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Abstract: Reliable and accurate streamflow prediction plays a critical role in watershed water re-
sources planning and management. We developed a new hybrid SWAT-WSVR model based on
12 hydrological sites in the Illinois River watershed (IRW), U.S., that integrated the Soil and Water
Assessment Tool (SWAT) model with a Support Vector Regression (SVR) calibration method coupled
with discrete wavelet transforms (DWT) to better support modeling watersheds with limited data
availability. Wavelet components of the simulated streamflow from the SWAT-Calibration Uncer-
tainty Procedure (SWAT-CUP) and precipitation time series were used as inputs to SVR to build
a hybrid SWAT-WSVR. We examined the performance and potential of the SWAT-WSVR model
and compared it with observations, SWAT-CUP, and SWAT-SVR using statistical metrics, Taylor
diagrams, and hydrography. The results showed that the average of RMSE-observation’s standard
deviation ratio (RSR), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and root mean square
error (RMSE) from SWAT-WSVR is 0.02, 1.00, −0.15, and 0.27 m3 s−1 in calibration and 0.14, 0.98,
−1.88, and 2.91 m3 s−1 in validation on 12 sites, respectively. Compared with the other two models,
the proposed SWAT-WSVR model possessed lower discrepancy and higher accuracy. The rank
of the overall performance of the three SWAT-based models during the whole study period was
SWAT-WSVR > SWAT-SVR > SWAT-CUP. The developed SWAT-WSVR model supplies an addi-
tional calibration approach that can improve the accuracy of the SWAT streamflow simulation of
watersheds with limited data.

Keywords: SWAT; support vector regression; streamflow prediction; wavelet transform; Illinois
River watershed

1. Introduction

A precise and reliable monthly streamflow prediction model is helpful in the planning,
management, development, and protection of water resources, such as future flood and
drought forecasting, reservoirs, and/or agricultural water management [1–3]. However,
many hydrological elements (e.g., precipitation, runoff, sediment, flood, and streamflow)
have highly complex, nonlinear, non-stationary, and uncertainty features, which is a chal-
lenge for conventional hydrological methods when analyzing and predicting the complex
patterns and inherent variabilities of rainfall–runoff relationships [4–8]. Hence, accurate
rainfall–runoff prediction became a difficult task in stochastic hydrology; subsequently,
new theories and methods, such as machine learning methods [9,10], have been introduced
to improve rainfall–runoff forecasting.

Support vector machine (SVM) is a machine learning method, which can be considered
a data-driven black-box model [11]. SVM focuses on determining a kernel function and
searching for an optimum separating hyperplane based on the kernel function selected.
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This separating hyperplane determines an optimal parameter combination fitting of the
observations. Meanwhile, the search process avoids overfitting and make SVM present
better generalization characteristics [12]. Compared to an artificial neural network (ANN),
SVM performs better [13] in some hydrological applications because it applies a structural
risk minimization principle to obtain a global optimum solution rather than a solution
based on the empirical risk minimization as applied in ANN [4,13–15]. SVM can solve the
nonlinear problem in a low dimension input space by projecting to a higher dimension
feature space where an original nonlinear problem is converted into a linear problem [16,17].
SVM has been widely applied in recent decades to hydrological prediction worldwide. For
instance, Shabri and Suhartono (2012) [18] used the least-squares SVM (LSSVM) method to
predict streamflow in Peninsular Malaysia to compare performance of different models’
including LSSVM, autoregressive integrated moving average (ARIMA), ANN, and regular
SVM. Kalteh (2013) [4] compared the prediction accuracy of monthly flow discharge from
an artificial neural network (ANN) method and the support vector regression (SVR) model
coupled with a wavelet transform in two stations in northern Iran. Chiogna et al. (2018) [19]
combined the Soil and Water Assessment Tool (SWAT) model and SVR method to predict
hydropeaking for the Upper Adige River watershed in northeast Italy and applied a
wavelet method to analyze the price of energy. However, these studies only used a few
hydrological stations to test their methods and evaluate the model performance. Nourani
et al. (2015) [20] proposed a two-stage SVM method with spatial statistics to simulate
monthly river suspended sediment load for 15 sites within the Ajichay River in northwest
Iran. Yuan and Forshay (2021) [21] developed a seasonal SWAT model coupled with SVR
for 13 hydrological stations using a spatial calibration method to improve the accuracy
of monthly streamflow prediction in the Illinois River watershed. From these efforts, it
is clear that the SVM method has powerful predictive ability depending on calibration
datasets and can accurately capture nonlinear relationships between the input and output
variables. However, the SVM prediction method neglects the detailed characteristics and
processes of a watershed system [22] and simplifies the complexity of the rainfall–runoff
relationship [23].

