Remote Sensing Estimation of Long-Term Total Suspended Matter Concentration from Landsat across Lake Qinghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Landsat
2.2.2. Field Measurement
2.3. Method
3. Results
3.1. The Water Quality of Lake Qinghai
3.2. The Inversion Model and the Validation
3.3. The Water Quality of Lake Qinghai
3.4. The Water Environment of Lake Qinghai
4. Discussion
4.1. Model Building
4.2. The Change Mode of TSM
4.3. Factors Affecting TSM in Lake Qinghai
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Han, W.; Huang, C.; Gu, J.; Hou, J.; Zhang, Y. Spatial-Temporal Distribution of the Freeze–Thaw Cycle of the Largest Lake (Qinghai Lake) in China Based on Machine Learning and MODIS from 2000 to 2020. Remote Sens. 2021, 13, 1695. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Wang, H.; Sun, J.; Li, H.; Qiu, Y. Modulation of the Kara Sea Ice Variation on the Ice Freeze-Up Time in Lake Qinghai. J. Clim. 2019, 32, 2553–2568. [Google Scholar] [CrossRef]
- Pulliainen, J.; Kallio, K.; Eloheimo, K.; Koponen, S.; Servomaa, H.; Hannonen, T.; Tauriainen, S.; Hallikainen, M. A semi-operative approach to lake water quality retrieval from remote sensing data. Sci. Total Environ. 2001, 268, 79–93. [Google Scholar] [CrossRef]
- Dekker, A.; Vos, R.; Peters, S. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 2001, 268, 197–214. [Google Scholar] [CrossRef]
- Du, Y.; Song, K.; Liu, G.; Wen, Z.; Fang, C.; Shang, Y.; Zhao, F.; Wang, Q.; Du, J.; Zhang, B. Quantifying total suspended matter (TSM) in waters using Landsat images during 1984–2018 across the Songnen Plain, Northeast China. J. Environ. Manag. 2020, 262, 110334. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Wang, Z.; Liu, D.; Zhang, B.; Xu, J.; Du, J.; Li, L.; Li, S.; Wang, Y. Retrieval of total suspended matter (TSM) and chlorophyll-a (Chl-a) concentration from remote-sensing data for drinking water resources. Environ. Monit. Assess. 2012, 184, 1449–1470. [Google Scholar] [CrossRef]
- Lei, S.; Xu, J.; Li, Y.; Du, C.; Liu, G.; Zheng, Z.; Xu, Y.; Lyu, H.; Mu, M.; Miao, S.; et al. An approach for retrieval of horizontal and vertical distribution of total suspended matter concentration from GOCI data over Lake Hongze. Sci. Total Environ. 2019, 700, 134524. [Google Scholar] [CrossRef]
- Wang, X.; Wen, Z.; Liu, G.; Tao, H.; Song, K. Remote estimates of total suspended matter in China’s main estuaries using Landsat images and a weight random forest model. ISPRS J. Photogramm. Remote Sens. 2021, 183, 94–110. [Google Scholar] [CrossRef]
- Du, J.; Li, Q.; Liu, X.; Wen, D. Hydrological characteristics of Qinghai Lake, 1956–2017. J. Hydroecol. 2020, 41, 27–33. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Shen, M.; Li, Y.; Duan, H.; Cao, Z.; Wang, D.; Xiong, J. Variations of suspended particulate concentration and composition in Chinese lakes observed from Sentinel-3A OLCI images. Sci. Total Environ. 2020, 721, 137774. [Google Scholar] [CrossRef] [PubMed]
- Northwest Institute of Plateau Biology; Chinese Academy of Sciences. Studies on Biology of Fish fauna and Gymnocypris przewalskii in Qinghai Lake; Beijing Science Press: Beijing, China, 1975. (In Chinese) [Google Scholar]
- Yao, W.Z.; Shi, J.Q.; Qi, H.F.; Yang, J.X.; Jia, S.; Pu, J.; Northwest Institute of Plateau Biology; Chinese Academy of Sciences. Studies on biology of Fish fauna and Gymnocypris przewalskii in Qinghai Lake. Freshw. Fish. (In Chinese). 2011; 41, 7. [Google Scholar]
