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Abstract: In drinking water plants, accurate control of flocculation dosing not only improves the
level of operation automation, thus reducing the chemical cost, but also strengthens the monitoring
of pollutants in the whole water system. In this study, we used feedforward signal and feedback
signal data to establish a back-propagation (BP) model for the prediction of flocculant dosing. We
examined the effect of the particle swarm optimization (PSO) algorithm and data type on the
simulation performance of the model. The results showed that the parameters, such as the learning
factor, population size, and number of generations, significantly affected the simulation. The best
optimization conditions were attained at a learning factor of 1.4, population size of 20, 20 generations,
8 feedforward signals and 1 feedback signal as input data, 6 hidden layer nodes, and 1 output node.
The coefficient of determination (R2) between the predicted and measured values was 0.68, and
the root mean square error (RMSE) was lower than 20%, showing a good prediction result. Weak
time-delay data enhanced the model accuracy, which increased the R2 to 0.73. Overall, with the
hybridized data, PSO, and weak time-delay data, the new architecture neural network was able to
predict flocculant dosing.

Keywords: drinking water; flocculation; neural network; BP; PSO

1. Introduction

The demand for clean drinking water is increasing in tandem with cities’ and popula-
tions’ rapid growth. However, the quality of the raw water that produces it is gradually
deteriorating, necessitating complex water quality control [1], which poses great challenges
to drinking water treatment. Coagulation is the primary operation unit in drinking water
treatment, which is dependent on the action of the coagulant. Traditional coagulation
dosing methods have placed significant strain on drinking water treatment plants in China
and many other developing countries [2,3]. In 2017, the World Health Organization (WHO)
proposed that excessive chemical use will cause a bad taste and sediment accumulation in
distribution systems [4]. Depending on the characteristics of the raw water, hourly dosing
control has become a critical development need. Manual coagulation dosing has limited
treatment capability, and this dosing method is neither economical nor environmentally
friendly [5]. As a result, a cost-effective method must be found. In addition, drinking water
plants have received wide attention regarding water pollution, in order to enhance the
understanding of water quality and water management. However, external disturbances
to the coagulation system include strong nonlinearity and time delay; furthermore, water
plant workers lack a thorough understanding of controlling interference factors. It seems
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difficult to use a traditional numerical model to address these issues [6,7]. Therefore, there
is a growing demand for the application of neural network models.

The neural network model is a bionic model that mimics the information processing
mechanism of the human brain [8–13], which is created through the processes of training,
validation, and testing on a dataset. The model has self-learning, self-adaption, and fault
tolerance abilities, and it can completely approach any complex nonlinear relationship,
which is not easy for traditional methods. Therefore, it has been widely utilized in the
field of water quality and water resources monitoring [14–18]. Although machine learning
models have been used in water plants, most water plants still use operator experience to
determine flocculation dosing [19,20]. Establishing an effective dosing model will support
the development of automatic dosing systems toward full automation and greatly reduce
the intensity of manual operation.

In 1960, a neural network model was applied to remediate water pollution occurring
in a U.K. sewage plant in Norway and the Shafdan sewage plant in Israel [21–23]. It has
also been widely used in many aspects in other countries and regions, which include the
prediction of water quality in sewage plants [24], discharge water quality [25], runoff [26],
and sedimentation rate [27]. In 2008, 19 of the 27 provincial capital cities in China applied a
neural network model to the prediction of operating parameters in the field of drinking
water treatment. Different types of models have been utilized, such as the back-propagation
(BP) [28], fuzzy [29], general regression (GRNN) [30], radial basis function (RBF) neul [31],
and multilayer perceptron (MLP) [32] neural network models. In general, the simulation
effect using laboratory data is better than that using industry data. For example, a turbidity
prediction using the MLP neural network model attained a coefficient of determination (R2)
of 0.96 [32]; Du et al. [33] applied a neural network model to monitor sewage treatment in
a laboratory, for which the R2 reached 0.99. C. W. Baxter et al. [34] used a full-scale artificial
neural network to improve coagulation in removing natural organic matter (NOM) for the
Rossdale water treatment plant, where the R2 was as high as 0.71. A. Najah et al. [35] used
an MLP-NN to predict the total dissolved solids in the Johor River Basin, and the R2 for
the tributary was only 0.58. In industry, time-delay, nonlinearity, and multiple influencing
factors enable flocculation dosing, and addressing these issues is becoming more complex;
thus, enhancing simulation performance has received wide attention. In addition, most
of the research on neural network models has focused on its architecture adjustment and
algorithm development, whereas creating input data to enhance their performance has
rarely been reported.