Wavelet analysis is a mathematical function with an auto-adaptive time-frequency
window (i.e., the width of time and frequency may change) and is suited to analyze and
calculate stationary or non-stationary time series signals [4]. In the high-frequency period
of signals, the size of a frequency window becomes larger while the size of a time window
becomes smaller and otherwise occurs in the signals low-frequency period. Wavelet
analysis has an excellent capability to reduce data noise, analyze variabilities, periodicities,
and trends of hydrological time series and is suitable for handling the non-stationary
flow signals [24,25]. To date, the wavelet analysis method has been widely applied in
hydrological prediction. For example, Nourani et al. (2014) [7] reviewed applications of
hybrid wavelet-Artificial Intelligence (AI) models in hydrology and presented remarkable
progress when integrating wavelet analysis and AI models to improve the prediction
accuracy of hydrologic models in the recent couple of decades. Noraini and Norhaiza
(2017) [13] compared different wavelet denoising techniques and decomposition levels,
and input streamflow time series after wavelet denoising into SVR based on a radial basis
function (RBF) kernel to improve 1-month-ahead streamflow prediction in the Segamat
River basin in southern Malaysia. Sun et al. (2019) [26] integrated multiple methods,
such as the autoregressive model, autoregressive moving average (ARMA) model, ANN
model, and linear regression (LR) model, with wavelet transform and compared their
differences in performance while predicting daily streamflow in the Heihe River basin of
northern China, where they found that the wavelet-based method can effectively improve
streamflow simulations compared to other models. Nalley et al. (2020) [27] used several
wavelet-transform-based methods to improve the performance of extending streamflow
records for areas in Canada with limited data available. From the works mentioned above,
it was inferred that wavelet transform typically worked as a data pre-processing tool
before employing conventional hydrological analysis methods or data-driven models and
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could raise the accuracy of the flow prediction. The main concerns regarding wavelet
applications in hydrological forecasting are the proper selection of the mother wavelet
function and the determination of decomposition levels corresponding to the specific
hydrological time series [7,28]. Integrating these machine learning methods with physically
based hydrologic models could better describe streamflow by incorporating the constraints
of the physical world that include advanced mathematical techniques to discover the
complex hidden or obscured signals that are difficult or impossible to model in a physically
based modeling system.

Many physically based hydrologic models have been developed and applied to predict
streamflow [29]. Among these models, the Soil and Water Assessment Tool (SWAT) is a
conceptual, physically based, watershed-scale hydrologic model that has been extensively
applied worldwide [30]. SWAT takes a large number of physical processes of hydrology
into account. Hence, it requires extensive data and parameter inputs. Often, data are
unavailable in certain regions due to time or economic cost or limitations of measurement
technologies, especially in some developing countries. Therefore, the unknown values of
many parameters in SWAT can only be determined via the procedure of calibration [3].
Calibration is a time-consuming and complicated process since it involves parameterization,
optimal algorithm determination, and extensive iterative computation to find optimal value
ranges and parameter combinations [11,31,32].

Moreover, the issue of parameter non-uniqueness is that different parameter sets might
produce very similar simulated signals with the observed flow time series, which makes
effective calibration harder to achieve [31]. To obtain appropriate parameter combinations,
it requires researchers to have a profound understanding of hydrological parameters
and processes and familiarity of local hydrological conditions and physical features in
a study area. To raise the accuracy of hydrological models prediction, especially for a
region with limited data available, several efforts have evaluated the performance and
potential of SWAT coupling with the SVR methods in streamflow prediction [11,15,33,34],
yet few efforts [19,35] have attempted to couple a distributed physically based model and
a machine learning method to improve the rainfall–runoff simulation. In some cases, we
do not achieve a desirable result of flow prediction with acceptable accuracy, even after
conducting comprehensive model calibration. Here, we attempt to improve the accuracy of
a commonly used physically based model (SWAT) by integrating discrete wavelet transform
functions and support vector machines in a system with complex non-linear rainfall–runoff
relationships to support modeling efforts in watersheds with limited data.

The object of this study aims to show how the SVM method with wavelet transforms
can be used to improve the monthly flow prediction of the calibrated SWAT hydrological
model in the Illinois River watershed (IRW), U.S. This work studied and compared the per-
formance of calibrated SWAT (SWAT-CUP), regular SWAT-SVR without applying wavelet
transform, and SWAT-WSVR coupled with wavelet transform for monthly flow predic-
tion for 12 hydrological stations in the IRW. This study is helpful to improve streamflow
prediction at a month scale in some areas with sparse data.

2. Methodology

To improve monthly flow prediction, we developed the hybrid model SWAT-WSVR
based on SWAT and SVR with discrete wavelet transforms. First, we developed SWAT
models for twelve sites after SWAT-CUP (SWAT Calibration and Uncertainty Program)
calibration progresses. Then, the flow at month t simulated by SWAT-CUP calibration
and corresponding precipitation (i.e., applying the Thiessen polygons divide method to
allocate the NCDC meteorological stations to the USGS hydrological sites) of each site
served as SVR input variables to predict flow on month t. It was a regular SWAT-SVR
model. Next, the simulated monthly flow from SWAT-CUP was decomposed using the
discrete wavelet transform (DWT) to obtain wavelet coefficients and approximation at
different scale resolutions, which were served as inputs of SWAT-WSVR with precipitation
data. The results from SWAT-CUP worked as a benchmark compared with the results from
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SWAT-SVR and SWAT-WSVR. To estimate the performance of different models, we used a
metric such as the Nash–Sutcliffe efficiency (NSE), Percent Bias (PBIAS), Root Mean Square
Error (RMSE), and RMSE-observations standard deviation ratio (RSR) to estimate the
model results quantitatively. Finally, we combined calibrated (or training) and validated (or
testing) time series data and re-estimated the entire model performance based on Pearson’s
correlation coefficient (r), RMSE, and normalized standard deviation (NSD) and plotted
the Taylor diagram and hydrography to compare their performance difference graphically.
Figure 1 showed the construction flowchart of three hydrology models.
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Figure 1. The developing flowchart of different models: SWAT-CUP, SWAT-SVR, and SWAT-WSVR.

2.1. Watershed Description and Data Source

The IRW (35◦31′–36◦9′ N, 94◦12′–95◦2′ W) covers about a 4200 km2 drainage area and
crosses Arkansas and Oklahoma, U.S. The average basin slope is about 5.6%. The average
annual temperature and precipitation are about 16 ◦C and 1198 mm, respectively. Monthly
statistical discharge data from twelve U.S. Geological Survey (USGS) hydrological sites
were downloaded from the official website [21]. These monthly statistics generated from
sites are based on USGS-approved daily-mean data. The basic information of 12 hydrologic
stations and selected descriptive statistics for monthly flow time series are listed in Table 1.
Additionally, Figure 2 shows the spatial distribution of meteorological and hydrological
stations, terrain, lakes, and rivers in the IRW.
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Table 1. Watershed properties and selected descriptive statistics of USGS hydrological stations.

