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Abstract: The scientific evaluation of water pollution in the Yellow River Basin was directly related to
the sustainable utilization of water resources and the green development of the agricultural economy
in this region. In this study, we focused on the planting industry, and measured the agricultural grey
water footprint of 73 prefecture-level cities in the Yellow River Basin from 2000 to 2019. We used
spatial autocorrelation analysis to reveal temporal and spatial differentiation characteristics, and we
used the path analysis method to study the factors influencing the temporal evolution and spatial
distribution. Taking 2015 as the study period, the agricultural grey water footprint showed a trend of
first rising and then falling. The values and growth rates of the agricultural grey water footprint in
different regions were quite different. According to the natural breakpoint method, the agricultural
grey water footprints were divided into low, middle, high, and very high groups. There were obvious
spatial differences in the agricultural grey water footprints, and these differences gradually decreased.
Generally, the H–L and the L–L types were dominant. From 2000 to 2019, most prefecture-level cities
maintained the same transition changes as those in the neighboring regions. Crop yield, economic
scale, population scale, urban and rural structure, and technological innovation were found to be the
key elements of spatiotemporal variation in the agricultural grey water footprint.

Keywords: agricultural grey water footprint; spatial autocorrelation; path analysis; Yellow River Basin

1. Introduction

In 2022, Central Document No. 1 clearly proposes to “promote the green develop-
ment in agriculture and rural areas, strengthen comprehensive efforts to control pollution
from non-point agricultural sources, further reduce agricultural investment, strengthen
the resource utilization of livestock and poultry manure, promote the scientific use and
recycling of agricultural film, and develop agricultural evaluation of green development”,
which is a very important theoretical proposition. The Yellow River Basin is an important
ecological barrier and food base in China, and it is also an important ecological barrier and
economic zone [1]. However, it has a fragile ecological background, a high resource and
environment load, insufficient economic development and low development quality, and it
is also the area with the highest agricultural water pressure in China [2]. In September 2019,
the Chinese government highlighted “ecological protection and high-quality development
of the Yellow River Basin” as a major national strategy. In 2020, the grain output in the
nine provinces and autonomous regions along the Yellow River was about 239 million tons,
an increase of 2.14% over the previous year, accounting for about 35.6% of the national
total. The GDP of the primary industry was about CNY 2.34 trillion, an increase of 11.96%
over the previous year, accounting for about 30.1% of the country. However, prioritizing
food security has led to the externalization of the environmental cost of water resources in
the Yellow River Basin, coupled with the inherent spatial–temporal dislocation of water
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resources. This has further aggravated the water resources shortage and water environ-
ment pollution, and severely restricted the green development of agriculture and rural
areas in the Yellow River Basin [3,4]. According to the results of China’s second survey
of pollution sources, in 2017, chemical oxygen demand (COD), total nitrogen (TN), and
total phosphorus (TP) emissions from agricultural sources and rural household sources
accounted for 80.6%, 53.0%, and 74.1% of the total pollutants emissions in the Yellow
River Basin, respectively. This was higher than the national averages of 85.90%, 10.21%,
and 1.36%. Agricultural non-point source pollution is relatively serious [5]. Therefore,
under the condition of ensuring the sustainable utilization of water resources and the green
development of agriculture, it is of great significance to improve agricultural water quality
and efficiency, which is firstly based on the scientific evaluation of the agricultural water
environment.

