Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Field Observation
2.2. Mounting Scheme and Geometry of Kampar River
2.3. Tidal Data Analyses
2.4. Calculating the Approximate Tidal Bore Height
2.5. Acoustic-Based Suspended Sediment Estimation
3. Results and Discussion
3.1. Tidal Harmonic Analysis in the Kampar River Estuary
3.2. Tidal Range Profiles and Tidal Bore Generation
3.3. Hydraulic Jump Properties of Tidal Bores
3.4. Suspended Sediment Concentration and Flux during the Passage of Bores
3.5. Implication of the Tidal Bore Passage to the Surrounding Environment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Pan, D.Z.; Chanson, H.; Pan, C.H. Real-time characteristics of tidal bore propagation in the Qiantang River Estuary, China, recorded by marine radar. Cont. Shelf Res. 2019, 180, 48–58. [Google Scholar] [CrossRef]
- Chanson, H. Environmental, Ecological, and cultural Impacts of Tidal Bores, Burros and Bonos. In Proceeding of the International Workshop on Environmental Hydraulics; Theoretical, Experimental, and Computational Solutions (IWEH), Valencia, Spain, 29–30 October 2009. [Google Scholar] [CrossRef]
- Kurniawan, A.; Wisha, U.J.; Husrin, S.; Karjadi, E.A. Tidal Bore Generation at the Estuaries of the East Coast of Sumatra. In Proceedings of the 37th IAHR World Congress, Kuala Lumpur, Malaysia, 13–18 August 2017. [Google Scholar]
- Gemilang, W.A.; Wisha, U.J.; Rahmawan, G.A. Particle size characteristics of riverbed sediments transported by tidal bore ‘BONO’ in Kampar Estuary, Riau-Indonesia. Mar. Res. Indones. 2018, 43, 25–35. [Google Scholar] [CrossRef]
- Chanson, H. Current knowledge in hydraulic jumps and related phenomena: A survey of experimental results. Eur. J. Mech. B Fluids 2009, 28, 191–210. [Google Scholar] [CrossRef]
- Bayu, A.C.; Pudjaprasetya, S.R.; Wisha, U.J.; Husrin, S. Numerical simulation of tidal bore Bono at Kampar River. J. Appl. Fluid Mech. 2019, 12, 311–318. [Google Scholar] [CrossRef]
- Wolanski, E.; Williams, D.; Spagnol, S.; Chanson, H. Undular tidal bore dynamics in the Daly Estuary, Northern Australia. Estuar. Coast. Shelf Sci. 2004, 60, 629–636. [Google Scholar] [CrossRef]
- Docherty, N.J.; Chanson, H. Physical Modeling of Unsteady Turbulence in Breaking Tidal Bores. J. Hydraul. Eng. 2012, 138, 412–419. [Google Scholar] [CrossRef]
- Peregrine, D.H. Calculations of the development of an undular bore. J. Fluid Mech. 1966, 25, 321–330. [Google Scholar] [CrossRef]
- Chanson, H. Mixing and dispersion in tidal bores: A review. In Proceeding of the International Conference on Estuaries and Coasts ICEC, Hangzhou, China, 9–11 November 2003. [Google Scholar]
- Chanson, H. Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observation; World Scientific: Singapore, 2011; pp. 1–220. [Google Scholar] [CrossRef]
- Yulistiyanto, B. The phenomenon of bono rising wave in the Kampar River estuary. Din. Tek. Sipil 2009, 9, 19–26. (In Indonesian) [Google Scholar]
- Rahmawan, G.A.; Wisha, U.J.; Husrin, S.; Ilham, I. Bathymetry and tidal analyses in the estuary of Kampar River: The generation of tidal wave “Undular Bore Bono”. J. Ilm. Geomatika 2017, 22, 57–64. [Google Scholar] [CrossRef]