No. USGS
Station

Upstream
Area (km2)

Data Period
(month.year)

Number
of Data

Average
Monthly

Streamflow
(m3 s−1)

Flow Descriptive Statistics (m3 s−1)

Max Min Median Standard
Deviation

1 07195800 36.8 1.1995–12.2013 228 0.41 2.90 0.05 0.25 0.44
2 07195855 155.0 1.1995–12.2013 228 1.27 9.53 0.11 0.74 1.43
3 07196000 300.7 1.1995–12.2013 228 3.01 22.26 0.42 1.78 3.25
4 07195500 1633.0 1.1995–12.2013 228 18.71 149.42 2.73 10.75 20.02
5 07195430 1490.5 1.1996–12.2013 216 17.68 144.61 1.89 10.58 19.29
6 07196090 2138.5 7.2010–12.2013 42 23.19 178.54 2.95 11.77 33.59
7 07196973 64.8 1.1995–12.2002 96 0.66 3.57 0.00 0.38 0.75
8 07196500 2462.5 1.1995–12.2013 228 27.76 190.80 2.99 17.09 30.17
9 07197000 808.7 1.1995–12.2013 228 9.27 69.73 0.33 4.93 11.44

10 07196900 105.2 1.1995–12.2013 228 1.31 10.35 0.00 0.59 1.76
11 07197360 233.8 1.1998–12.2013 192 2.41 15.18 0.10 1.46 2.88
12 07198000 4186.2 1.1995–12.2013 228 44.03 378.65 0.98 25.59 46.81
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lakes, and rivers in the IRW.

The data used to set up the SWAT model include the following: (1). Digital elevation
model (DEM): 1 Arc-Second Global Database from Shuttle Radar Topography Mission
(SRTM) were downloaded from the USGS website (https://earthexplorer.usgs.gov/, ac-
cessed on 28 January 2018). Its spatial resolution is about 30 m × 30 m. (2). Land use and
land cover data: 2011 NLCD dataset (https://www.mrlc.gov/, accessed on 31 January
2018) were applied in this study, and spatial resolution is 100 m × 100 m. (3). Soil data: We
downloaded soil data from the SSURGO database (https://websoilsurvey.nrcs.usda.gov/,
accessed on 5 February 2018). (4). Climate data: Daily climate data came from the National
Climatic Data Center (NCDC) (https://www.ncdc.noaa.gov/, accessed on 7 February 2018).
Due to incomplete precipitation and temperature records from January 1990 to December

https://earthexplorer.usgs.gov/
https://www.mrlc.gov/
https://websoilsurvey.nrcs.usda.gov/
https://www.ncdc.noaa.gov/
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2013, we downloaded alternative Climate Forecast System Reanalysis (CFSR) data from the
SWAT official website (https://globalweather.tamu.edu/, accessed on 31 January 2018),
then filled missing NCDC data using climate data from the closest CFSR stations.

2.2. Hydrological Model

SWAT was developed by the U.S. Department of Agriculture Agricultural Research
Service (USDA-ARS) and has been extensively used worldwide [30,36]. It is a conceptual,
semi-distributed, and physically based hydrologic model used to simulate water cycles,
crop growth, sediment yields, and agricultural chemical transport in a large river basin
with varying soils, slopes, and land use management conditions [30]. A more detailed
description of the SWAT model is available from online documentation [37].

ArcSWAT 2012.10_4.19 within ArcGIS 10.4.1 was selected to build the SWAT-based
model in the study area. The entire IRW watershed was discretized as 86 subwatersheds
with 1023 hydrologic response units (HRUs) using a threshold area of 3000 ha. Each HRU
consisted of various land use/soil/slope attributes and was defined with a threshold of
land use (10%), soil (10%), and slope (5%). The SCS curve number method [38] and the
variable storage routing method [37] were applied to calculate the surface runoff and river
flow, respectively. A five-year warm-up period (1990–1994) was set up to initialize the
model input and stabilize the SWAT model. The SWAT simulation running period is from
1 January 1995 to 31 December 2013.

We used SWAT-CUP with Sequential Uncertainty Fitting (SUFI2) method to conduct
sensitivity analysis, calibration, and validation procedures of the SWAT model [31]. The
all-at-a-time approach was applied in the procedure of parameterization with 1000 SWAT-
CUP simulations. SWAT-CUP was set up for all twelve stations and run at one time with
two iterations. The nine sensitive parameters range were determined and their range and
fitted values in calibration listed in Table 2. The results from SWAT-CUP were regarded
as a benchmark to compare with results from SWAT-SVR and SWAT-WSVR. The optimal
parameters combination and sensitivity of the SWAT model depends on precipitation input,
interpolation of weather data, and the number of iterations. It has been investigated in
previous publications [11,32,39,40] and will not be discussed further in this article.

Table 2. The sensitive parameters range and their fitted values in calibration.

No. Parameter Name † Parameter Description Range Fitted Value

1 R__CN2.mgt SCS runoff curve number II −0.25–0.25 −0.179

2 V__GWQMN.gw Threshold depth of water in the shallow aquifer required for
return flow to occur (mm H2O) 0–2000 1764

3 V__GW_REVAP.gw Groundwater “revap” coefficient 0.02–0.2 0.135

4 V__REVAPMN.gw Threshold depth of water in the shallow aquifer for ‘revap’ to
occur (mm) 0–500 121

5 V__EPCO.hru Plant uptake compensation factor 0–1 0.154
6 V_ESCO.hru Soil evaporation compensation factor 0–1 0.354
7 R__SOL_AWC (1).sol Available water capacity of the 1st soil layer (mm H2O mm soil−1) 0.08–0.2 0.177
8 A__OV_N.hru Manning’s “n” value for overland flow 0.01–30 26.941
9 R__HRU_SLP.hru Average slope steepness (m m−1) 0–1 0.034

Note: “A__”, “V__”, and “R__” mean an absolute increase, a replacement, and a relative change to the initial
parameter values, respectively.

