Enhancing the TiO2-Ag Photocatalytic Efficiency by Acetone in the Dye Removal from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the Photocatalysts
3.2. MB Photocatalytic Degradation
3.3. Kinetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, S.; Chen, Y.; Khan, M.A.; Xu, H.; Wang, F.; Xia, M. In-depth study of heavy metal removal by an etidronic acid-functionalized layered double hydroxide. ACS Appl. Mater. Interfaces 2022, 14, 7450–7463. [Google Scholar] [CrossRef] [PubMed]
- Chithra, A.; Sekar, R.; Kumar, P.S.; Padmalaya, G. A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics. Chemosphere 2022, 295, 133915. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Xia, M.; Chu, Y.; Khan, M.A.; Lei, W.; Wang, F.; Muhmood, T.; Wang, A. Adsorption and desorption of Pb (II) on l-lysine modified montmorillonite and the simulation of interlayer structure. Appl. Clay Sci. 2019, 169, 40–47. [Google Scholar] [CrossRef]
- Harja, M.; Buema, G.; Bucur, D. Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 2022, 12, 6087. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Shukla, S.; Jangid, N.K.; Srivastava, M.; Vishwakarma, R. World of the Dye. In Research Anthology on Emerging Techniques in Environmental Remediation; Hershey: Derry Township, PA, USA, 2022; pp. 493–507. [Google Scholar]
- Hagan, E.; Poulin, J. Statistics of the early synthetic dye industry. Herit. Sci. 2021, 9, 33. [Google Scholar] [CrossRef]
- Maheshwari, K.; Agrawal, M.; Gupta, A.B. Dye Pollution in Water and Wastewater. In Novel Materials for Dye-containing Wastewater Treatment; Springer: Singapore, 2021; pp. 1–25. [Google Scholar]
- Evgenidou, E.; Chatzisalata, Z.; Tsevis, A.; Bourikas, K.; Torounidou, P.; Sergelidis, D.; Lambropoulou, D.A. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection. J. Environ. Chem. Eng. 2021, 9, 105295. [Google Scholar] [CrossRef]
- Sescu, A.M.; Harja, M.; Favier, L.; Berthou, L.O.; Gomez de Castro, C.; Pui, A.; Lutic, D. Zn/La mixed oxides prepared by coprecipitation: Synthesis, characterization and photocatalytic studies. Materials 2020, 13, 4916. [Google Scholar] [CrossRef]
- Voulvoulis, N. Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Envir. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Xu, X.; Wu, C.; Guo, A.; Qin, B.; Sun, Y.; Zhao, C.; Cai, A. Visible-light photocatalysis of organic contaminants and disinfection using biomimetic-synthesized TiO2-Ag-AgCl composite. Appl. Surf. Sci. 2022, 588, 152886. [Google Scholar] [CrossRef]
- Nippes, R.P.; Macruz, P.D.; Scaliante, M.H.N.O. Enhanced photocatalytic performance under visible light of TiO2 through incorporation with transition metals for degradation of 17α-ethynylestradiol. Int. J. Environ. Sci. Technol. 2022, 1–10. [Google Scholar] [CrossRef]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; Bouhfid, R. Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors. Environ. Sci. Poll. Res. 2021, 28, 44638–44666. [Google Scholar] [CrossRef] [PubMed]
- Zeghioud, H.; Assadi, A.A.; Khellaf, N.; Djelal, H.; Amrane, A.; Rtimi, S. Photocatalytic performance of CuxO/TiO2 deposited by HiPIMS on polyester under visible light LEDs: Oxidants, ions effect, and reactive oxygen species investigation. Materials 2019, 12, 412. [Google Scholar] [CrossRef] [PubMed]
- Favier, L.; Harja, M.; Simion, A.I.; Rusu, L.; Kadmi, Y.; Pacal, M.L.; Bouzaza, A. Advanced oxidation process for the removal of chlorinated phenols in aqueous suspensions. J. Environ. Protect. Ecol. 2016, 17, 1132–1141. [Google Scholar]