In order to strengthen the management of water treatment facilities, an effective
back-propagation model was established in this study to predict flocculation dosing. The
model was improved by particle swarm optimization (PSO), which was carried out using
scientific software, MATLAB 2010b. We examined the effects of those parameters that
affected prediction performance, including the learning factor, population size, number of
generations, and data type.

2. Materials and Methods
2.1. Proposed Architecture of Neural Network

The feedforward and feedback signals are used to control flocculant dosing (see
Figure 1). Among them, we needed to test feedforward signals to create a model, and we
needed to test feedback signals (effluent quality) to estimate whether effluent quality meets
requirement. The flow chart is shown in Figure 1.
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which included three layers: the input, hidden, and output layers. The main difference 
between the BP neural network and the traditional model was that two signals and target 
set values were introduced into the model. Due to some shortcomings, the model was 
optimized by the particle swarm optimization algorithm, which is discussed in Section 
2.2. To predict desired flocculant dosing, we took the feedforward and feedback signals 
as the input layer values and flocculant dosage as the output layer. A simple scheme to 
describe the model’s architecture is shown in Figure 2. Once the feedforward signal is put 
into the model and the feedback signal is set as the target value, the flocculant dosing 
required to reach the target water quality can be calculated. 
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Figure 1. A controlling diagram of flocculant dosing in drinking water plant.

In this study, we used a BP neural network to create the feedforward control model,
which included three layers: the input, hidden, and output layers. The main difference
between the BP neural network and the traditional model was that two signals and target
set values were introduced into the model. Due to some shortcomings, the model was
optimized by the particle swarm optimization algorithm, which is discussed in Section 2.2.
To predict desired flocculant dosing, we took the feedforward and feedback signals as the
input layer values and flocculant dosage as the output layer. A simple scheme to describe
the model’s architecture is shown in Figure 2. Once the feedforward signal is put into the
model and the feedback signal is set as the target value, the flocculant dosing required to
reach the target water quality can be calculated.
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2.2. Structure Optimization

Some issues, such as falling into local minima, occurred due to the sluggish conver-
gence of the BP neural network [36,37]. We had to find an effective strategy to avoid these
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issues, thus improving model performance. Like birds searching for a good route to travel
while foraging, we introduced particle swarm optimization (PSO) algorithm. The PSO algo-
rithm adjusts the particle velocity and spatial position to tackle nonlinear problems [38,39],
which aims to obtain the best initial weight and thresholds for the model.

Figure 3 shows a calculation diagram of the PSO algorithm. PSO assumes that a
population in a D dimensional space is made up of n individual particles. The weights and
thresholds of the neural network were joined together as a particle. The position of the ith
particle is denoted by Xi = (Xi1, Xi2, . . . , Xid), and the particle speed that corresponds to
position i is denoted by Vi = (Vi1, Vi2, . . . , Vin). The optimal position for one particle is repre-
sented by Si = (Si1, Si2, . . . , Sin). For all particles, it is expressed by Sgd = (Sg1, Sg2, . . . , Sgn).
During each iteration process, the particle adjusts its position according to the fitness varia-
tion of the current Xi, in order to obtain updated Si and Sg. The new speed and location are
calculated according to Equation (1) [40].

Vid = WVid + c1r1(Sid − Xid) + c1r1

(
Sgd − Xgd

)
Xid = Xid + Vid

(1)

where d (1, 2, . . . , D) is the dimension; W is the weight, which we fixed at one in this study;
r1 and r2 are random numbers in [0, 1]; and c1 and c2 are learning factors, usually in [0,2],
the values of which were equal in this study.