2.3. Support Vector Machine

SVM is built on the principle of the statistical learning and structural risk minimization
theory [41]. When SVM technology is applied in regression analysis, it is called SVR. The
SVR function is expressed as below [41]:

f (x) = w·Φ(x) + b (1)

https://globalweather.tamu.edu/
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where w is a weight vector, Φ is a nonlinear transfer function, and b is offset. An SVR
function f (x) can be expressed as the below formulation [17]:

min
1
2
||w||2 + C ∑n

n=1(ξi + ξ∗i )

yi − (w·Φ(xi) + b) ≤ ε + ξi

subject to (w·Φ(xi) + b)− yi ≤ ε + ξ∗i (2)

ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

where ξi and ξ∗i are slack variables that estimate the deviation of training data falling out
of the ε-insensitive zone. The C is a penalty factor that determines the tradeoff between the
flatness of Φ(xi) and the amount up to which the deviation ε can be tolerated [42].

In application, SVR includes four commonly used kernel functions such as the linear,
polynomial, Gaussian radial basis (RBF), and sigmoid. In this paper, we selected the
Gaussian RBF kernel function due to its computational efficiency, and its expression is
described below [43]:

K
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
(3)

The most critical three parameters in a SVR ε-regression application based on the RBF
kernel include: the penalty error parameter C (C > 0), the Gaussian RBF kernel parameter
γ, and the deviation of the error margin ε [14]. We applied the grid search and the k-fold
cross-validation method to optimize these parameters. The parameters value range in the
grid-searching was set up as: C (begin = 2−6, end = 28, step = 1), γ (begin = 24, end = 2−8,
step = −1), and ε (begin = 2−8, end = 2−1, step = 0.5). The k-value in cross-validation was
set to 5 for tuning the SVR. Before training the SVR, all input data were normalized to the
value range [0, 1] by the formula (x− x_min)/(x_max− x_min). Additionally, for each
site, we used the first 70% of data to train the model, then applied the remaining 30% subset
for validation purposes. The SVR ε-regression model was used to develop both SWAT-SVR
and SWAT-WSVR. R version 4.1.0 running on RStudio version 1.4.1717 and the ‘e1071’
package [44] were used for the development, training, and testing of the hybrid model [45].

2.4. Wavelet Transforms

The wavelet transform is a mathematical function that has an adjustable time-frequency
window and can decompose time series into multiple resolution levels by controlling the
scaling and shifting factors of a mother wavelet [46]. A mother wavelet needs to be de-
termined before applying a wavelet analysis. The wavelet transform of time series data
generates sets of wavelet coefficients for different scales and provides a time-scale local-
ization of processes [7]. The wavelet transform has two forms: the continuous wavelet
transform (CWT) and the discrete wavelet transform (DWT). In this paper, we applied DWT
method to build the hybrid SWAT-WSVR model. The DWT discretizes the parameters of
scales and positions before implementing the wavelet transform to decrease the redundancy.
The DWT of signal f (t) is defined as [47]:

W f (j, k) = a−j/2
0

∫ ∞

−∞
ψ∗
(

a−j
0 t− kb0

)
f (t)dt (4)

where the dilation parameter a and temporal translation parameter b of the CWT are dis-
cretized as a = aj

0, b = kb0aj
0, a0 > 0 and a0 6= 1, b0 ∈ R. In most cases, parameter a0 = 2

and b0 = 1. Then, a discrete wavelet can be expressed as [47]:

ψj,k(t) = a−j/2
0 ψ

(
a−j

0 t− kb0

)
j, k ∈ Z (5)

The DWT obtains wavelet details (D) and approximations (A) of the original hydro-
logical time series through high-pass and low-pass filters, respectively. Approximations
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at various resolution levels can be further decomposed by high-pass and low-pass filters
(Figure 3). Commonly used DWT wavelets have ‘Daubechies’, ‘Symlets’, ‘Coiflets’, and
‘Biorthogonal’. More details about wavelet transform can be found in Labat (2005) [48] and
Mallat (2009) [49].
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We examined Daubechies wavelet family with different wavelengths, such as ex-
tremal phase filter with length 1 (‘haar’ or ‘d1’), filter with length 2 (‘d2’), filter with
length 4 (‘d4’), filter with length 6 (‘d6’), and Least Asymmetric filter with length 8 (‘la8’),
and found that ‘haar’ wavelet is suitable for this study. To date, there is not a standard
method to determine the optimum DWT decomposition levels (D) for a specific time se-
ries. Some applied the equation as D = int(Log(N)) [50]; others used the formula as
D = Log(N/(2m− 1))/Log(2) [27], where N is the length of monthly time series, and m is
the number of vanishing moments of a Daubechies wavelet.

In this study, the maximum and minimum length of the monthly flow time series of
12 sites is 228 and 42 (Table 1), respectively. Regardless of applying either the formula
mentioned above to calculate D, the maximum decomposition levels of monthly flow for
all sites were between 1.62 and 7.83. Therefore, wavelet decomposition levels of 1 to 7 were
tested to obtain the optimal resolution levels. The results indicated that the decomposition
level of 3 and 2 attained the best model performance.

2.5. Model Performance Evaluation

We applied four statistics such as NSE (Nash–Sutcliffe efficiency), PBIAS (percent
bias), RMSE (root mean square error), and RSR (RMSE-observation’s standard deviation
ratio) to evaluate the model performance in calibration and validation. Table 3 listed
these statistical indicators, their mathematic expressions, and their value range. Preferred
statistics combination is the lower RSR, PBIAS, and RMSE but the higher NSE, which
present the better the model prediction performance. We used the ‘hydroGOF’ package [51]
in R to calculate the mentioned statistical indicators.