- Liu, X.; Liu, H.L.; Cui, K.P.; Dai, Z.L.; Wang, B.; Chen, X. Heterogeneous Photo-Fenton Removal of Methyl Orange Using the Sludge Generated in Dyeing Wastewater as Catalysts. Water 2022, 14, 629. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N.; Polat, I.; Yasar, A.; Yüksel, Ö.F. Silver doped zinc stannate (Ag-ZnSnO3) for the photocatalytic degradation of caffeine under UV irradiation. Water 2021, 13, 1290. [Google Scholar] [CrossRef]
- Aoudjit, L.; Salazar, H.; Zioui, D.; Sebti, A.; Martins, P.M.; Lanceros-Mendez, S. Reusable Ag@TiO2-Based Photocatalytic Nanocomposite Membranes for Solar Degradation of Contaminants of Emerging Concern. Polymers 2021, 13, 3718. [Google Scholar] [CrossRef]
- Erdogan, N.; Ozturk, A.; Park, J. Hydrothermal synthesis of 3D TiO2 nanostructures using nitric acid: Characterization and evolution mechanism. Ceram. Int. 2016, 42, 5985–5994. [Google Scholar] [CrossRef]
- Verma, R.; Gangwar, J.; Srivastava, A.K. Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv. 2017, 7, 44199–44224. [Google Scholar] [CrossRef]
- Sangpour, P.; Hashemi, F.; Moshfegh, A.Z. Photoenhanced degradation of methylene blue on co-sputtered M: TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study. J. Phys. Chem. C 2010, 114, 13955–13961. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Sharma, M.; Basu, S. Impact of Ag nanoparticles on photomineralization of chlorobenzene by TiO2/bentonite nanocomposite. J. Environ. Chem. Eng. 2017, 5, 644–651. [Google Scholar] [CrossRef]
- Albiter, E.; Valenzuela, M.A.; Alfaro, S.; Valverde-Aguilar, G.; Martínez-Pallares, F.M. Photocatalytic deposition of Ag nanoparticles on TiO2: Metal precursor effect on the structural and photoactivity properties. J. Saudi Chem. Soc. 2015, 19, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Ma, S.; Yang, G.; Wang, G.; Zhang, L.; Xia, D.; Huang, H.; Cheng, Z.; Xu, J.; Sun, C.; et al. Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A. J. Hazard. Mater. 2021, 410, 124539. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Dong, Q.; Sun, C.; Xia, D.; Huang, H.; Yang, G.; Wang, G.; Leung, D.Y. A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride. Chem. Eng. J. 2021, 409, 128185. [Google Scholar] [CrossRef]
- Mu, F.; Miao, X.; Cao, J.; Zhao, W.; Yang, G.; Zeng, H.; Li, S.; Sun, C. Integration of plasmonic effect and S-scheme heterojunction into gold decorated carbon nitride/cuprous oxide catalyst for photocatalysis. J. Clean. Prod. 2022, 360, 131948. [Google Scholar] [CrossRef]
- Akhavan, O. Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 2009, 336, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Nuțescu Duduman, C.; Gómez de Salazar y Caso de Los Cobos, J.M.; Harja, M.; Barrena Pérez, M.I.; Gómez de Castro, C.; Lutic, D.; Kotova, O.; Cretescu, I. Preparation and characterisation of nanocomposite material based on TiO2-Ag for environmental applications. Environ. Eng. Manag. J. 2018, 17, 925–936. [Google Scholar]
- Halladja, S.; Amine-Khodja, A.; Halle, A.T.; Boulkamh, A.; Richard, C. Photolysis of fluometuron in the presence of natural water constituents. Chemosphere 2007, 69, 1647–1654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, G.G.; Liu, H.J.; Wang, Y.L.; Li, T. The effect of photosensitizer on diclofenac photodegradation under simulated sunlight. Water Sci. Technol. 2012, 67, 418–423. [Google Scholar] [CrossRef] [PubMed]
- de Castro, C.; Duduman, C.; Harja, M.; Lutic, D.; Juzsakova, T.; Cretescu, I. New TiO2-Ag nanoparticles used for organic compounds degradation. Environ. Eng. Manag. J. 2019, 18, 1755–1763. [Google Scholar]