- Asiah, N.; Sukendi, S.; Harjoyudanto, Y.; Junianto, J.; Yustiati, A. Water Quality Analysis Based on Plankton Community Structure in Kampar River, Riau Province. In Proceeding of the IOP Conference Series: Earth and Environmental Science, the 9th International and National Seminar on Fisheries and Marine Science, Pekanbaru, Indonesia, 10–11 September 2020. [Google Scholar] [CrossRef]
- Harjoyudanto, Y.; Rifardi, R.; Windarti, W. Water Quality Analysis Around the Floating Net Cage Culture Activities in the Kampar River, Buluhcina Village, Kampar District. In Proceeding of the IOP Conference Series: Earth and Environmental Science, the 8th International and National Seminar on Fisheries and Marine Science, Pekanbaru, Indonesia, 12 September 2019. [Google Scholar] [CrossRef]
- Mubarak; Sulaiman, A.; Efriyeldi. Environmental Effect of Tidal Bore Propagation in Kampar River. In Proceeding of the MATEC Web of Conferences, the International Symposium on Civil and Environmental Engineering, Melaka, Malaysia, 5–6 December 2016. [Google Scholar] [CrossRef]
- Wisha, U.J.; Dhiauddin, R.; Kusumah, G. Remote estimation of total suspended solid (TSS) transport affected by tidal bore “BONO” of Kampar Big River estuary using Landsat 8 OLI imagery. Mar. Res. Indones. 2017, 42, 37–45. [Google Scholar] [CrossRef]
- Wisha, U.J.; Maslukah, L. Nutrient condition of Kampar Big River estuary: Distribution of N and P concentrations drifted by tidal bore “Bono”. Indones. J. Mar. Sci. 2017, 22, 37–45. [Google Scholar] [CrossRef]
- Abdullah, F.A.R.; Ningsih, N.S.; Rachmayani, R. Numerical simulation of tidal bore in Kampar River: A preliminary study. In Proceeding of the IOP Conference Series: Earth and Environmental Science, the first Maluku International Conference on Marine Science and Technology, Ambon, Indonesia, 24–26 October 2018. [Google Scholar] [CrossRef]
- Mubarak. Modeling of Kampar River discharge as a solitary wave. Inter. J. Eng. Technol. UAE 2018, 7, 138. [Google Scholar] [CrossRef]
- Putra, Y.S.; Noviani, E.; Nurhasanah; Nurhanisa, M.; Azwar, A. A numerical study of Hydro-Hydraulic energy on Undular Tidal Bore phenomenon. In Proceeding of the Journal of Physics: Conference Series, The 10th International Conference on Theoretical and Applied Physics, Mataram, Indonesia, 20–22 November 2020. [Google Scholar] [CrossRef]
- Chanson, H. Momentum considerations in hydraulic jumps and bores. J. Irrig. Drain. Eng. 2012, 138, 382–385. [Google Scholar] [CrossRef]
- Leng, X.; Chanson, H. Coupling between free-surface fluctuations, velocity fluctuations and turbulent Reynolds stresses during the upstream propagation of positive surges, bores and compression waves. Environ. Fluid Mech. 2016, 16, 695–719. [Google Scholar] [CrossRef]
- Madsen, P.A.; Simonsen, H.J.; Pan, C.H. Numerical simulation of tidal bores and hydraulic jumps. Coast. Eng. 2005, 52, 409–433. [Google Scholar] [CrossRef]
- Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Tidal bore generation and transport mechanism in the Rokan River Estuary, Indonesia: Hydro-oceanographic perspectives. Reg. Stud. Mar. Sci. 2022, 52, 102309. [Google Scholar] [CrossRef]