As a method by which to measure the impact of human activities on the water re-
sources systems, the water footprint comprehensively investigates the direct and indirect
water use, water consumption, and pollution of consumers or producers. This mainly
includes the blue, green, and grey water footprint, which has become a global research
hotspot [6]. Among these, the grey water footprint refers to the amount of freshwater
resources required to assimilate the pollutant loads discharged by the absorption products,
based on the natural background concentration and the existing water environmental
quality standards [7]. This method fully reflects the interaction between human economic
activities and the water environment system, which is helpful for comprehensively and
scientifically evaluating water pollution and achieving sustainable water use and green
development [8]. Combining existing research, firstly, the grey water footprint measure-
ment mainly focuses on the selection of key pollutants. Wickramasinghe et al. developed
calibrated models and predicted the grey water footprint of eight pollutants [9]. Hong et al.
selected nitrogen fertilizer as an agricultural pollution source and calculated the agricul-
tural grey water footprint in the North China Plain from 2000 to 2016 [10]. Muratoglu
evaluated the grey water footprint of 81 provinces and 25 watersheds in Turkey, using the
tier-1 method and the high-resolution leachate runoff fraction [11]. Wu et al. calculated the
agricultural grey water footprint under the inter-field test modes of conventional diffuse
irrigation (CDI) and water-saving irrigation (WSI), by tracking the source of evapotran-
spiration and the migration process of various nitrogen and phosphorus pollutants [12].
Feng quantified China’s grey water footprint from 2003 to 2018 based on four pollutants:
chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total
phosphorus (TP) [13]. Most of the agricultural grey water footprint involved in the above
studies were focused on the pollution of the water environment caused by the excessive ap-
plication of nitrogen fertilizer, and less consideration was given to the grey water footprint
caused by compound fertilizer abuse. However, nitrogen was the main element in nitrogen
fertilizer, for example, the nitrogen content of amide nitrogen was high, which was 46.7%.
Not all nitrogen fertilizers had 100% nitrogen content. In addition, compound fertilizer also
contained 30% nitrogen element, which would also cause pollution to underground water.
Ignoring nitrogen element pollution caused by compound fertilizer application would lead
to bias in the research results. Secondly, regarding the temporal–spatial characteristics of
the grey water footprint, Xie et al. measured and analyzed the green, blue, and grey water
footprints of pig feeding and pork production in China from 2004 to 2013 and their spatial
and temporal evolution patterns. They concluded that, over time, the regions with higher
grey water footprints generated by pig rearing began to shift southward [14]. Lin et al.
analyzed the temporal and spatial distribution characteristics of the grey water footprint
and the change trend of the gravity center in 31 provinces (cities and districts) of China
during 1998–2016. This was on the basis of revealing the spatial evolution characteristics of
the grey water footprint in China, as well as at the provincial level during 2003–2015 [15].
Li et al. adopted the ESDA (Exploratory Spatial Data Analysis) method to analyze the
temporal and spatial evolution of blue water footprint and grey water footprint in the
Haihe River Basin [16]. Ma et al. used the water footprint method to investigate the
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dynamic evolution of agricultural water consumption from 2005 to 2015 in Zhangjiakou,
an extremely water-scarce city which was divided into six ecological zones (I, II, III, IV, V,
and VI) [17]. The above studies provide a new perspective for the scientific evaluation of
regional water environmental pollution [18–20]. However, the above studies only involved
the grey water footprint at the national and provincial level, and there were few scholars in
the perspective of river basin, on the scale of the space of the city level difference of grey
water footprint system analysis and in-depth exploration, however, the river basin as a
special geographical unit, the space had features such as integrity, extents and differences,
grey water footprint on the basin geographical unit of space law how to present, was in
line with the basin, which was a special geographical unit features, this kind of research
had important guiding significance for the sustainable development of water resources
environment in the basin. Finally, regarding factors affecting water footprint, He and Xiang
calculated the grey water footprint of pollutants diluted by the agricultural, industrial, and
livestock sectors in Hunan Province from 2001 to 2015, and analyzed the influencing factors
using the extended STIRPAT (Stochastic Impacts by Regression on Population, Affluence
and Technology) model. The urbanization level, proportion of tertiary industry, proportion
of secondary industry, per capita GDP, intensity of grey water footprint, and foreign direct
investment were the main influencing factors of the grey water footprint [21]. Based on the
MRIO model and combined with an improved grey water footprint calculation method,
Li et al. studied the impact of regional trade on China’s grey water footprint, and found that
coexisting compounds had a greater impact on the grey water footprint, while the effect
of inter-regional trade on improving China’s grey water footprint was not significant [22].
Li et al. calculated the water footprint generated by rice planting in 30 provinces (cities and
districts) in China from 1996 to 2015 and determined its spatio-temporal influencing factors,
finding that average temperature (ATE), irrigation water coefficient (IWC) and fertilizer
application amount in a sown area (FER) all positively affected the water footprint in time
and space [23]. Wang et al. analyzed the factors influencing the agricultural water footprint
across desert regions of northern China, from 2003 to 2017, and found that potential evapo-
transpiration was the main influencing factor, which explained 20.4% of the variation in the
agricultural water footprint [24]. Based on the quantification of the blue water footprint and
the green water footprint of major food crop production in 11 cities of Shanxi Province from
2005 to 2014, Feng et al. analyzed the spatiotemporal variation and climate influencing
factors in combination with agricultural and climate data and found that sunshine, temper-
ature, and rainfall, among various climate factors, were the main driving factors of the crop
production water footprint [25]. Cai et al. evaluated Chinese agricultural water footprints
from 2000 to 2017 and analyzed the influencing factors, and found that GDP per capita,
total investment in fixed assets, the income level of rural residents, the proportion of food
grown, spray and drip irrigation technology, low-pressure pipe irrigation technology and
seepage control irrigation technology had significant positive impacts on the agricultural
water footprint. In contrast, the proportion of secondary and tertiary industries, social
retail consumption, urbanization, technology expenditure, and the effective irrigation area
proportion had a significant inhibitory effect [26]. Existing studies attach importance to the
elaboration of econometric models, but the analysis of the action mechanism of influencing
factors of grey water footprint is insufficient, and the persuasiveness needs to be strength-
ened. The above studies only conduct overall regression analysis based on all research
samples to explore the main influencing factors, ignoring the heterogeneity of influencing
factors in different regions, only discuss the various direct influencing factors of the water
footprint; however, the influencing factors of the water footprint are various, including, but
not limited to, meteorological factors, and agricultural production inputs, such as macro
policies; additionally, the mixed and complex dynamic relationships between influencing
factors have indirect effects on the water footprint. Therefore, ignoring indirect effects may
lead to bias in research results. In order to overcome the defects in the above studies, this
study proposes the following innovations: Firstly, when calculating the agricultural grey
water footprints, the existing studies focus on the pollution of water environments caused
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by excessive application of chemical fertilizers (mainly nitrogen fertilizers) in the planting
industry, whereas this study also considers the agricultural grey water footprint caused
by other kinds of chemical fertilizers (nitrogen fertilizers and compound fertilizers), and
46% of nitrogen fertilizer content and 30% of compound fertilizer content are considered
as nitrogen pollution. Secondly, most of the existing studies on the temporal and spatial
characteristics of the grey water footprint only involve the provincial level, but this study
comprehensively analyzes the temporal and spatial characteristics of the grey water foot-
print of the Yellow River Basin at the municipal level. Finally, as for studies regarding the
influencing factors of water footprints, the existing studies only discuss the direct effects of
various influencing factors on the water footprint, whereas we study the indirect effects of
various influencing factors on the water footprint on this basis.

