Realizing Sustainable Development of Yellow River Basin by Horizontal Eco-Compensation Based on Integrated Water Rights (IWRs) Transactions
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Methods and Data
2.2.1. Influence Matrix of Water Use Based on Runoff Simulation
2.2.2. IWRs Transaction Scheme Based on Multi-Objective Optimization
2.2.3. Efficiency and Sustainability Evaluation
3. Results and Discussion
3.1. Influence Matrix
3.1.1. Runoff Simulation
3.1.2. Influence Matrix of IWRs
3.2. Transaction Scheme of the IWRs
3.2.1. Initial Allocation on the Basis of Fairness Principle
3.2.2. Secondary IWRs Allocation by Multi-Objective Optimization (Transaction)
3.3. Revenue, Efficiency and Sustainability Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; Arge, A.R.; Groot, R.D.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Cheng, Y. Models of Payment for Watershed Ecological Service in China—A Case Study on Jinhua River, Zhejiang Province. Ph.D. Thesis, Chinese Academy of Agricultural Science, Beijing, China, 2006. (In Chinese). [Google Scholar] [CrossRef]
- Liu, Y.; Bi, J. Review on theories and payment standards of ecological compensation in watersheds. J. Econ. Water Resour. 2018, 36, 10–15. (In Chinese) [Google Scholar] [CrossRef]
- Bellver-Domingo, A.; Hernandez-Sancho, F.; Molinos-Senante, M. A review of payment for ecosystem services for the economic internalization of environmental externalities: A water perspective. Geoforum 2016, 70, 115–118. [Google Scholar] [CrossRef]
- Zbinden, S.; Lee, D.R. Paying for environmental services: An analysis of participation in Costa Rica’s PSA program. World Dev. 2005, 33, 255–272. [Google Scholar] [CrossRef]
- Zhuang, D. Study on ecological compensation standards and ecological compensation mechanism of River Basins. Environ. Dev. 2019, 31, 219–220. (In Chinese) [Google Scholar]
- Xiao, M. Study on the Ecological Compensation System of Jialing River Basin. Ph.D. Thesis, Hebei GEO University, Shijiazhuang, China, 2019. (In Chinese). [Google Scholar]
- Cheng, Y.; Wu, D.; Bian, Y. A systematic approach of determining compensation and allocation for river basin water environment based on total pollutants contro. J. Environ. Manag. 2020, 271, 110896. [Google Scholar] [CrossRef]
- Lin, Y.; Dong, Z.; Zhang, W.; Zhang, H. Estimating inter-regional payments for ecosystem services: Taking China’s Beijing-Tianjin-Hebei region as an example. Ecol. Econ. 2019, 168, 106514. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, Y.; Xie, G.; Liu, J.; Qin, K.; Wang, Y.; Zhang, C.; Lei, G. How to coordinate cross-regional water resource relationship by integrating water supply services flow and interregional ecological compensation. Ecol. Indic. 2021, 126, 107595. [Google Scholar] [CrossRef]
- Liu, G.; Wen, Y.; Zhang, H. Comparative study on standardized accounting methods for watershed eco-compensation. Adv. Sci. Technol. Water Resour. 2011, 6, 5–10. (In Chinese) [Google Scholar] [CrossRef]