- Chanson, H. Current knowledge in tidal bores and their environmental, ecological and cultural impacts. Environ. Fluid Mech. 2011, 11, 77–98. [Google Scholar] [CrossRef]
- Keevil, C.E.; Chanson, H.; Reungoat, D. Fluid flow and sediment entrainment in the Garonne River bore and tidal bore collision. Earth Surf. Process. Landf. 2015, 40, 1574–1586. [Google Scholar] [CrossRef]
- Wisha, U.J.; Rahmawan, G.A.; Ilham, I. Bono Kuala Kampar, Primadona di Timur Sumatera Yang Terancam Hilang, 1st ed.; AMAFRAD Press: Jakarta, Indonesia, 2018; pp. 1–89. (In Indonesian) [Google Scholar]
- Putra, A.; Wisha, U.J.; Kusumah, G. Spatial analysis of the river line and land cover changes in the Kampar River estuary: The influence of the Bono tidal bore phenomenon. Forum Geogr. 2017, 31, 220–231. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takanezawa, T.; Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr. 2000, 56, 567–581. [Google Scholar] [CrossRef]
- Pratama, M.B. Tidal Flood in Pekalongan: Utilizing and Operating Open Resources for Modelling. In Proceeding of the IOP Conference Series: Materials Science and Engineering, International Conference on Science and Engineering, Gowa, Indonesia, 24 October 2018. [Google Scholar] [CrossRef]
- Zainuri, M.; Helmi, M.; Griselda, M.; Novita, A.; Kusumaningrum, H.P.; Koch, M. Improved performance of geospatial model to access the tidal flood impact on land use by evaluating sea level rise and land subsidence Parameters. J. Ecol. Eng. 2022, 23, 1–11. [Google Scholar] [CrossRef]
- Rizal, S.; Damm, P.; Wahid, M.A.; Sündermann, J.; Ilhamsyah, Y.; Iskandar, T.; Muhammad. General circulation in the Malacca Strait and Andaman Sea: A numerical model study. Am. J. Environ. Sci. 2012, 8, 479–488. [Google Scholar] [CrossRef]
- Setiawan, I.; Rizal, S.; Haditiar, Y.; Ilhamsyah, Y.; Purnawan, S.; Irham, M.; Yuni, S.M. Study of current circulation in the Northern Waters of Aceh. In Proceeding of the IOP Conference Series: Earth and Environmental Science, the 2nd International Conference on Marine Science; Better Insight for the Healthy Ocean, Bogor, Indonesia, 6–7 September 2017. [Google Scholar] [CrossRef]
- Wyrtki, K. Physical Oceanography of the Southeast Asian Waters: Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand, 2nd ed.; Scripps Institution of Oceanography, University of California: La Jolla, CA, USA, 1961; pp. 1–195. [Google Scholar]
- Chawla, A.; Jay, D.A.; Baptista, A.M.; Wilkin, M.; Seaton, C. Seasonal variability, and estuary-shelf interactions in circulation dynamics of a river-dominated estuary. Estuaries Coast. 2008, 31, 269–288. [Google Scholar] [CrossRef]
- Segeth, K. Some splines produced by smooth interpolation. Appl. Math. Comput. 2018, 319, 387–394. [Google Scholar] [CrossRef]
- Dias, J.M.; Lopes, J.F.; Dekeyser, I. Tidal propagation in Ria de Aveiro lagoon, Portugal. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 369–374. [Google Scholar] [CrossRef]