- Bi, R.; Zhang, H.; Li, H.; Chang, F.; Duan, L.; He, Y.; Zhang, H.; Wen, X.; Zhou, Y. Characteristics and Changes of Water Quality Parameters of Qinghai Lake in 2015. J. Water Resour. Res. 2018, 7, 74–83. (In Chinese) [Google Scholar] [CrossRef]
- D’Sa, E. Colored dissolved organic matter in coastal waters influenced by the Atchafalaya River, USA: Effects of an algal bloom. J. Appl. Remote Sens. 2008, 2, 183–198. [Google Scholar] [CrossRef]
- Kahru, M.; Mitchell, B.G. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current. J. Geophys. Res. Earth Surf. 2001, 106, 2517–2529. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res.-Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Siegel, D.A.; Maritorena, S.; Nelson, N.B.; Hansell, D.A.; Lorenzi-Kayser, M. Global distribution and dynamics of colored dissolved and detrital organic materials. J. Geophys. Res.-Ocean. 2002, 107, 21. [Google Scholar] [CrossRef]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Goodin, U.G.; Harrington, J.A.; Nellis, M.D.; Rundquist, D.C. Mapping Reservoir Turbidity Patterns Using SPOT-HRV Data. Geocarto Int. 1996, 11, 71–78. [Google Scholar] [CrossRef]
- Chen, Z.; Muller-Karger, F.E.; Hu, C. Remote sensing of water clarity in Tampa Bay. Remote Sens. Environ. 2007, 109, 249–259. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Tian, L.; Chen, L. Human induced turbidity changes in Poyang Lake between 2000 and 2010: Observations from MODIS. J. Geophys. Res. Ocean. 2012, 117, 1–19. [Google Scholar] [CrossRef]
- Juhls, B.; Overduin, P.P.; Hlemann, J.; Hieronymi, M.; Fischer, J. Dissolved Organic Matter at the Fluvial-Marine Transition in the Laptev Sea Using in situ Data and Ocean Color Remote Sensing. Biogeosciences 2019, 16, 2693–2713. [Google Scholar] [CrossRef]
- Koponen, S.; Pullainen, J.; Kallio, K.; Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 2002, 79, 51–59. [Google Scholar] [CrossRef]
- Ouillon, S.; Douillet, P.; Petrenko, A.; Neveux, J.; Dupouy, C.; Froidefond, J.-M.; Andréfouët, S.; Muñoz-Caravaca, A. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters. Sensors 2008, 8, 4165–4185. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Liu, X.; Zhou, Y.; Qin, B. Lake Topography and Wind Waves Determining Seasonal-Spatial Dynamics of Total Suspended Matter in Turbid Lake Taihu, China: Assessment Using Long-Term High-Resolution MERIS Data. PLoS ONE 2014, 9, e98055. [Google Scholar] [CrossRef]
- Bustamante, J.; Pacios, F.; Díaz-Delgado, R.; Aragonés, D. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images. J. Environ. Manag. 2009, 90, 2219–2225. [Google Scholar] [CrossRef]
- Braga, C.Z.F.; Setzer, A.W.; Lacerda, L. Water quality assessment with simultaneous Landsat-5 TM data at Guanabara Bay, Rio de Janeiro, Brazil. Remote Sens. Environ. 1993, 45, 95–106. [Google Scholar] [CrossRef]
- Alparslan, E.; Coskun, H.G.; Alganci, U. Water Quality Determination of Küçükçekmece Lake, Turkey by Using Multispectral Satellite Data. Sci. World J. 2015, 9, 1215–1229. [Google Scholar] [CrossRef]