To further compare the performance of SWAT-CUP, SWAT-SVR, and SWAT-WSVR
on the entire time series (i.e., combined calibration and validation together), we plotted
hydrography for each site and applied the Taylor diagram [52] to examine the relative
importance of different statistics such as r, RMSE, and NSD between the observed and
simulated flow for three models and twelve sites. The advantage of the Taylor diagram is
that it can highlight the goodness-of-fit of multiple models and compare their difference
from observed data at the same graph.
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Table 3. Evaluation indicators of the model performance and their mathematic expressions.

Indicator Name Calculation Equation † Description

Pearson’s Correlation Coefficient (r) r = n(∑ yyi)−(∑ y)(∑ yi)√
[n ∑ y2−(∑ y)2][n ∑ y′−(∑ y′)2]

Range [−1, 1]

Nash–Sutcliffe efficiency (NSE) NSE = 1− ∑n
i=1 (yi−y′i)

2

∑n
i=1 (yi−y)2

Range (−∞, 1], and 1 is the optimal value

Percent Bias (PBIAS) PBIAS = 100× ∑n
i=1(yi

′−yi)
∑n

i=1 yi
Range (−∞, +∞), and 0 is the optimal value

RMSE-observations standard deviation ratio (RSR) RSR =

√
∑n

i=1 (yi−yi
′)2√

∑n
i=1 (yi−y)2

Range [0, +∞), and 0 is the optimal value

Root Mean Square Error (RMSE) RMSE =

√
∑n

i=1(yi−y′i)
2

n
Range [0, +∞), and 0 is the optimal value

Note: yi is the observed data series, y′i is the simulated results series, the overbar represents the mean value of
data series, and n is the sample number.

3. Results and Discussion

We developed a total of 72 models for the flow prediction at 12 sites by three methods:
SWAT-CUP, SWAT-SVR, and SWAT-WSVR. Each method included 12 calibrated models
and 12 validated models. The difference between SWAT-SVR and SWAT-WSVR is that
model inputs of SWAT-SVR had only the flow outputted from SWAT-CUP (a calibrated
SWAT model) and precipitation data. Instead, we replaced the simulated flow with its
wavelet components at different resolution levels in SWAT-WSVR. Table 4 lists the statistical
performance of the three above-mentioned models in calibration, validation, and the whole
time series data combining calibration and validation time series data.

3.1. Flow Prediction by SWAT-CUP

Table 4 summarizes the average RSR, NSE, PBIAS, and RMSE for twelve sites from
SWAT-CUP, and the corresponding values are 1.67, 0.22, 57.57, and 11.50 m3 s−1 in calibra-
tion and 0.84, 0.26, 35.98, and 11.04 m3 s−1 in validation, respectively. The RSR, NSE, and
RMSE had approximately similar performances between calibration and validation, but
the value of PBIAS in validation was lower than one in calibration, which indicated that
the predicted discrepancy from validation was less than one from calibration. SWAT-CUP
overestimated monthly flow in both calibration and validation. The low average NSE value
(≤0.26) indicated that SWAT-CUP has a poor goodness-of-fit between the observed and
simulated flow for both calibration and validation. Additionally, the 07195430 site had the
best performance among all sites in validation with lowest PBIAS (−6.7) and RSR (0.58)
and the highest NSE value (0.66). The model performance of 07195500 and 07196500 were
also acceptable in validation. After combined calibration and validation data together, the
averages of RSR, NSE, PBIAS, and RMSE for 12 sites are 0.85, 0.13, 50.67, and 11.38 m3 s−1,
respectively. Simulations from SWAT-CUP greatly overestimated the observed flow ac-
cording to PBIAS (i.e., a positive mean of 50.67 for 12 sites) and presented a low fitting
degree due to a low average value (0.13) of NSE. Overall, SWAT-CUP had a poor simulation
performance for most of sites during both calibration and validation periods, with only
few exceptions.

3.2. Flow Prediction by SWAT-SVR

Due to the unsatisfactory overall performance of SWAT-CUP, we developed the SWAT-
SVR and SWAT-WSVR model integrating the simulated flow (or its wavelet components)
and precipitation to improve the prediction accuracy. Table 5 listed the model structure
and optimal parameter sets for SWAT-SVR and SWAT-WSVR. In 24 SVR models, the value
of C is inconstant from 2.015625 to 255.015625, the value range of γ is from 1 to 14, and ε
keeps a constant value of 0.00390625.
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Table 4. Performance of flow calibration, validation, and combined data series on each site by
SWAT-CUP, SWAT-SVR, and SWAT-WSVR.

Station

SWAT-CUP SWAT-SVR SWAT-WSVR

RSR NSE PBIAS RMSE
(m3 s−1) RSR NSE PBIAS RMSE

(m3 s−1) RSR NSE PBIAS RMSE
(m3 s−1)