- Menéndez, M.; Woodworth, P.L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. Ocean. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Khojasteh, D.; Chen, S.; Felder, S.; Heimhuber, V.; Glamore, W. Estuarine tidal range dynamics under rising sea levels. PLoS ONE 2021, 16, e0257538. [Google Scholar] [CrossRef]
- Baranya, S.; Józsa, J. Estimation of suspended sediment concentrations with ADCP in danube river. J. Hydrolog. Hydromech. 2013, 61, 232–240. [Google Scholar] [CrossRef]
- Dwinovantyo, A.; Manik, H.M.; Prartono, T.; Susilohadi; Ilahude, D. Estimation of Suspended Sediment Concentration from Acoustic Doppler Current Profiler (ADCP) Instrument: A Case Study of Lembeh Strait, North Sulawesi. In Proceeding of the IOP Conference Series: Earth and Environmental Science, The 3rd International Symposium on LAPAN-IPB Satellite for Food Security and Environmental Monitoring, Bogor, Indonesia, 25–26 October 2016. [Google Scholar] [CrossRef]
- Venditti, J.G.; Church, M.; Attard, M.E.; Haught, D. Use of ADCPs for suspended sediment transport monitoring: An empirical approach. Water Resour. Res. 2016, 52, 2715–2736. [Google Scholar] [CrossRef]
- Mao, Q.; Shi, P.; Yin, K.; Gan, J.; Qi, Y. Tides and tidal currents in the Pearl River Estuary. Continent. Shelf Res. 2004, 24, 1797–1808. [Google Scholar] [CrossRef]
- Kvale, E.P. The origin of neap-spring tidal cycles. Mar. Geol. 2006, 235, 5–18. [Google Scholar] [CrossRef]
- Trevethan, M.; Chanson, H.; Takeuchi, M. Continuous high-frequency turbulence and suspended sediment concentration measurements in an upper estuary. Estuar. Coast. Shelf Sci. 2007, 73, 341–350. [Google Scholar] [CrossRef]
- Simpson, J.H.; Fisher, N.R.; Wiles, P. Reynolds stress and TKE production in an estuary with a tidal bore. Estuar. Coast. Shelf Sci. 2004, 60, 619–627. [Google Scholar] [CrossRef]
- Furgerot, L.; Mouazé, D.; Tessier, B.; Perez, L.; Haquin, S.; Weill, P.; Crave, A. Sediment transport induced by tidal bores. An estimation from suspended matter measurements in the Sée River (Mont-Saint-Michel Bay, northwestern France). Comptes Rendus Géosci. 2016, 348, 432–441. [Google Scholar] [CrossRef]
- Donnelly, C.; Chanson, H. Environmental impact of undular tidal bores in tropical rivers. Environ. Fluid Mech. 2005, 5, 481–494. [Google Scholar] [CrossRef]
- Rianto, S.; Santri, S. Obstacles and efforts to develop Bono tourism object in the Kampar River, Teluk Meranti Sub-District, Pelalawan Regency. J. Spasial. 2017, 3, 71–81. (In Indonesian) [Google Scholar] [CrossRef]
- Hidir, A.; Asriwandari, H.; Kartikowati, S.R. Development Strategy for Coastal Society Based on the Development of Bono Tourism (Tidal Bore) in the Pelalawan Regency. In Proceeding of the National Seminar of Politic Bureaucracy, and Social Change in Efforts to Develop National Characters, Pekanbaru, Indonesia, 21 May 2013. (In Indonesian). [Google Scholar]
- Persoalan Lahan Masyarakat Rantau Kasih vs. Perusahaan Kayu, Ada Penyelesaian? Available online: https://www.mongabay.co.id/2021/09/15/persoalan-lahan-masyarakat-rantau-kasih-vs-perusahaan-kayu-ada-penyelesaian/ (accessed on 14 August 2022). (In Indonesian).