- Gan, T.Y.; Kalinga, O.A.; Ohgushi, K.; Araki, H. Retrieving seawater turbidity from Landsat TM data by regressions and an artificial neural network. Int. J. Remote Sens. 2004, 25, 4593–4615. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Y.; Hu, X. Evaluation of the suitability of Landsat, MERIS, and MODIS for identifying spatial distribution patterns of total suspended matter from a self-organizing map (SOM) perspective. Catena 2019, 172, 699–710. [Google Scholar] [CrossRef]
- Lathrop, R.G. Landsat Thematic Mapper Monitoring of Turbid Inland Water Quality. Photogramm. Eng. Remote Sens. 1992, 58, 229–250. [Google Scholar] [CrossRef]
- Lathrop, R.G.; Lillesand, T.M. Use of Thematic Mapper Data to Assess Water Quality in Green Bay and Central Lake Michigan. Photogramm. Eng. Remote Sens. 1986, 52, 10–15. [Google Scholar]
- Cai, L.; Yu, W.; Shao, W.; Tang, D.; Belkin, I.M. Satellite observations of suspended sediment near Ningbo North Dyke, China. Adv. Space Res. 2019, 64, 1415–1422. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sidike, P.; Cox, A.L.; Martinez, M. Suspended Sediment Concentration Estimation from Landsat Imagery along the Lower Missouri and Middle Mississippi Rivers Using an Extreme Learning Machine. Remote Sens. 2018, 10, 1503. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R.; Mchenry, J.R. Remote Sensing of Suspended Sediments in Surface Water. Photogramm. Eng. Remote Sens. 1976, 42, 1539–1545. [Google Scholar]
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Brando, V.E.; Dekker, A.G. Satellite Hyperspectral Remote Sensing for Estimating Estuarine and Coastal Water Quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- Ondrusek, M.; Stengel, E.; Kinkade, C.; Vogel, R.; Keegstra, P.; Hunter, C.; Kim, C. The development of a new optical total suspended matter algorithm for the Chesapeake Bay. Remote Sens. Environ. 2012, 119, 243–254. [Google Scholar] [CrossRef]
- Duan, H.; Feng, L.; Ma, R.; Zhang, Y.; Loiselle, S.A. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ. Res. Lett. 2014, 9, 084011. [Google Scholar] [CrossRef]
- Neil, C.; Cunningham, A.; McKee, D. Relationships between suspended mineral concentrations and red-waveband reflectances in moderately turbid shelf seas. Remote Sens. Environ. 2011, 115, 3719–3730. [Google Scholar] [CrossRef]
- Volpe, V.; Silvestri, S.; Marani, M. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 2011, 115, 44–54. [Google Scholar] [CrossRef]
- Zhu, W.; Pang, S.; Chen, J.; Sun, N.; Huang, L.; Zhang, Y.; Zhang, Z.; He, S.; Cheng, Q. Spatiotemporal variations of total suspended matter in complex archipelagic regions using a sigmoid model and Landsat-8 imagery. Reg. Stud. Mar. Sci. 2020, 36, 101308. [Google Scholar] [CrossRef]
- Alcântara, E.; Curtarelli, M.; Stech, J. Estimating total suspended matter using the particle backscattering coefficient: Results from the Itumbiara hydroelectric reservoir (Goiás State, Brazil). Remote Sens. Lett. 2016, 7, 397–406. [Google Scholar] [CrossRef]
- DeLuca, N.M.; Zaitchik, B.F.; Curriero, F.C. Can Multispectral Information Improve Remotely Sensed Estimates of Total Suspended Solids? A Statistical Study in Chesapeake Bay. Remote Sens. 2018, 10, 1393. [Google Scholar] [CrossRef]
- Chen, J.; Quan, W.; Cui, T.; Song, Q. Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone. Estuar. Coast. Shelf Sci. 2015, 155, 104–113. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R. Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data. Chin. Sci. Bull. 2009, 54, 2294–2299. [Google Scholar] [CrossRef]