- He, T.; Lu, Y.; Cui, Y.; Luo, Y.; Wang, M.; Meng, W.; Zhang, K.; Zhao, F. Detecting gradual and abrupt changes in water quality time series in response to regional payment programs for watershed services in an agricultural area. J. Hydrol. 2015, 525, 457–471. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, D. Integrated assessment of water quality characteristics and ecological compensation in the Xiangjiang River, south-central China. Ecol. Indic. 2020, 110, 105922. [Google Scholar] [CrossRef]
- Wei, X. Construction of the primary market of river basin water integrated transaction with consideration of water rights and emission rights-Taking the catering and accommodation industry in Dali City of Erhai River Basin as an example. Ph.D. Thesis, Beijing Normal University, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Wang, W.; Wu, F.; Yu, H. Optimal design of the ecological compensation mechanism in transboundary river basins under the Belt and Road Initiative. Sustain. Prod. Consum. 2022, 32, 173–183. [Google Scholar] [CrossRef]
- Li, W.A.; Tla, B.; Xz, B.; Han, H.A.; Xiao, C.C. Global research trends and gaps in ecological compensation studies from 1990 to 2020: A scientometric review. J. Nat. Conserv. 2022, 65, 126097. [Google Scholar]
- Martin-Ortega, J.; Ojea, E.; Roux, C. Payments for Water Ecosystem Services in Latin America: A literature review and conceptual model. Ecosyst. Serv. 2013, 6, 122–132. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Wang, X. Research on calculating methods of watershed ecological compensation standard in China. Environ. Sci. Manag. (In Chinese). 2014, 39, 151–154. [Google Scholar] [CrossRef]
- Hausknost, D.; Grima, N.; Singh, S.J. The political dimensions of Payments for Ecosystem Services (PES): Cascade or stairway? Ecol. Econ. 2017, 131, 109–118. [Google Scholar] [CrossRef]
- Wunder, S. Payments for Environmental Services: Some Nuts and Bolts; CIFOR Occasional Paper No. 42.; Centre for International Forestry Research: Bogor, Indonesia, 2005; Available online: http://hdl.handle.net/10919/66932 (accessed on 10 November 2021).
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
- Engel, S.; Palmer, C. Payments for environmental services as an alternative to logging under weak property rights: The case of Indonesia. Ecol. Econ. 2008, 65, 799–809. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zheng, H.; Yue, P. Establishment of ecological compensation mechanisms in China: Perspectives and strategies. Acta Ecol. Sin. 2013, 33, 686–692. (In Chinese) [Google Scholar] [CrossRef]
- Dou, H.S.; Li, X.B.; Li, S.K.; Dang, D.L.; Li, X.; Lyu, X.; Li, M.Y.; Liu, S.Y. Mapping ecosystem services bundles for analyzing spatial trade-offs in Inner Mongolia, China. J. Clean Prod. 2020, 256, 120444. [Google Scholar] [CrossRef]
- Jin, L.; Wu, L. Achievements, Challenges and Transformation of China’s Ecological Compensation. Environ. Prot. 2018, 046, 7–13. (In Chinese) [Google Scholar]
- Jin, L. How should the compensation mechanism for ecological protection be “supplemented”? China Rep. 2019, 6, 56–57. (In Chinese) [Google Scholar]
- Sheng, J.; Qiu, W.; Han, X. China’s PES-like horizontal eco-compensation program: Combining market-oriented mechanisms and government interventions. Ecosyst. Serv. 2020, 45, 101164. [Google Scholar] [CrossRef]