The marginal contribution of this paper was mainly reflected in three aspects: First, the
calculation idea of grey water footprint was improved. This study not only considered the
pollution of the water environment caused by excessive application of chemical fertilizers
(mainly nitrogen fertilizer), but also took into account the influence of other kinds of fertil-
izers (nitrogen fertilizer and compound fertilizer) on the agricultural grey water footprint,
which was the inheritance and expansion of existing studies. Second, for the study of the
grey water footprint, this paper further considered the influence of spatial interaction, that
is, to explore the interaction between regions and expand the application of spatial econo-
metric model in this field. Third, although there have been studies on influencing factors of
the grey water footprint in the academic community, the Tobit model was mainly used to
analyze the impact of various indicators. This study comprehensively discusses the direct
and indirect impacts of various influencing factors on the water footprint, which made
up for the blind spot of empirical analysis in this field. Based on this, we focused on the
planting industry, and measured the agricultural grey water footprint of 73 prefecture-level
cities in the Yellow River Basin from 2000 to 2019. We used spatial autocorrelation analysis
to reveal temporal and spatial differentiation characteristics, and used the path analysis
method to study the factors influencing the temporal evolution and spatial distribution.
This article is arranged as follows: the second part is the research methods and data sources;
the third part presents the empirical analysis, including calculating the agricultural grey
water footprints of 73 prefecture-level cities in the Yellow River Basin from 2000 to 2019
(using the spatial autocorrelation analysis to reveal the spatial and temporal differentiation
characteristics of the agricultural grey water footprint), using the path analysis to study the
influencing factors of the temporal evolution and spatial distribution of the agricultural
grey water footprint; and the fourth part discusses conclusions and recommendations.