- Qi, M.; Liu, S.; Yao, X.; Xie, F.; Gao, Y. Monitoring the Ice Phenology of Qinghai Lake from 1980 to 2018 Using Multisource Remote Sensing Data and Google Earth Engine. Remote Sens. 2020, 12, 2217. [Google Scholar] [CrossRef]
- Cai, Y.; Ke, C.-Q.; Duan, Z. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Sci. Total Environ. 2017, 607, 120–131. [Google Scholar] [CrossRef]
- Tang, L.; Duan, X.; Kong, F.; Zhang, F.; Zheng, Y.; Li, Z.; Mei, Y.; Zhao, Y.; Hu, S. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8, 7331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Duan, S. Lakes as sentinels of climate change on the Tibetan Plateau. All Earth 2021, 33, 161–165. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Xue, K. Effects of broad bandwidth on the remote sensing of inland waters: Implications for high spatial resolution satellite data applications. ISPRS J. Photogramm. Remote Sens. 2019, 153, 110–122. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, H.; Shen, M.; Ma, R.; Xue, K.; Liu, D.; Xiao, Q. Using VIIRS/NPP and MODIS/Aqua data to provide a continuous record of suspended particulate matter in a highly turbid inland lake. Int. J. Appl. Earth Obs. 2018, 64, 256–265. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Tranvik, L.J.; Reinart, A.; Sobek, S.; Kallio, K. Using Satellite Remote Sensing to Estimate the Colored Dissolved Organic Matter Absorption Coefficient in Lakes. Ecosystems 2005, 8, 709–720. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, Y.; Zhu, G.; Liu, X.; Zhou, Y.; Xu, H.; Qin, B.; Liu, G.; Li, Y. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sens. Environ. 2015, 164, 43–56. [Google Scholar] [CrossRef]
- Chen, S.; Huang, W.; Wang, H.; Li, D. Remote sensing assessment of sediment re-suspension during Hurricane Frances in Apalachicola Bay, USA. Remote Sens. Environ. 2009, 113, 2670–2681. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, J.; Li, Y.; Huang, C.; Liu, G.; Du, C.; Lyu, H. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Sci. Total Environ. 2016, 573, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhang, Y.; Wang, M. Deriving Total Suspended Matter Concentration from the Near-Infrared-Based Inherent Optical Properties over Turbid Waters: A Case Study in Lake Taihu. Remote Sens. 2018, 10, 333. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, K.; Zhang, Y.; Moreno-Madrinan, M.J.; Li, Y.; Li, N. A semi-analytical model for estimating total suspended matter in highly turbid waters. Opt. Express 2018, 26, 34094–34112. [Google Scholar] [CrossRef] [PubMed]
- Tarrant, P.; Amacher, J.A.; Neuer, S. Assessing the potential of Medium-Resolution Imaging Spectrometer (MERIS) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data for monitoring total suspended matter in small and intermediate sized lakes and reservoirs. Water Resour. Res. 2010, 46, 1–7. [Google Scholar] [CrossRef]
- Tassan, S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters. Appl. Opt. 1994, 33, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yang, L.; Fan, Y.; Qian, X.; Liu, T. Novel simulation of aqueous total nitrogen and phosphorus concentrations in Taihu Lake with machine learning. Environ. Res. 2021, 204, 111940. [Google Scholar] [CrossRef] [PubMed]