- Peng, J. The Generating mechanism, value embodiment and path reconstruction of the water-energy-food nexus in the Yellow River basin. Contemp. Econ. Manag. 2021, 43, 76–81. (In Chinese) [Google Scholar] [CrossRef]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The global status and trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Delavar, M.; Morid, S.; Morid, R.; Farokhnia, A.; Karimi, P. Basin-wide water accounting based on modified swat model and wa+ framework for better policy making. J. Hydrol. 2020, 585, 124762. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.; Yang, X.; Haywood, J. A review of swat applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Wang, Q.; Qi, J.; Li, J.; Cole, J.; Zhang, X. Sensitivity of nitrate loading projection to freeze-thaw cycle representation. Water Res. 2020, 186, 116355. [Google Scholar] [CrossRef]
- Zhang, R. The study of the Yellow River valley runoff in Ningxia Hui autonomous region based on SWAT model. Ph.D. Thesis, Southwest University, Chongqing, China, 2014. (In Chinese). [Google Scholar]
- Jing, Y.; Wang, L.; Wei, X. Impacts of climate change on runoff of Jinghe river cased on SWAT model. NONGYE JIXIE XUEBAO 2017, 48, 9. (In Chinese) [Google Scholar] [CrossRef]
- Ji, G. Geographical calculation of runoff change and drought and flood disasters dynamics in the Yellow River Basin under future climate change. Ph.D. Thesis, East China Normal University, Shanghai, China, 2020. (In Chinese). [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, S.; Yang, X. Water and sediment yield response to extreme rainfall events in a complex large river basin: A case study of the Yellow River Basin, China. J. Hydrol. 2021, 597, 126183. [Google Scholar] [CrossRef]
- Engel, B.; Storm, D.; White, M.; Arnold, J.; Arabi, M. A hydrologic/water quality model application protocol. J. Am. Water Resour. Assoc. 2007, 43, 1223–1226. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
Station | Location | Sub-Basins | R2 | NSE | Parameters * | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALPHA_BF | GW_DELAY | GWQMN | REVEP_MN | ESCO | SLOPE | CH_KII | CH_NII | SOL_AWC | SOL_K | |||||
Tangnaihai | 47 | 47, 48, 49 | 0.74 | 0.69 | 0.05 | 22.97 | 2676.48 | 338.17 | 0.96 | −0.06 | 230.37 | 0.18 | 0.15 | 0.21 |
Lanzhou | 27 | 23, 24, 25, 26, 27, 28, 29, 30, 45 | 0.70 | 0.30 | 0.07 | 0.89 | 2729.83 | 391.50 | 0.96 | 0.03 | 216.09 | 0.19 | 0.19 | 0.42 |
Shizuishan | 8 | 7, 8, 9, 13, 14, 16, 19, 20 | 0.71 | 0.49 | 0.16 | 30.69 | 4226.46 | 330.69 | 0.95 | −0.10 | 169.60 | 0.07 | 0.11 | −0.06 |
Toudaoguai | 6 | 1, 2, 3, 4, 5, 6 | 0.61 | 0.60 | 0.75 | 30.00 | 1913.34 | 181.35 | 0.85 | −0.01 | 164.42 | 0.19 | 0.04 | 0.31 |
Sanmenxia | 39 | 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46 | 0.56 | 0.31 | 0.40 | 30.00 | 1660.01 | 250.00 | 0.99 | −0.02 | 247.04 | 0.14 | −0.08 | 0.18 |
Water Resource Amount (108 m3) | Qinghai | Gansu | Ningxia | Neimenggu | Shanxi | Shannxi | Henan | Shandong |
Qinghai | / | / | / | / | / | / | / | / |
Gansu | 0.63 | / | / | / | / | / | / | / |
Ningxia | 0.55 | 0.52 | / | / | / | / | / | / |
Neimenggu | 0.48 | 0.44 | 0.45 | / | / | / | / | / |
Shanxi | 0.20 | 0.18 | 0.18 | 0.17 | / | / | / | / |
Shannxi | 0.20 | 0.18 | 0.18 | 0.17 | / | / | / | / |