Water 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

2.2. Structure Optimization 
Some issues, such as falling into local minima, occurred due to the sluggish conver-

gence of the BP neural network [36,37]. We had to find an effective strategy to avoid these 
issues, thus improving model performance. Like birds searching for a good route to travel 
while foraging, we introduced particle swarm optimization (PSO) algorithm. The PSO al-
gorithm adjusts the particle velocity and spatial position to tackle nonlinear problems 
[38,39], which aims to obtain the best initial weight and thresholds for the model. 

Figure 3 shows a calculation diagram of the PSO algorithm. PSO assumes that a pop-
ulation in a D dimensional space is made up of n individual particles. The weights and 
thresholds of the neural network were joined together as a particle. The position of the ith 
particle is denoted by Xi = (Xi1, Xi2,..., Xid), and the particle speed that corresponds to posi-
tion i is denoted by Vi = (Vi1, Vi2,..., Vin). The optimal position for one particle is represented 
by Si = (Si1, Si2,..., Sin). For all particles, it is expressed by Sgd = (Sg1, Sg2,..., Sgn). During each 
iteration process, the particle adjusts its position according to the fitness variation of the 
current Xi, in order to obtain updated Si and Sg. The new speed and location are calculated 
according to Equation (1) [40]. 

)()( 1111 gdgdidididid XSrcXSrcWVV −+−+=
 

ididid VXX +=
 (1)

where d (1, 2,..., D) is the dimension; W is the weight, which we fixed at one in this study; 
r1 and r2 are random numbers in [0, 1]; and c1 and c2 are learning factors, usually in [0,2], 
the values of which were equal in this study. 

Once the criteria condition is satisfied, the iteration is terminated. The criteria condi-
tion is calculated by a fitness function, which is expressed by Equation (2) [40]. 

)(1 po
N
i YYF −= =  

 (2) 

where F is the fitness value; N is the number of samples; Yo is the predicted value; Yp is the 
observed value. 

 
Figure 3. A simple scheme for BP optimization through the PSO algorithm. 

2.3. Sampling 
The feedforward and feedback signal data were collected from one drinking water 

plant in Xiangtan, Hunan province, China. The sampling duration was fixed between 

Figure 3. A simple scheme for BP optimization through the PSO algorithm.

Once the criteria condition is satisfied, the iteration is terminated. The criteria condition
is calculated by a fitness function, which is expressed by Equation (2) [40].

F = ∑N
i=1

(
YO −Yp

)
(2)

where F is the fitness value; N is the number of samples; Yo is the predicted value; Yp is the
observed value.

2.3. Sampling

The feedforward and feedback signal data were collected from one drinking water
plant in Xiangtan, Hunan province, China. The sampling duration was fixed between
April and December of 2021. The monthly collecting period was 10–16 days, 8 h every day,
in 1 h intervals. The raw water parameters, including temperature (◦C), pH, TDS, total
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phosphorus (g/L), UV254 (cm−1), flow rate (L/h), and settling tank water turbidity (NTU),
were collected. The coagulant (polyaluminum chloride) dosage (L/h) was calculated using
the effective flocculation component (Al2O3).

2.4. Data Pretreatment

Both training samples and test samples were randomly selected from the total sample
at a fixed ratio of 8:2. In order to increase the accuracy, convergence, and consistency of the
model and reduce the influence of differences in dimension size among samples, sample
data were normalized between −1 and 1, which we calculated by Equation (1) [40].

y =
(ymax − ymin)(x− xmin)

(xmax − xmin)
+ ymin (3)

where ymin is −1; ymax is 1; x is a specified variable value; xmin is the minimum value of
the specified variable, x; and xmax is the maximum value of the specified variable, x. When
xmax = xmin or both of them are infinite, y = x.