C
al

ib
ra

ti
on

07195800 0.76 0.41 24.00 0.33 0.58 0.68 −10.80 0.25 0.08 0.99 −1.90 0.04
07195855 0.95 0.09 66.50 1.32 0.63 0.60 −10.00 0.88 0.01 1.00 0.10 0.01
07196000 0.96 0.07 67.90 3.18 0.57 0.68 0.50 1.88 0.01 1.00 0.10 0.02
07195500 0.74 0.46 44.60 13.68 0.55 0.70 −5.50 10.23 0.01 1.00 0.10 0.23
07195430 0.67 0.54 29.30 11.40 0.55 0.70 −5.30 9.30 0.01 1.00 0.20 0.22
07196090 0.52 0.72 31.40 19.81 0.14 0.98 −3.30 5.18 0.02 1.00 −0.60 0.70
07196973 10.70 −0.15 69.90 0.78 0.73 0.46 −6.50 0.53 0.02 1.00 0.20 0.01
07196500 0.78 0.39 52.30 22.62 0.58 0.67 −10.20 16.71 0.02 1.00 0.10 0.48
07197000 0.87 0.24 69.50 10.04 0.57 0.67 −11.80 6.64 0.01 1.00 0.10 0.09
07196900 0.93 0.14 86.00 1.69 0.57 0.68 −13.60 1.04 0.01 1.00 0.00 0.02
07197360 0.97 0.06 74.90 2.89 0.70 0.51 −21.30 2.07 0.00 1.00 0.00 0.01
07198000 1.17 −0.39 74.50 50.21 0.78 0.39 −15.90 33.42 0.03 1.00 −0.20 1.41
Mean 1.67 0.22 57.57 11.50 0.58 0.64 −9.48 7.34 0.02 1.00 −0.15 0.27

V
al

id
at

io
n

07195800 0.85 0.26 8.70 0.35 0.89 0.20 −20.40 0.36 0.11 0.99 −2.90 0.04
07195855 0.89 0.19 22.80 1.35 0.81 0.33 −27.00 1.23 0.09 0.99 −1.10 0.14
07196000 0.98 0.03 29.60 3.03 0.86 0.24 −16.00 2.68 0.14 0.98 −1.00 0.43
07195500 0.59 0.65 15.40 13.59 0.58 0.65 −20.50 13.48 0.24 0.94 −4.60 5.49
07195430 0.58 0.66 −6.70 13.88 0.58 0.68 −23.80 13.74 0.24 0.94 −4.80 5.77
07196090 0.71 0.45 38.30 14.32 1.15 −0.43 −41.70 23.16 0.12 0.98 0.70 2.47
07196973 1.03 −0.10 62.30 0.83 0.87 0.22 −15.70 0.69 0.06 1.00 0.70 0.05
07196500 0.66 0.56 19.70 21.55 0.63 0.60 −25.50 20.62 0.13 0.98 −2.20 4.28
07197000 0.88 0.22 64.80 9.84 0.72 0.47 −6.30 8.07 0.10 0.99 −0.40 1.17
07196900 1.07 −0.17 87.90 1.72 0.96 0.06 3.60 1.54 0.05 0.99 0.60 0.08
07197360 0.88 0.21 55.80 2.34 0.66 0.58 −25.10 1.76 0.07 0.99 −1.40 0.18
07198000 0.90 0.18 33.20 49.62 0.84 0.29 −29.80 48.22 0.27 0.93 −6.10 14.81
Mean 0.84 0.26 35.98 11.04 0.80 0.32 −20.68 11.30 0.14 0.98 −1.88 2.91

Th
e

w
ho

le
se

ri
es

da
ta

†

07195800 0.79 0.37 19.50 0.33 0.68 0.53 −13.60 0.29 0.09 0.99 −2.20 0.04
07195855 0.93 0.13 52.30 1.33 0.70 0.51 −15.50 1.00 0.06 1.00 −0.30 0.08
07196000 0.97 0.06 55.90 3.13 0.66 0.56 −4.60 2.15 0.07 0.99 −0.30 0.24
07195500 0.68 0.53 35.00 13.65 0.56 0.68 −10.40 11.30 0.15 0.98 −1.50 3.00
07195430 0.63 0.60 16.80 12.19 0.56 0.68 −11.70 10.81 0.16 0.97 −1.60 3.15
07196090 0.55 0.69 33.50 18.41 0.39 0.84 −14.70 13.13 0.04 1.00 −0.30 1.45
07196973 1.06 −0.14 67.80 0.79 0.78 0.38 −9.10 0.58 0.04 1.00 0.30 0.03
07196500 0.74 0.45 41.80 22.31 0.60 0.64 −15.10 17.97 0.08 0.99 −0.60 2.36
07197000 0.87 0.24 68.20 9.98 0.62 0.61 −10.30 7.90 0.06 1.00 −0.10 0.64
07196900 0.97 0.06 86.50 1.70 0.69 0.53 −8.70 1.21 0.03 1.00 0.20 0.05
07197360 0.95 0.10 69.50 2.73 0.69 0.52 −22.40 1.98 0.03 1.00 −0.40 0.10
07198000 1.07 −1.50 61.20 50.03 0.81 0.35 −20.30 37.70 0.17 0.97 −2.10 8.17
Mean 0.85 0.13 50.67 11.38 0.65 0.57 −13.03 8.84 0.08 0.99 −0.74 1.61

† Note: The data series combined calibration and validation time series.

Table 5. Model inputs and optimum parameters of SWAT-SVR and SWAT-WSVR.

Station
SWAT-SVR SWAT-WSVR

Model Input † C γ Model Input Decomposition Levels C γ

07195800 Flow + Prec 36.015625 3 Prec + D1 + D2 + D3 + A3 3 5.015625 1
07195855 Flow + Prec 22.015625 1 Prec + D1 + D2 + D3 + A3 3 2.015625 3
07196000 Flow + Prec 255.015625 1 Prec + D1 + D2 + D3 + A3 3 255.015625 1
07195500 Flow + Prec 103.015625 1 Prec + D1 + D2 + D3 + A3 3 96.015625 1
07195430 Flow + Prec 255.015625 1 Prec + D1 + D2 + D3 + A3 3 87.015625 1
07196090 Flow + Prec 255.015625 5 Prec + D1 + D2 + A2 2 255.015625 1
07196973 Flow + Prec 2.015625 1 Prec + D1 + D2 + A2 2 5.015625 1
07196500 Flow + Prec 130.015625 1 Prec + D1 + D2 + D3 + A3 3 125.015625 1
07197000 Flow + Prec 57.015625 1 Prec + D1 + D2 + D3 + A3 3 242.015625 1
07196900 Flow + Prec 4.015625 14 Prec + D1 + D2 + D3 + A3 3 15.015625 1
07197360 Flow + Prec 13.015625 1 Prec + D1 + D2 + D3 + A3 3 35.015625 1