- Zhang, H.; Yu, M.; Qin, X. Photocatalytic Activity of TiO2 Nanofibers: The Surface Crystalline Phase Matters. Nanomaterials 2019, 9, 535. [Google Scholar] [CrossRef]
- Yang, J.; Du, J.; Li, X.; Liu, Y.; Jiang, C.; Qi, W.; Peng, H. Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange. Nanomaterials 2019, 9, 526. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Dikici, T.; Yurddaskal, M.; Gultekin, S.; Toparli, M.; Celik, E. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl. Surf. Sci. 2016, 390, 591–601. [Google Scholar] [CrossRef]
- Ahmed, F.; Kanoun, M.B.; Awada, C.; Jonin, C.; Brevet, P.F. An Experimental and Theoretical Study on the Effect of Silver Nanoparticles Concentration on the Structural, Morphological, Optical, and Electronic Properties of TiO2 Nanocrystals. Crystals 2021, 11, 1488. [Google Scholar] [CrossRef]
- Kim, S.P.; Choi, M.Y.; Choi, H.C. Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull. 2016, 74, 85–89. [Google Scholar] [CrossRef]
- Atchudan, R.; Edison, T.N.J.I.; Perumal, S.; Karthikeyan, D.; Lee, Y.R. Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J. Photochem. Photobiol. B. 2016, 62, 500–510. [Google Scholar] [CrossRef]
- Khalid, N.R.; Hammad, A.; Tahir, M.B.; Rafique, M.; Iqbal, T.; Nabi, G.; Hussain, M.K. Enhanced photocatalytic activity of Al and Fe co-doped ZnO nanorods for methylene blue degradation. Ceram. Int. 2019, 45, 21430–21435. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Kale, D.P.; Kar, S.; Shirsath, S.R.; Bhanvase, B.A.; Saharan, V.K.; Sonawane, S.H. Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Struct. Nano-Objects 2020, 2, 100407. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Fu, C.C.; Juang, R.S. Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways. J. Clean. Prod. 2018, 202, 413–427. [Google Scholar] [CrossRef]
- Banat, F.; Al-Asheh, S.; Al-Rawashteh, M.; Nusair, M. Photodegradation of methylene blue dye bye the UV/H2O2 and UV/acetone oxidation processes. Desalination 2005, 18, 225–232. [Google Scholar] [CrossRef]
- Dugandžić, A.M.; Tomašević, A.V.; Radišić, M.M.; Šekuljica, N.Ž.; Mijin, D.Ž.; Petrović, S.D. Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron. J. Photochem. Photobiol. A 2017, 336, 146–155. [Google Scholar] [CrossRef]
- Zeghioud, H.; Kamagate, M.; Coulibaly, L.S.; Rtimi, S.; Assadi, A.A. Photocatalytic degradation of binary and ternary mixtures of antibiotics: Reactive species investigation in pilot scale. Chem. Eng. Res. Des. 2019, 144, 300–309. [Google Scholar] [CrossRef]
- Wu, C.H.; Chern, J.M. Kinetics of photocatalytic decomposition of methylene blue. Ind. Eng. Chem. Res. 2006, 45, 6450–6457. [Google Scholar] [CrossRef]
- Sescu, A.M.; Favier, L.; Lutic, D.; Soto-Donoso, N.; Ciobanu, G.; Harja, M. TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water 2020, 13, 19. [Google Scholar] [CrossRef]
- Gong, C.; Du, J.; Li, X.; Yu, Z.; Ma, J.; Qi, W.; Peng, H. One-step acidic hydrothermal preparation of dendritic rutile TiO2 nanorods for photocatalytic performance. Nanomaterials 2018, 8, 683. [Google Scholar] [CrossRef]
- Lutic, D.; Sescu, A.M.; Siamer, S.; Harja, M.; Favier, L. Excellent ambient oxidation and mineralization of an emerging water pollutant using Pd-doped TiO2 photocatalyst and UV-A irradiation. Comptes Rendus Chim. 2022, 25, 1–13. [Google Scholar] [CrossRef]
- Rath, P.P.; Priyadarshini, B.; Behera, S.S.; Parhi, P.K.; Panda, S.R.; Sahoo, T.R. Adsorptive removal of Congo Red dye from aqueous solution using TiO2 nanoparticles: Kinetics, thermodynamics and isothermal insights. AIP Conf. Proc. 2019, 2115, 030115. [Google Scholar]