- Shang, W.; Jin, S.; He, Y.; Zhang, Y.; Li, J. Spatial–Temporal Variations of Total Nitrogen and Phosphorus in Poyang, Dongting and Taihu Lakes from Landsat-8 Data. Water 2021, 13, 1704. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, X.; Reis, S.; Ge, S.; Gu, B. Pollution controls in Lake Tai with the reduction of the watershed nitrogen footprint. J. Clean. Prod. 2021, 332, 130132. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, C.; Ma, R.; Cao, Z. Remote Sensing Estimation of Lake Total Phosphorus Concentration Based on MODIS: A Case Study of Lake Hongze. Remote Sens. 2019, 11, 2068. [Google Scholar] [CrossRef]
- The Area Protection and Utilization Administration Bureau of Qinghai Province. Notice of the general office of Qinghai Provincial People’s Government on printing and distributing the provisions on the functional allocation, internal institutions and staffing of Qinghai Lake Scenic Spot Protection and utilization administration. Qinghai Political News, 2007; 49. (In Chinese) [Google Scholar]
- Liu, D.; Duan, H.; Loiselle, S.; Hu, C.; Zhang, G.; Li, J.; Yang, H.; Thompson, J.R.; Cao, Z.; Shen, M.; et al. Observations of water transparency in China’s lakes from space. Int. J. Appl. Earth Obs. 2020, 92, 102187. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3.2 evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, B.; Zhu, G.; Zhang, Y.; Shi, K.; Li, Y.; Shi, Y.; Chen, L. High Temporal Resolution Monitoring of Suspended Matter Changes from GOCI Measurements in Lake Taihu. Remote Sens. 2019, 11, 985. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, M.; Wang, X.; Wan, G. Spatial and Temporal Variations of Terrestrial Evapotranspiration in the Upper Taohe River Basin from 2001 to 2018 Based on MOD16 ET Data. Adv. Meteorol. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y. Analysis of Dynamic Spatiotemporal Changes in Actual Evapotranspiration and Its Associated Factors in the Pearl River Basin Based on MOD16. Water 2017, 9, 832. [Google Scholar] [CrossRef]
- Wang, Q.; Song, K.; Wen, Z.; Shang, Y.; Li, S.; Fang, C.; Du, J.; Zhao, F.; Liu, G. Long-term remote sensing of total suspended matter using Landsat series sensors in Hulun Lake, China. Int. J. Remote Sens. 2020, 42, 1379–1397. [Google Scholar] [CrossRef]
- Tamm, T.; Nõges, T.; Järvet, A.; Bouraoui, F. Contributions of DOC from surface and groundflow into Lake Võrtsjärv (Estonia). Hydrobiologia 2008, 599, 213–220. [Google Scholar] [CrossRef]
- Chang, B.; He, K.-N.; Li, R.-J.; Sheng, Z.-P.; Wang, H. Linkage of Climatic Factors and Human Activities with Water Level Fluctuations in Qinghai Lake in the Northeastern Tibetan Plateau, China. Water 2017, 9, 552. [Google Scholar] [CrossRef]
Band Name | TM/nm | ETM+/nm | OLI/nm |
---|---|---|---|
Green band | 560 | 565 | 562.5 |
Red band | 660 | 660 | 655 |
Image number | 33 | 37 | 17 |
Index | Unit | Min | Max | Mean | SD |
---|---|---|---|---|---|
WD | meter | 4.80 | 27.50 | 19.10 | 6.40 |
WT | °C | 12.90 | 15.00 | 14.05 | 0.48 |
pH | — | 2.10 | 10.11 | 8.03 | 2.68 |
SAL | ‰ | 10.40 | 11.40 | 11.10 | 0.21 |
DO | mg/L | 6.20 | 6.80 | 6.50 | 0.12 |
TAI | mg/L | 552 | 612 | 591 | 12 |
TN | mg/L | 0.52 | 0.71 | 0.58 | 0.04 |
TP | mg/L | 0.031 | 0.040 | 0.036 | 0.002 |
SDD | meter | 1.80 | 4.00 | 3.02 | 0.62 |
TSM | mg/L | 1.43 | 7.50 | 3.00 | 1.48 |
Chl-a | μg/L | 1.00 | 1.86 | 1.43 | 0.23 |