- Saathoff, F.; Oumeraci, H.; Restall, S. Australian and German experiences on the use of geotextile containers. Geotext. Geomembr. 2007, 25, 251–263. [Google Scholar] [CrossRef]
- Mahabror, D.; Indriasari, V.Y.; Sofyan, A.; Nugroho, D.; Akhwady, R. Prototype engineering technology of elongated geotextile container as an alternative construction for mitigating abrasion in Pademawu Beach, Pamekasan Regency. Naturalis 2021, 10, 32–45. (In Indonesian) [Google Scholar] [CrossRef]
- Anonymous. Final Report of Natural Resources Inventory in the Pelalawan Regency 2009; Department of Energy and Mineral Resources: Pekanbaru, Indonesia, 2009; pp. 221–308. (In Indonesian) [Google Scholar]
Observation Station | Area Location | Deployment Coordinates | Instrument Specifications | Deployment Setup | Survey Period (Western Indonesian Time UTC+07:00) | |
---|---|---|---|---|---|---|
Longitude | Latitude | |||||
MD-1 | Mendol Island | 103.212° E | 0.503° N | Tide Master Valeport Range: min 0.8 m and max 20 m Beam angle: ± 6° Frequency: 25 GHz Accuracy: ± 10 mm Precision: 1 mm |
| 23 April 2016 15:45 to 31 May 2016 16:00 |
KP-1 | Tanjung Tersendu-sendu | 102.624° E | 0.225° N | ADCP Nortek Aquadopp Acoustic frequency: 0.6 MHz Max profile range: 30–40 m Cell-size: 1–4 m Minimum blanking: 0.5 m Max cell: 128 Velocity range: ± 10 m/s Accuracy: 1% of measured value ± 0.5 m/s Max sampling range: 1 Hz |
| 24 April 2016 13:30 to 25 April 2016 14:55 |
KP-2 | Teluk Meranti | 102.568° E | 0.165° N | 25 April 2016 17:00 to 26 April 2016 17:25 | ||
KP-3 | Baru Island | 103.005° E | 0.336° N | 20 August 2016 11:00 to 22 August 2016 19:55 | ||
KP-4 | Tanjung Mentangor | 102.480° E | 0.241° N | Teledyne RD Instrument Workhorse Sentinel Center working frequency: 614 kHz Max. typical profiling range: 70 m Nadir angle: 20 deg Max. number of cells per beam: 256 Min. Blanking distance: 0.5 m Cell size: 0.25–4 m Max. ping range: 3 Hz Max. velocity: 10 m/s Cell overlap: 25% |
| 21 August 2016 11:30 to 23 August 2016 15:00 |
Tidal Constituents | Simulated Data | Observed Data | Angular Frequency (Degree/Hour) | RMSE (cm) | Species | ||
---|---|---|---|---|---|---|---|
Amplitude (cm) | Phase Lag (°) | Amplitude (cm) | Phase Lag (°) | ||||
M2 | 113.02 | 199.25 | 115.74 | 164.77 | 28.98 | 1.92 | Principal lunar semidiurnal |
S2 | 52.78 | 35.09 | 55.80 | 49.92 | 30.00 | 2.21 | Principal solar semidiurnal |
N2 | 24.87 | 188.15 | 29.98 | 157.23 | 28.44 | 3.61 | Larger lunar elliptic semidiurnal |
K2 | 11.26 | 104.60 | 11.96 | 191.47 | 30.08 | 0.49 | Lunisolar semidiurnal |
K1 | 36.61 | 89.55 | 34.19 | 50.56 | 15.04 | 1.71 | Lunar diurnal |
O1 | 23.36 | 42.29 | 27.57 | 69.69 | 13.94 | 2.98 | Lunar diurnal |
P1 | 14.40 | −54.15 | 11.92 | −45.38 | 14.96 | 1.75 | Solar diurnal |
M4 | 15.14 | −4.08 | 15.02 | −2.41 | 57.97 | 0.08 | Shallow water over-tides of principal lunar |
MS4 | 13.96 | 187.41 | 12.01 | 170.24 | 58.98 | 1.38 | Shallow water quarter diurnal |
Location | Area (m2) | Volume (m3) |
---|---|---|
Teluk Meranti village | 41,701,000 | 83,400,000 |
P. Muda village | 23,270,000 | 46,540,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia. Water 2022, 14, 2561. https://doi.org/10.3390/w14162561
Wisha UJ, Wijaya YJ, Hisaki Y. Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia. Water. 2022; 14(16):2561. https://doi.org/10.3390/w14162561
Chicago/Turabian StyleWisha, Ulung Jantama, Yusuf Jati Wijaya, and Yukiharu Hisaki. 2022. "Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia" Water 14, no. 16: 2561. https://doi.org/10.3390/w14162561
APA StyleWisha, U. J., Wijaya, Y. J., & Hisaki, Y. (2022). Real-Time Properties of Hydraulic Jump off a Tidal Bore, Its Generation and Transport Mechanisms: A Case Study of the Kampar River Estuary, Indonesia. Water, 14(16), 2561. https://doi.org/10.3390/w14162561