2.5. Accuracy

The criteria indexes for evaluating the model performance were as follows: the coef-
ficient of determination (R2), probability value (p-value) of the results of an independent
sample t-test, root mean square error (RMSE) as well as its percent (RMSE%), percent bias
(PBIAS), model efficiency (EF), and index of agreement (d), which are calculated using the
following equations [41]:

R2 =

N
∑
i

(
Pi −

–
O
)2

N
∑
i

(
Oi −

–
O
)2

(4)

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi −Oi)2 (5)

RMSE(%)= RMSE/
–
O (6)

PBIAS =
N

∑
i=1

(Oi − Pi)
2/

N

∑
i=1

Oi × 100% (7)

EF = 1−
N

∑
i=1

(PiOi)
2/

N

∑
i=1

(
–
O−Oi)

2 (8)

d =

[
N

∑
i=1

(Pi −Oi)
2/

N

∑
i=1

(
∣∣P′i∣∣+ ∣∣Q′i∣∣)2

]
, (0 ≤ d ≤ 1) (9)

where N is the number of measured data; Pi and Oi are the predicted value and the

measured value, respectively; and
–
O is the average observed value.

R2 is used to demonstrate the relationship between measured and simulated values. If
R2 is close to one, the simulation value better agrees with the measurements [42]. The root
mean square error (RMSE) evaluates the model’s prediction error. The RMSE% calculates
the consistency between the measured value and the simulation value. The model is
considered excellent if the RMSE% is less than 10, good if the RMSE% is less than 20,
general if the RMSE% is greater than 30, and poor if the RMSE% is greater than 30 [43]. The
percent bias (PBIAS) is used to determine whether the predicted value is greater or less
than the measured value on average. The best PBIAS value is 0. If the PBIAS is positive,
the model tends to underestimate; otherwise, the model tends to overestimate [16]. The EF
is used to estimate model performance through a comparison between the measured and
simulated values. If EF is positive, it indicates that the simulation value is more reliable
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than the mean of the measured value s. If EF is close to zero, it means that the mean value
of the measurements is more reliable than that of the simulation [44]. d is used to calculate
the fitting effect, the value of which is in the range of 0 to 1. If d is close to one, it indicates
that the value of the simulation is more consistent with the value of the measurements,
indicating few simulation errors [45].

3. Results and Discussion

In this study, we investigated the effect of the parameters that affected simulation
performance, such as the learning factor, number of generations, and size of the population.
The input and output data consisted of 586 training samples and 147 testing samples. These
input and output data were collected at the same time points (called time-delay data).

3.1. Effect of Learning Factor

The effect of the learning factor on the simulation was investigated under these simula-
tion conditions: 8 input factors, 6 hidden layer nodes, 1 output layer node, 20 generations,
population size of 5, and learning factors of 0.175–5.6. Figure 4 shows the results of the
learning factor effect on the prediction of flocculant dosing, the prediction accuracy of
which was evaluated by measuring the R2 between the measured and simulated values.
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Figure 4 shows the effect of learning factor on the variations in R2. The results showed
that the variations in R2 for the training results were essentially the same as those in the
test results. Except for the effect at a learning factor of 0.7, the R2 in the training results was
better than the test results. The R2 in training results gradually increased as the learning
factor increased, then stabilized and finally decreased. Increasing the learning factor did
not improve simulation accuracy, but it caused serious over-fitting. When the learning
factor was 1.4, the ratio of the training accuracy to the test accuracy (R2

train/R2
test) was

close, and the model was neither over- nor under-fit. However, with a higher learning
rate, such as 5.6, a higher ratio occurred over one such as R2

train/R2
test = 1.7. Therefore, we

selected a learning rate of 1.4 as the optimized value to further examine the influence of
PSO’s parameters on simulation performance.
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3.2. Effect of Generations

The effect of the number of generations on the simulation was investigated under
these simulation conditions: 8 input factors, 6 hidden layer nodes, 1 output node, learning
factor of 1.4, population size of 5, and 5–160 generations. Figure 5 shows the results of the
generations’ effect on the prediction of flocculant dosing, the prediction accuracy of which
was evaluated by measuring the R2 between the measurements and simulated values.
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Figure 5 shows the effect of the number of generations on the variations in R2 between
the measurements and simulation. It showed that the variations in R2 in the training results
basically followed those in the testing results as well. However, the R2 in the training results
was higher than that in the testing results. With the increase in the number of generations,
the R2 in the training results decreased first, then increased, and finally decreased. The
increase in the number of generations was not conducive to the enhancement in model
accuracy. When the number of generations was 20, the ratio of the training accuracy to the
test accuracy (R2

train/R2
test) was close, and over- or under-fitting did not appear. However,

when the number of generations was too high (e.g., 80 for R2
train/R2

test = 1.2) or too low
(e.g., 5 for R2

train/R2
test = 1.24), the R2

train/R2
test ratio was significantly higher than one,

and serious over-fitting occurred. The optimal number of the generations was fixed at 20 in
this study.