2. Research Methods and Data Sources
2.1. Research Methods
2.1.1. Agricultural Grey Water Footprint

In this study, the agricultural grey water footprint (AWFgrey) only refers to the grey
water footprint of the planting industry [27,28].

Regarding crop growth, a large number of chemical fertilizers and pesticides are
applied in order to reduce plant diseases and insect pests of crops and soil fertility. Most of
these enter the water environment at a fixed proportion (leaching rate) under the action
of the precipitation or irrigation water, causing surface runoff and underground water
pollution [29]. According to the common model of the Water Footprint Assessment Man-
ual, the grey water footprint from the planting industry can be calculated based on the
leaching of nitrogen into water caused by fertilizer application (including nitrogen fer-
tilizers and compound fertilizers) [7,30,31]. In this study, we only considered the grey
water footprint of nitrogen produced by nitrogen fertilizers and compound fertilizers in
the calculation [32–34]. The specific calculation formula is as follows [35]:

WFgrey,plant(TN) =
α× (APPln × Cn + APPlc × Cc)

Cmax − Cnat
(1)



Water 2022, 14, 2759 5 of 18

In Equation (1), WFgrey,plant(TN) (m3) is the grey water footprint of the planting
industry and α (%) represents the leaching rate; 7% of nitrogen was selected as the leaching
rate in this study according to previous studies [32,36]. APPl is defined the abbreviation of
the word “Application”. APPln (kg) and APPlc (kg) represent the annual yield of nitrogen
fertilizer and compound fertilizer, respectively [35]. Cn and Cc represent a nitrogen content
of 46% and 30% in nitrogen fertilizer and compound fertilizer, respectively [35]. Cmax
(kg/m3) represents the water quality standard concentration of the pollutant N element
in chemical fertilizers required by Grade III of the Environmental Quality Standards for
Surface Water in China (GB3838-2002), set at 0.001 kg/m3 [14]. Cnat (kg/m3) represents the
natural background concentration of the pollutants N element in chemical fertilizers in the
receiving water, which is usually defaulted to 0 kg/ m3 [37,38].

2.1.2. Spatial Autocorrelation Analysis Method

Spatial autocorrelation is usually used to analyze the correlation level between the
attribute eigenvalue of a unit in a certain region of space and the same attribute eigenvalue
of the unit in its adjacent region, which can be divided into global and local spatial auto-
correlation [39,40]. Global spatial autocorrelation mainly analyzes whether regions have
spatial relevance on the whole level. Local spatial autocorrelation mainly studies whether
there is local spatial aggregation with high or low values in specific regions, and specific
indexes under the condition of regional autocorrelation as a whole [41].