† Note: Flow comes from SWAT-CUP simulated discharge output. Ds and As are wavelet components from the
simulated flow of SWAT-CUP.
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The average RSR, NSE, PBIAS, and RMSE of twelve sites from SWAT-SVR are 0.58,
0.64, −9.48, and 7.34 m3 s−1 in calibration and 0.80, 0.32, −20.68, and 11.30 m3 s−1 in
validation (Table 4), respectively. Compared with SWAT-CUP, the performance of the
SWAT-SVR model had the lower RSR and the absolute value of PBIAS and the higher
NSE in calibration and validation, particularly for the calibrated simulations, as SVR has a
strong learning ability for training data. The average RMSE in SWAT-SVR calibration is
lower: only 7.34 m3 s−1 compared with the average one of 11.50 m3 s−1 in the SWAT-CUP
calibration. The results showed that the SWAT-SVR calibration on all sites had lower
deviation and higher NSE value in comparison with SWAT-CUP, but still underestimated
monthly flows on most sites. SWAT-SVR was generally superior to SWAT-CUP on all sites.
However, only a few sites (e.g., 07195500, 07195430) had lower RSR, PBIAS, and higher NSE
values, which indicated that SWAT-SVR could greatly improve the model performance
in calibration but did not possess good generalization capability, which means it failed to
keep this prediction ability with high accuracy while it was applied in validation. From the
perspective of the whole data series, the average RSR, NSE, PBIAS, and RMSE are 0.65, 0.57,
−13.03, and 8.84 m3 s−1, respectively. Clearly, compared with SWAT-CUP, the performance
of the SWAT-SVR model were improved but limited, although SWAM-SVR generally had a
low RSR, absolute value of PBIAS, and higher NSE value for calibration, validation, and
both periods.

3.3. SWAT-WSVR Development and Evaluation
3.3.1. Development of SWAT-WSVR

We conducted DWT of the simulated flow from SWAT-CUP at twelve hydrological
sites using a ‘haar’ wavelet filter to obtain the flow series structure, trend, and temporal
characteristics. The wavelet decomposition was implemented at three resolution levels:
2 months, 4 months, and 8 months. Figure 4 showed an example of the flow DWT at the
07195430 site, including temporal features of the flow 2-month mode (D1), 4-month mode
(D2), 8-month mode (D3), and approximate mode (A3). From Figure 4a, we can observe a
large deviation between the original observed (blue line) and SWAT-CUP simulated (orange
dash-line) flow signals. In Figure 4b, D1, D2, and D3 modes indicated high-frequency
details, and A3 mode revealed a low-frequency trend and the slowest flow changing of the
simulated flow series at the 07195430 site. These wavelet components would be used to
build the SWAT-WSVR model afterward.

To reduce the computational load and find the most related wavelet coefficients
to participate in the construction of SWAT-WSVR, we analyzed Pearson’s correlation
coefficient matrices between the observed monthly flow, monthly precipitation, and its
sub-time series D1, D2, D3, and A3 from wavelet decompositions (Figure 5). In Figure 5,
the upper ‘Pie’ graphs are a corresponding display of the lower ‘numeric’ r in the diagonal
direction where the flow, precipitation, and wavelet components are shown. Flow time
series of 07196090 and 07196973 were decomposed into two resolution levels since their
data lengths are shorter: 42 and 96, respectively.

The correlation analysis indicated that the flow and precipitation have a strong positive
correlation, and the average value of r is 0.53 on twelve sites. Most wavelet components
D1, D2, D3, and A3 on the flow also showed positive correlations. The average of r of D1,
D2, D3, and A3 (or A2) on flow is 0.35, 0.47, 0.3, and 0.32. The wavelet coefficient of D2 had
the strongest correlation with the flow. We chose wavelet components with r greater than
0.2 to participate in SVR prediction so that we can keep the intrinsic nonlinear features in
wavelet components as much as possible while avoiding large computational burden. The
specific model structure of SWAT-WSVR for each site is listed in Table 5.
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3.3.2. Statistical Evaluation of SWAT-WSVR

Table 4 showed the statistical performance of SWAT-WSVR with the average RSR,
NSE, PBIAS, and RMSE of 0.02, 1.00, −0.15, and 0.27 m3 s−1 in calibration; 0.14, 0.98, −1.88,
and 2.91 m3 s−1 in validation; and 0.08, 0.99, −0.74, and 1.61 m3 s−1 in the whole data
series. Compared with SWAT-SVR and SWAT-CUP, SWAT-WSVR had the lowest RSR,
the absolute value of PBIAS, and RMSE but the highest NSE value in validation. This
result clearly indicated that SWAT-WSVR could effectively decrease the discrepancy of the
simulation and obtain the best prediction accuracy for validation in comparison with SWAT-
SVR and SWAT-CUP. Based on the value of PBIAS, SWAT-WSVR slightly underestimated
the monthly flow in calibration. SWAT-WSVR also presented the best performance on
the whole data series, along with the lowest RSR, PBIAS, and RMSE but the highest
NSE in comparison with SWAT-CUP and SWAT-SVR. By comparison, the SWAT-WSVR
model outperformed the SWAT-CUP and SWAT-SVR model in calibration, validation, and
both periods.
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3.4. Taylor Diagram and Hydrographic Comparison between Different Models