3.3. Effect of Population Size

The effect of the number of the population size on the simulation performance was
investigated under these simulation conditions: 8 input factors, 6 hidden layer nodes,
1 output node, learning factor of 1.4, 20 evolutions, 20 generations, and population size of
5–80. Figure 6 shows the results of the population size effect on prediction of flocculant
dosing, the prediction accuracy of which was evaluated by measuring the R2 between the
measurements and the simulation values.

Figure 6 shows the effect of the population size on the variations inR2 between the
measurements and the simulation. In both the training and testing results, the variations
in R2 were similar. The R2 had better results in the training than that in the test as a
whole. The R2 in the training results decreased first and subsequently increased with the
increase in the population size. The increased population size did not result in a higher
R2. With a population size of 20, the ratio of the training accuracy to the test accuracy
(R2

train/R2
test) was closer, and over- or under-fitting did not appear. At a population size
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of 40, the R2
train/R2

test ratio over one generated serious over-fitting. It was better to select
a population size of 20 as the optimal value for the simulation.
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Figure 6. Effect of population size on the variations in R2 between the measurements and simulation.

3.4. Effect of Weak Time-Delay

Flocculation processes always need a certain time to complete; therefore, an effluent
test has to be conducted after the completion of flocculation. However, those effluent
quality parameters (denoted time-delay data in this study) tested at the time that flocculant
is added do not reflect the real flocculation result of the added flocculant. This is called the
time-lag effect of flocculation.

Most neural networks used time-delay data as the input, so do not consider the
impact of the time delay. Because varying the learning factor, number of generations,
and population size further increased the simulation accuracy, we tried to reduce the
impact to increase simulation accuracy. According to engineering experience, the real
flocculation result appears in one hour. Therefore, we carried out a simulation using raw
water parameters and effluent quality parameters after flocculation for one hour. This is
called a weak time-delay simulation. There were a total of 447 training samples and 113 test
samples used in this study.

3.4.1. Result of Weak Time-Delay Data Training

A comparison was made between the weak time-delay simulation and the time-delay
simulation. Those conditions for simulation that were used in this study included 8 input
variables, 6 hidden layer nodes, 1 output node, a learning factor of 1.4, 20 generations, and
a population size 20. The results are shown in Figure 7.

Figure 7a,b shows that with time-delay signal data, the R2 values were 0.68 for training
and 0.67 for testing. Their p values were 0.827 and 0.819, respectively. This demonstrated
that there was a nonsignificant difference between the simulated and measured values.
Similar variations between them were also examined (see Figure 7e,f). With weak time-
delay signal data, the R2 increased to 0.73 (see Figure 7c,d), and the p values were 0.855
and 0.856, respectively. Additionally, there was no significant difference occurring between
them, and their variation trend was nearly the same (see Figure 7g,h). However, the
accuracy was enhanced, as indicated by the R2.
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More evaluation indicators were compared between the two simulations. The results
are shown in Table 1. Table 1 shows that their PBIAS values were zero, indicating that the
average trends in their predicted and measured values were neither high nor low, and their
EF values were positive, indicating that the simulation values were more reliable than the
mean value of the measurements. The simulation with weak time-delay data showed a
lower RMSE (around 18.15) and RMSE% (<18%) values, the d value of which was closer to
one, indicating that it was better than the time-delay simulation. The main reason for the
improvement was attributed to the time-delay effect. Therefore, using weak time-delay
data to reflect flocculation results was better, and it had a good result in the simulation of
flocculant dosing.

Table 1. Evaluation indicators of weak time-delay data training and time-delay data training.