(1) Global spatial autocorrelation (global Moran’s I)

Global spatial autocorrelation can be used to analyze whether the spatial distribution of
a certain attribute characteristic value of a research object is correlated in the overall research
area, and to then judge whether such a phenomenon exists aggregated in space [42]. The
global Moran index is a commonly used spatial autocorrelation measure, and its definition
is as follows [43,44]:

Moran’s I =
∑n

i=1 ∑n
j 6= i Wijzizj

σ2 ∑n
i=1 ∑n

j 6= i Wij
(2)

=
n ∑n

i=1 ∑n
j 6=i Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j 6= i Wij ∑n

i=1(xi − x)2 (3)

In Equations (2) and (3), n is the number of regions in space; xi is the AWFgrey of region

i; xj is the AWFgrey of region j; zi is the standard transformation of xi (zi =
(xi−x)

σ ); zj is

the standard transformation of xj (zj =
(xj−x)

σ ; x = 1
n ∑n

i=1 xi) [43]; and Wij is a binary
adjacency space weight matrix, representing the adjacency relationship of space objects [44].
When region i is adjacent to region j, Wij = 1; otherwise, Wij = 0, σ2 = 1

n ∑n
i=1(xi − x)2 [45].

The value range of Moran’s I statistic is between −1 and 1. When I is within [0, 1], it
indicates that there is spatial positive correlation. The closer the value is to 1, the higher
the spatial correlation degree is. When I is within [−1, 0], it indicates that there is a spatial
negative correlation. The closer the value is to −1, the higher the spatial difference degree.
When I is equal to 0, it means that the spatial distribution is random and there is no spatial
correlation [46]. The significance test of the Moran index requires the use of a standardized
Z statistic [47], and the calculation is as follows:

Z =
I− E(I)√

VAR(I)
(4)

In Equation (4), E(I) and VAR(I) are the expectation and variance of Moran’s index,
respectively. The null hypothesis is that there is no spatial autocorrelation. When Z > 1.96
or Z < −1.96, it indicates that there is a significant spatial autocorrelation [47,48].

(2) Local spatial autocorrelation (local Moran’s I)
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The global spatial autocorrelation analysis reveals the interdependence degree of
spatial units on the whole level, ignoring the possible local instabilities [49]. Therefore, in
the case of significant global autocorrelation results, a local spatial autocorrelation analysis
method is introduced to characterize the spatial dependence and spatial heterogeneity of
specific regions. It is defined as follows [50,51]:

Ii(d) = Zi

n

∑
j 6= i

WijZj (5)

In Equation (5), Ii(d) is positive, indicating that region i is a high (low) value region and
its adjacent region is also a high (low) value region, that is, there is a spatial agglomeration
of similar values. If Ii(d) is negative, it indicates that region i is a high (low) value region
and its adjacent region is a low (high) value region, that is, there is a spatial agglomeration
of different values [52,53].

Both Moran scatter plots and LISA (Local Indicators of Spatial Association) agglomer-
ation maps can reveal the local characteristics of the spatial distribution of the AWFgrey in
the Yellow River Basin in a more intuitive way. In the Moran scatter plot, the AWFgrey of
prefecture-level cities in the Yellow River Basin is divided into four types. These correspond
to different local spatial associations by taking the horizontal and vertical coordinates of the
AWFgrey of prefecture-level cities as the abscissa, the spatial lag value of the AWFgrey as the
ordinate, and the average horizontal and vertical coordinates of the scattered points as the
central coordinate. The first is H–H aggregation, which indicates that the prefecture-level
cities have a high AWFgrey, and the surrounding prefecture-level cities also have a high
AWFgrey. The second is H–L aggregation, which indicates that the prefecture-level cities
have a high AWFgrey, but the surrounding prefecture-level cities have a lower AWFgrey.
The third is L–L aggregation, which indicates that the prefecture-level cities have a low
AWFgrey and the surrounding prefecture-level cities also have a low AWFgrey. The fourth is
L–H aggregation, which indicates that the prefecture-level cities have a low AWFgrey, but
the surrounding prefecture-level cities have a higher AWFgrey.

2.1.3. Spatial Transition Method

As the Moran scatter diagram cannot accurately quantify the degree of cohesion and
transition of spatial correlation, the measurement method for the space–time transition
proposed by Rey et al. was adopted to further explore the spatiotemporal transfer charac-
teristics of the local spatial correlation types of the AWFgrey in the Yellow River Basin [54].
The specific types and descriptions of the spatiotemporal transitions are shown in Table 1.

Table 1. Types and descriptions of spatiotemporal transitions.