Henan | 0.38 | 0.35 | 0.36 | 0.33 | 0.22 | 0.22 | / | / |
Shandong | 0.38 | 0.35 | 0.36 | 0.33 | 0.22 | 0.22 | 0.34 | / |
Total | 2.82 | 2.02 | 1.53 | 1.00 | 0.44 | 0.44 | 0.34 | / |
Water environmental capacity COD (102 tons) | Qinghai | Gansu | Ningxia | Neimenggu | Shanxi | Shannxi | Henan | Shandong |
Qinghai | 3.68 | / | / | / | / | / | / | / |
Gansu | 7.08 | 1.58 | / | / | / | / | / | / |
Ningxia | 6.66 | 6.34 | 1.98 | / | / | / | / | / |
Neimenggu | 3.72 | 3.50 | 3.67 | 0.98 | / | / | / | / |
Shanxi | 1.99 | 1.85 | 1.91 | 1.69 | 0.66 | / | / | / |
Shannxi | 1.99 | 1.85 | 1.91 | 1.69 | 0.66 | 0.66 | / | / |
Henan | 7.76 | 7.33 | 7.55 | 6.93 | 4.63 | 4.63 | 4.42 | / |
Shandong | 6.62 | 6.25 | 6.44 | 5.94 | 3.92 | 3.92 | 6.08 | / |
Total | 39.50 | 28.70 | 23.46 | 17.23 | 9.87 | 9.21 | 10.50 | / |
Water environmental capacity NH4+-N (102 tons) | Qinghai | Gansu | Ningxia | Neimenggu | Shanxi | Shannxi | Henan | Shandong |
Qinghai | 0.24 | / | / | / | / | / | / | / |
Gansu | 0.37 | 0.08 | / | / | / | / | / | / |
Ningxia | 0.45 | 0.43 | 0.13 | / | / | / | / | / |
Neimenggu | 0.59 | 0.55 | 0.58 | 0.07 | / | / | / | / |
Shanxi | 0.19 | 0.17 | 0.18 | 0.16 | 0.07 | / | / | / |
Shannxi | 0.19 | 0.17 | 0.18 | 0.16 | 0.07 | 0.07 | / | / |
Henan | 0.70 | 0.66 | 0.68 | 0.63 | 0.42 | 0.42 | 0.33 | / |
Shandong | 0.14 | 0.13 | 0.13 | 0.12 | 0.08 | 0.08 | 0.13 | / |
Total | 2.87 | 2.19 | 1.88 | 1.14 | 0.64 | 0.57 | 0.46 | / |
Indicator (Unit) | Water Resources (108 m3) | Water Environmental Capacity-(104 tons) | Initial Water Use Rights (108 m3) | Initial Pollutant Discharge Rights-(104 tons) | ||
---|---|---|---|---|---|---|
COD | NH4+-N | COD | NH4+-N | |||
Qinghai | 307.89 | 8.55 | 0.46 | 196.02 | 3.30 | 0.19 |
Gansu | 172.59 | 16.72 | 0.92 | 109.88 | 6.44 | 0.38 |
Ningxia | 14.70 | 23.21 | 1.58 | 9.36 | 8.95 | 0.65 |
Neimenggu | 59.50 | 13.39 | 2.11 | 37.88 | 5.16 | 0.87 |
Shanxi | 73.81 | 14.15 | 1.46 | 46.99 | 5.46 | 0.60 |
Shannxi | 101.54 | 6.27 | 0.39 | 64.65 | 2.42 | 0.16 |
Henan | 45.39 | 32.93 | 3.03 | 28.90 | 12.69 | 1.25 |
Shandong | 27.41 | 22.79 | 0.49 | 17.45 | 8.78 | 0.20 |
Yellow River basin | 802.83 | 138.02 | 10.45 | 511.12 | 53.20 | 4.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zeng, W.; Xue, Y.; Zhuo, Y. Realizing Sustainable Development of Yellow River Basin by Horizontal Eco-Compensation Based on Integrated Water Rights (IWRs) Transactions. Water 2022, 14, 2646. https://doi.org/10.3390/w14172646
Xie Y, Zeng W, Xue Y, Zhuo Y. Realizing Sustainable Development of Yellow River Basin by Horizontal Eco-Compensation Based on Integrated Water Rights (IWRs) Transactions. Water. 2022; 14(17):2646. https://doi.org/10.3390/w14172646
Chicago/Turabian StyleXie, Yuxi, Weihua Zeng, Yinglan Xue, and Yue Zhuo. 2022. "Realizing Sustainable Development of Yellow River Basin by Horizontal Eco-Compensation Based on Integrated Water Rights (IWRs) Transactions" Water 14, no. 17: 2646. https://doi.org/10.3390/w14172646
APA StyleXie, Y., Zeng, W., Xue, Y., & Zhuo, Y. (2022). Realizing Sustainable Development of Yellow River Basin by Horizontal Eco-Compensation Based on Integrated Water Rights (IWRs) Transactions. Water, 14(17), 2646. https://doi.org/10.3390/w14172646