Type R2 RMSE RMSE% PBIAS EF d

Weak time-delay train 0.73 17.97 16.90 0.00 0.73 0.91
Weak time-delay test 0.73 18.15 17.76 0.00 0.73 0.91
Time-delay train 0.68 19.08 18.58 0.00 0.68 0.89
Time-delay test 0.67 21.10 19.73 0.00 0.65 0.89

3.4.2. Validation

With the weak time-delay data, we examined the validation results of the model as
indicated by mean squared normalized error (MSE). The simulation results are shown in
Figure 8. Figure 8 shows that the variations in MSE were nearly the same. There were no
significant differences among training, testing, and validation. Over- and under-fitting did
occur in the simulation. The best validation performance was achieved at epoch 11. It was
feasible for us to use the model to predict flocculant dosing.
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3.4.3. Variations in PSO’s Fitness and Accuracy

As demonstrated in the previous section, the result for the weak time-delay simulation
was better than that of the time-delay simulation. The fitness value with the weak time-
delay data was significantly lower than that of the time-delay data (see Figure 9a), which
showed that those simulations with the two kinds of data were different, and the weak
time-delay data could be better applied to the parameter optimization by PSO. In general,
using more data is more conducive to simulation. Although the amount of weak delay data
was small, they still produced better results. This indicated that the weak time-delay data
were different from the time-delay data, which better reflected the real system.
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In addition, we performed 100 training repetitions and found that the results of R2

with the weak time-delay data better agreed with the testing data, as indicated by the box
plots in Figure 9b,c. The chart for the 100 training repetitions indicates that the training
results were more consistent with the testing result with the weak time-delay data.

3.4.4. Sensitivity Analysis

Coagulation is affected by various factors, such as temperature, pH, and turbidity.
Therefore, we examined the sensitivity of the model to these input variables using the
Olden algorithm. The Olden algorithm determines the importance of the contribution of
the factors to the flocculant dosing via the weight of the neural network model [46], which
is expressed using the following equation.

Si =
∑Y

k=1 wikvk

∑X
i=1 ∑Y

k=1 wikvk
(10)

where Si denotes the ith input neuron’s sensitivity; wik denotes the weight of the connection
between the ith input neuron and the kth hidden layer neuron; and vk denotes the weight of
the connection between the kth hidden layer neuron and the output neurons. The number
of neurons in the input layer is denoted by X, whereas the number of neurons in the hidden
layer is denoted by Y.

Figure 10 shows the results of the sensitivity of the model to the input variables. It
shows that the raw water turbidity, flow rate, temperature, and TDS were more important to
the model than other factors, especially the raw water turbidity. Coagulation in a drinking
water plant is not completely the same as that in a laboratory. Some factors, such as pH, are
very stable. The range of adjustment in the laboratory is wider than that in the water plant,
so the impact of these factors in a drinking water plant is relatively weaker. Flow rate,
temperature, and turbidity were the most important factors, which strongly contributed to
the model. Usually, researchers pay more attention to the laboratory scenario and ignore
actual engineering situations. According to the layout of the laboratory, it may increase
costs. We cannot rely solely on laboratories to analyze the situations of water plants. Based
on the research results of this study, we better understand the importance of these factors
and adjusting flocculant dosing to reduce the cost. Therefore, these results have reference
value for creating models.
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4. Conclusions

There are various difficulties experienced in the control of flocculant dosing, including
the interference of multiple factors and the time-delay of flocculation. Using an intelligent
control model may improve the accuracy of flocculant dosing, thus avoiding those dif-
ficulties. In this study, we created a BP neural network model and used PSO and weak
time-delay data to improve the model for prediction. The main conclusions are as follows:
it was effective to use hybridized feedforward and feedback signals as input data to create
the model; adjusting the learning factor, number of generations, and population size pro-
duced good results, including an R2 up to 0.68 and an RMSE between 18% and 20%; weak
time-delay data had a better effect on the simulation, which increased the R2 to 0.73 and
reduced the RMSE to lower than 18%. These results are helpful for establishing an effective
neural network model and improving water plant management. It is extremely rare to
improve the model performance through data type. This study proved its effectiveness,
and in future work, we will strengthen the use of weak-delay data and pay more attention
to research on the role of data type.
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