Transition
Type Description Transition Form Transition

Type Description Transition
Form

Type I

The displacement of this
region when there is no
jump in the neighboring

property values

HHt→LHt+1

Type III

Neighboring attribute
values and local area
attribute values leap

simultaneously

HHt→LLt+1
HLt→LLt+1 HLt→LHt+1
LHt→HHt+1 LLt→HHt+1
LLt→HLt+1 LHt→HLt+1

Type II
Leap of related space

adjacent to the
prefecture-level city

HHt→HLt+1

Type IV
The same level is

maintained for both
adjacent and local

HHt→HHt+1
HLt→HHt+1 HLt→HLt+1
LHt→LLt+1 LHt→LHt+1
LLt→LHt+1 LLt→LLt+1

The calculation method of spatial cohesion of the AWFgrey in prefecture-level cities is
as follows [49]:

St =
F0.t

n
(6)
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In Equation (6), St is the degree of spatial cohesion; F0.t represents the number of
prefecture-level cities of transition type IV in the study period of t; and n is 73 prefecture-
level cities. The value range of St is [0, 1]. The larger the value of St, the more significant
the spatial pattern locking or path dependence of the AWFgrey in the Yellow River Basin,
and the greater the transition resistance [55,56].

2.1.4. Path Analysis

Path analysis was first established by S. Wright, an American scholar, in 1921. It is used
to analyze the linear relationship between multiple independent variables and dependent
variables. The direct path coefficient, indirect path coefficient, and total path coefficient can
be used to study the direct effect of independent variables on the dependent variables, and
the indirect effect of other independent variables on the dependent variables [57]. Path
analysis theory proves that the simple correlation coefficient (riY) between any independent
variable Xi and the dependent variable Y is the direct path coefficient (PiY) between Xi and
Y, plus the indirect path coefficient (rijPjY) of all Xi passing through Xj and Y. The indirect
path coefficient of any independent variable Xi on Y is the correlation coefficient (rij) of
Xi and Xj multiplied by the path coefficient (PjY) [58,59]. The relation equation of each
coefficient is as follows: 

P1 + r12P2 + · · ·+ r1kPk = r1y
r21P1 + P2 + · · ·+ r2kPk = r2y

...
rk1P1 + rk2P2 + · · ·+ Pk = rky

(7)

In Equation (7), rij is the simple correlation coefficient of factor xi and factor xj (Pear-
son’s correlation coefficient); riy is the simple correlation coefficient of factor xi and depen-
dent variable Y, also known as the total influence of factor xi on dependent variable Y; Pi
is the direct path coefficient, representing the direct influence of factor xi on dependent
variable Y, which is obtained by solving multiple linear equations; riyPj is the indirect path
coefficient, representing the indirect effect of xi on dependent variable Y through xi; and
riyPi represents the total contribution of xi to the dependent variable Y [60–62].

In order to analyze the explanatory power and interaction of different influencing
factors on the spatial–temporal variation of the AWFgrey in the Yellow River Basin, and
considering the scientificity and comprehensiveness of the selection of indicators as well
as the comparability and availability of data combined with the relevant literature [63–66],
12 influencing factors were selected. These 12 factors included: population scale, X1;
economic scale, X2; urban and rural structure, X3; technological innovation, X4; industrial
structure, X5; resource endowment, X6; crop yield, X7; planting structure, X8; proportion
of agricultural water use, X9; fertilizer application intensity, X10; pesticide application
intensity, X11; and agricultural film application intensity, X12. Among these, the population
size is represented by the number of permanent residents; the economic scale is represented
by the ratio of agricultural GDP to the agricultural population; the urban–rural structure
is represented by the ratio of the agricultural population to the permanent population;
scientific and technological innovation is represented by the R&D expenditure intensity;
industrial structure is represented by the ratio of GDP to total GDP; resource endowment is
represented by the total amount of water resources; planting structure is represented by the
ratio of the sown area of grain crops to the sown area of commercial crops; the proportion
of agricultural water use is represented by the ratio of agricultural water consumption to
total water consumption; the intensity of chemical fertilizer application is represented by
the ratio of the pure amount of chemical fertilizer applied to the total sown area of crops;
the intensity of pesticide application is represented by the ratio of the applied amount of
pesticides to the total sown area of crops; and the intensity of agricultural film application
is represented by the ratio of the application amount of agricultural film to the total sown
area of crops.
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2.2. Data Sources