To further compare the overall performance of three models, we combined the flow
observations and the calibrated and validated simulations from SWAT-CUP, SWAT-SVR,
and SWAT-WSVR; recalculated statistical indicators including r, RMSE, and NSD; and
re-estimated the model performance on the whole time series (i.e., calibration and val-
idation periods are considered together). The Taylor diagrams (Figure 6) depicted the
overall performance of different models for each site by identifying the pattern correla-
tions, variability, and RMSE between observations and simulations. In Figure 6, both the
x-axis and y-axis denote NSD; black dashed lines represent the r between observations
and simulations; the normalized RMSE of the simulation is proportional to the distance
from the x-axis identified as “observation” (green contours); the NSD of the simulation is
proportional to the radial distance from the origin point (black contours). The modeling
results in Figure 6 demonstrated that the developed SWAT-WSVR had the best performance
in comparison with the other two models since it had the lower RMSE and NSD, but the
higher r with observed flows in most cases. For example, SWAT-WSVR (redpoint in Taylor
diagram) at all sites is closer to the reference point (observation) located on the x-axis than
the other two models, which illustrated the SWAT-WSVR fitted best with the observed
flow for most sites. The rank of the overall performance of three models from high to low
follows SWAT-WSVR > SWAT-SVR > SWAT-CUP. The proposed SWAT-WSVR model that
uses wavelet components as inputs of SVR presented a more satisfactory flow prediction
than the SWAT-SVR with a single pattern input (i.e., the simulated flow from SWAT-CUP).
Possible reasons include a periodical feature of sub-series represented by wavelet compo-
nents is more obvious than those directly obtained from SWAT-CUP [53], and SVR captured
the intrinsic nonlinear features between SWAT-CUP simulations and observed flows and
built a mapping relationship at a higher dimension space successfully. This kind of fitting
relationship is typically determined by using the trial-and-error method and a large number
of iterations of many parameters sets in physically based hydrological models.

To investigate the entire and continuous performance of monthly flow prediction in
the IRW, we plotted flow hydrography on the whole data series for each site (Figure 7).
Here, we only labeled statistics of SWAT-WSVR for clarity, and other details related to
estimate indicators can be found in Table 4. This figure reflected where the developed
SWAT-WSVR model performed better than SWAT-CUP and SWAT-SVR methods. An oval
region at the 07196090 site showed clear evidence that SWAT-WSVR agreed well with the
observed flow, but SWAT-SVR missed the peak flow during this time window. Although
SWAT-WSVR had desirable modeling performance, it missed few peak flows. For example,
the SWAT-WSVR simulated flow (105.24 and 107.68 m3 s−1) was 27.2% and 27.9% lower
than observed flow (144.61 and 149.42 m3 s−1) in April 2011 at 07195430 and 07195500 site,
respectively. Overall, the other two models more or less capture the rising and recession
of the observed monthly flow over time at all sites, but the SWAT-WSVR is more efficient
at fitting with the observation and corrected errors compared to SWAT-CUP. This result is
in line with others’ conclusions that the application of wavelet transform in data-driven
models can improve the accuracy of flow prediction [53,54]. The developed SWAT-WSVR
model fit the observations well at all sites of the IRW based on the statistical results, Taylor
diagram, and hydrography analysis.

In this study, we applied wavelet transforms on the simulated flow time series from
SWAT-CUP rather than on the observed flow data to show that the developed SWAT-
WSVR model can be applied in practice or future scenario prediction where observed
data are impossible to access or has limited availability. An SVR coupled to a wavelet
transform model approach based solely on observed monthly flow data could produce
greater accuracy. This is because wavelet decompositions with less noise can represent
the periodical and trend characteristics of flow series structure better than the original
data series [25,53], and SVR has a strong learning capability to capture the corresponding
relationship between wavelet decompositions and its original data series. However, the
limitations of a purely mathematical or machine learning approach prior to constraint by a
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physically-based model could fail to capture the relationship between rainfall and runoff
and exhibit less predictive or unrealistic behavior [28].
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Moreover, the current proposed SWAT-WSVR model can be regarded as a compromise
method when we cannot attain a desirable prediction accuracy even after conducting exten-
sive SWAT-CUP iterative computation, although we still encourage researchers to directly
obtain a satisfactory prediction from SWAT-CUP if possible. In this work, the construction
of SWAT-WSVR heavily depends on the procedure of SWAT-CUP parameter calibration.
Alternatively, we can also build SWAT-WSVR based on wavelet decomposition of the
initial output from SWAT without the procedure of calibration based on the methodology
proposed if SWAT-CUP is not accessible.

4. Summary and Conclusions

This study developed the SWAT-WSVR monthly flow prediction model which was
built on the basis of the SWAT and SVR with discrete wavelet transforms and investigated
the performance and effectiveness of this model. Precipitation and wavelet components of
flow outputted from SWAT-CUP were served as input variables into SWAT-WSVR. The
methodology loosely integrated the physically based model and the data-driven model.
The proposed SWAT-WSVR model had the best statistical performance with the lower RSR,
the absolute value of PBIAS, RMSE, and higher NSE in comparison with regular SWAT-SVR
and SWAT-CUP, which indicated that SWAT-WSVR possessed the lower discrepancy and
higher goodness-of-fit between the simulated and observed flow. The rank of the overall
performance of the three models on the entire study period was SWAT-WSVR > SWAT-SVR
> SWAT-CUP. The SWAT-WSVR model can predict monthly flow more accurately than the
other two models for all sites in the IRW.

The strength of the SWAT-WSVR is its ability to capture the intrinsic nonlinear and
non-stationary features between rainfall and runoff while considering physical processes by
integrating SWAT. It could be regarded as a compromise method when one cannot directly
obtain a desirable accuracy from SWAT-CUP simulation or when one applies SWAT into
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a region with limited data available. In future work, more predictors (e.g., temperature,
evaporation, relative humidity) will be considered as the model input variables to raise the
forecasting accuracy of SWAT-WSVR further and increase its generalization ability.
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