for China’s hydropower participation
in the electricity market, and also provide reference for other countries that are in the
initial stage of electricity market construction, such as India and Brazil. In addition, the
uncertainty of runoff and the accelerated solution method of the model will be further
considered in the future study.



Water 2022, 14, 2347 15 of 17

Author Contributions: Data curation, Y.S.; Formal analysis, Q.S.; Funding acquisition, C.S.; Investi-
gation, Y.S.; Methodology, Y.W. and H.G.; Project administration, S.L.; Software, C.S.; Supervision,
S.L.; Validation, Y.J.; Writing—original draft, Y.W.; Writing—review and editing, C.S. and S.L. All
authors have read and agreed to the published version of the manuscript.

Funding: The research presented in this paper was supported by the National Natural Science
Foundation of China (No. 52109041), China Postdoctoral Science Foundation (No. 2021M690139) and
the Science and Technology Project of Yunnan Power Grid Co., LTD (No. YNKJXM20200167).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

HGenCo Hydropower generation company
NLP Nonlinear programming
MILP Mixed integer linear programming
DP Dynamic programming
SA Successive approximation

References
1. Yang, W.; Norrlund, P.; Saarinen, L.; Witt, A.; Smith, B.; Yang, J.; Lundin, U. Burden on hydropower units for short-term balancing

of renewable power systems. Nat. Commun. 2018, 9, 2633. [CrossRef]
2. Cheng, C.; Yan, L.; Mirchi, A.; Madani, K. China’s booming hydropower: Systems modeling challenges and opportunities.

J. Water Resour. Plan. Manag. 2017, 143, 02516002. [CrossRef]
3. Llamosas, C.; Sovacool, B.K. The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of

transboundary dams. Renew. Sustain. Energy Rev. 2021, 137, 110495. [CrossRef]
4. Dukpa, R.D.; Joshi, D.; Boelens, R. Contesting hydropower dams in the Eastern Himalaya: The cultural politics of identity,

territory and self-governance institutions in Sikkim, India. Water 2019, 11, 412. [CrossRef]
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