- Malayeri, M.; Lee, C.S.; Niu, J.; Zhu, J.; Haghighat, F. Kinetic and reaction mechanism of generated by-products in a photocatalytic oxidation reactor: Model development and validation. J. Hazard. Mater. 2021, 419, 126411. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Chang, T.F.M.; Chen, C.Y.; Sone, M.; Hsu, Y.J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
Sample | TTIP (mL) | Ethanol, (mL) | HNO3 (mL) | NH3 (mL) | AgNO3, (g) | Hydrazine, (g) | Calcination |
---|---|---|---|---|---|---|---|
S1 | 5.8 | 10 | 0.50 | 100 | - | 1.33 | - |
S2 | 5.8 | 10 | 0.50 | 100 | 0.418 | 1.33 | |
S3 | 5.8 | 10 | 0.50 | 100 | 0.418 | 1.33 | 650 °C/2 h |
Material | Preparation Procedure | Reaction Conditions | Elimination Efficiency | Ref |
---|---|---|---|---|
Au:TiO2 and Cu:TiO2 thin film | Sol-gel | UV and visible light | 80 and 90% | [21] |
Nanosized SnO2 photocatalysts | Precipitation method chloride dihydrate and isopropyl alcohol | UV Hg lamps 10 ppm MB, 4 mg catalyst | 79% after 180 min | [36] |
Zinc oxide nanoparticles-decorated graphene oxide (ZnO@GO) | Solvothermal method with zinc oxide nanoparticles and graphene oxide | Neutral solution under UV light irradiation | 98.5% after 15 min | [37] |
Al, Fe co-doped ZnO (Al–Fe/ZnO) nanorods | Hydrothermal method from zinc, iron and aluminum nitrate | 10 mg L−1, continuous magnetic stirring and visible-light Xenon lamp 300 W | 90% MB dye in 75 min | [38] |
rGO/TiO2 nanocomposite | Ultrasound-assisted | pH value of 13.2 and photocatalyst dosage of 2 g L−1 | 91.3% within 30 min | [39] |
TiO2 and Pd/TiO2 | Sol-gel method (Ti isopropoxide and Pd nitrate) | Methylene blue, methyl orange, 100 W UV lamp | 83.4 and 75.3% after 180 min | [40] |
TiO2-Ag | Sol-gel method with TTIP and silver nitrate, calcined at 650 °C/2 h | UV-B lamp with Hg (18 W), 0.2% acetone | 97.25% over 20 min | This study |
Type of Catalyst | without Acetone | 0.1% Acetone | 0.2% Acetone 1st Order | 0.2% Acetone, 2nd Order | |||
---|---|---|---|---|---|---|---|
k°obs (min−1) | R2 | kobs (min−1) | R2 | kobs (min−1) | R2 | R2 | |
S1 | 9 × 10−4 | 0.9974 | 0.0218 | 0.9973 | 0.0936 | 0.9118 | 0.9967 |
S2 | 0.001 | 0.9939 | 0.0401 | 0.985 | 0.1104 | 0.9147 | 0.9974 |
S3 | 0.0012 | 0.9926 | 0.0489 | 0.9821 | 0.1043 | 0.9034 | 0.9992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nutescu Duduman, C.; Gómez de Castro, C.; Apostolescu, G.A.; Ciobanu, G.; Lutic, D.; Favier, L.; Harja, M. Enhancing the TiO2-Ag Photocatalytic Efficiency by Acetone in the Dye Removal from Wastewater. Water 2022, 14, 2711. https://doi.org/10.3390/w14172711
Nutescu Duduman C, Gómez de Castro C, Apostolescu GA, Ciobanu G, Lutic D, Favier L, Harja M. Enhancing the TiO2-Ag Photocatalytic Efficiency by Acetone in the Dye Removal from Wastewater. Water. 2022; 14(17):2711. https://doi.org/10.3390/w14172711
Chicago/Turabian StyleNutescu Duduman, Catalina, Consuelo Gómez de Castro, Gabriela Antoaneta Apostolescu, Gabriela Ciobanu, Doina Lutic, Lidia Favier, and Maria Harja. 2022. "Enhancing the TiO2-Ag Photocatalytic Efficiency by Acetone in the Dye Removal from Wastewater" Water 14, no. 17: 2711. https://doi.org/10.3390/w14172711
APA StyleNutescu Duduman, C., Gómez de Castro, C., Apostolescu, G. A., Ciobanu, G., Lutic, D., Favier, L., & Harja, M. (2022). Enhancing the TiO2-Ag Photocatalytic Efficiency by Acetone in the Dye Removal from Wastewater. Water, 14(17), 2711. https://doi.org/10.3390/w14172711