Bands | Calibration Model | R2 | RMSE (mg/L) | MRE (%) | Validation Model | R2 | RMSE (mg/L) | MRE (%) |
---|---|---|---|---|---|---|---|---|
Rrs (Green) | Figure 3 (A1) | 0.79 | 0.64 | 28.50 | Figure 3 (a1) | 0.34 | 0.65 | 16.21 |
Figure 3 (A2) | 0.92 | 0.39 | 14.10 | Figure 3 (a2) | 0.19 | 0.54 | 18.91 | |
Figure 3 (A3) | 0.80 | 0.79 | 22.18 | Figure 3 (a3) | 0.34 | 0.45 | 15.71 | |
Figure 3 (A4) | 0.60 | 0.89 | 65.52 | Figure 3 (a4) | 0.40 | 0.60 | 13.97 | |
Figure 3 (A5) | 0.89 | 0.51 | 18.02 | Figure 3 (a5) | 0.28 | 0.50 | 17.51 | |
Rrs (Red) | Figure 3 (B1) | 0.81 | 0.61 | 17.91 | Figure 3 (b1) | 0.79 | 0.45 | 19.06 |
Figure 3 (B2) | 0.89 | 0.66 | 18.30 | Figure 3 (b2) | 0.87 | 0.54 | 20.65 | |
Figure 3 (B3) | 0.81 | 0.70 | 18.10 | Figure 3 (b3) | 0.79 | 0.44 | 17.54 | |
Figure 3 (B4) | 0.68 | 0.79 | 23.50 | Figure 3 (b4) | 0.75 | 0.49 | 20.10 | |
Figure 3 (B5) | 0.88 | 0.62 | 16.32 | Figure 3 (b5) | 0.81 | 0.50 | 19.60 | |
Rrs (Red) /Rrs (Green) | Figure 3 (C1) | 0.13 | 1.31 | 26.64 | Figure 3 (c1) | 0.18 | 0.57 | 23.37 |
Figure 3 (C2) | 0.29 | 1.19 | 26.62 | Figure 3 (c2) | 0.08 | 1.43 | —— | |
Figure 3 (C3) | 0.13 | 1.33 | 28.32 | Figure 3 (c3) | 0.17 | 0.65 | 27.61 | |
Figure 3 (C4) | 0.15 | 1.30 | 26.05 | Figure 3 (c4) | 0.14 | 0.66 | 28.24 | |
Figure 3 (C5) | 0.11 | 1.35 | 28.92 | Figure 3 (c5) | 0.20 | 0.62 | 25.63 | |
(Rrs (Red) + Rrs(Green))/2 | Figure 3 (D1) | 0.82 | 0.60 | 24.06 | Figure 3 (d1) | 0.44 | 0.55 | 15.85 |
Figure 3 (D2) | 0.92 | 0.40 | 14.51 | Figure 3 (d2) | 0.29 | 0.47 | 17.06 | |
Figure 3 (D3) | 0.83 | 0.72 | 20.86 | Figure 3 (d3) | 0.43 | 0.42 | 15.28 | |
Figure 3 (D4) | 0.65 | 0.83 | 42.22 | Figure 3 (d4) | 0.49 | 0.56 | 14.48 | |
Figure 3 (D5) | 0.90 | 0.47 | 16.70 | Figure 3 (d5) | 0.39 | 0.41 | 14.63 |
Years | Mean TSM | 0–2 mg/L | 2–4 mg/L | 4–6 mg/L | 6–8 mg/L | >8 mg/L |
---|---|---|---|---|---|---|
1986–2001 | 6.22 ± 1.35 | 0.03% | 0.02% | 48.23% | 40.43% | 11.29% |
2002–2011 | 5.96 ± 1.22 | 0.02% | 0.03% | 65.85% | 25.54% | 8.56% |
2012–2020 | 3.62 ± 1.32 | 0.85% | 76.95% | 14.92% | 5.57% | 1.70% |
1986–2020 | 5.36 ± 1.23 | 0.04% | 0.39% | 71.13% | 23.21% | 5.23% |
TSM | Air Temperature | Wind Speed | Precipitation |
---|---|---|---|
Yearly means | −0.49 ** | 0.44 * | −0.63 ** |
Monthly means | 0.30 | 0.86 * | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Yang, Q.; Ma, Y.; Yang, Y.; Song, K.; Zhang, J.; Wen, Z.; Liu, G. Remote Sensing Estimation of Long-Term Total Suspended Matter Concentration from Landsat across Lake Qinghai. Water 2022, 14, 2498. https://doi.org/10.3390/w14162498
Li W, Yang Q, Ma Y, Yang Y, Song K, Zhang J, Wen Z, Liu G. Remote Sensing Estimation of Long-Term Total Suspended Matter Concentration from Landsat across Lake Qinghai. Water. 2022; 14(16):2498. https://doi.org/10.3390/w14162498
Chicago/Turabian StyleLi, Weibang, Qian Yang, Yue Ma, Ying Yang, Kaishan Song, Juan Zhang, Zhidan Wen, and Ge Liu. 2022. "Remote Sensing Estimation of Long-Term Total Suspended Matter Concentration from Landsat across Lake Qinghai" Water 14, no. 16: 2498. https://doi.org/10.3390/w14162498
APA StyleLi, W., Yang, Q., Ma, Y., Yang, Y., Song, K., Zhang, J., Wen, Z., & Liu, G. (2022). Remote Sensing Estimation of Long-Term Total Suspended Matter Concentration from Landsat across Lake Qinghai. Water, 14(16), 2498. https://doi.org/10.3390/w14162498