For this study, 73 prefecture-level cities in 9 provinces and autonomous regions of the
Yellow River Basin were selected as the study area (Figure 1), and the time range of the
data was 2000–2019. The relevant data came from the “China Statistical Yearbook”, the
“China Agricultural Yearbook”, the “China Rural Statistical Yearbook”, the “Sixty Years of
New China Statistical Data Compilation”, the “China Environmental Statistical Yearbook”,
and the statistical yearbooks and statistical bulletins of various provinces and cities; the
data of some missing years were supplemented by the mean of the sum of the values of
adjacent years.
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3. Results Analysis
3.1. Calculation Results of AWFgrey

On the whole, taking 2015 as the study period, the AWFgrey in the Yellow River Basin
showed a trend of first rising and then falling (Figure 2). Among them, 2001−2006 was a
period of rapid increase, where the average value of the AWFgrey increased sharply from
3.1 × 108 m3 to 4.1 × 108 m3, with an average annual growth rate of about 6.25%. From
2006 to 2015, it first decreased sharply and then increased slowly. The average AWFgrey
first dropped sharply from 4.1 × 108 m3 to 3.8 × 108 m3 and then slowly climbed to
4.4 × 108 m3, an increase of 0.6 × 108 m3, with an average annual growth rate about 1.88%.
From 2015 to 2019, there was a slow decline period. The average value of the AWFgrey
decreased from 4.4 × 108 m3 to 4.0 × 108 m3, with an average annual reduction rate of
about 2.12%.

From the perspective of changes in different sections of the basin (Figure 3), the initial
level of the AWFgrey in the upper reaches of the Yellow River Basin was the lowest, and the
multi−year average was stable at 1.4 × 108 m3; the midstream regions were second, and
the multi−year average was stable at 3.2 × 108 m3; the downstream area was the highest,
and the multi-year average was stable at 6.0 × 108 m3, which is much larger than the sum
of the AWFgrey in the middle and upper reaches. However, the AWFgrey in the upstream
and midstream regions changed rapidly during the study period, with an average annual
growth rate of about 2.39% and 2.28%, respectively, while the downstream region growth
rate was only 1.27%. In 2006, the first pollution source census conducted in China found
that the concentrations of pollutants such as COD MN and NH3-N in the middle reaches
of the Yellow River Basin were relatively high, and they flowed downstream along the
river, resulting in serious downstream pollution. The region still has a long way to go in
improving agricultural non-point source pollution.
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Figure 2. The overall evolution trend of AWFgrey in the Yellow River Basin.
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Figure 3. AWFgrey in the Upper, middle and lower Reaches of the Yellow River Basin from 2000
to 2019.

Further, based on the natural breakpoint method, the AWFgrey of prefecture-level cities
in the Yellow River Basin from 2000 to 2019 is divided into four groups: low, medium,
high, and very high. (Table 2). By drawing the spatial distribution map of the AWFgrey in
the Yellow River Basin from 2000 to 2019 (Figure 4), it can be seen that, from 2000 to 2010,
the overall spatial distribution pattern of the AWFgrey in the Yellow River Basin remained
unchanged; however, the number of prefecture-level cities included in the low group and
medium groups changed significantly. Specifically, the number of prefecture-level cities
in the low group increased rapidly from 13 to 26, an increase of 100.00%; the number of
prefecture-level cities in the middle group decreased from 27 to 16, a decrease of 40.74%;
the number of prefecture-level cities in the high group decreased from 20 to 17, a decrease
of 15.00%; and the number of prefecture-level cities in the very-high group increased from
13 to 14, an increase of 7.69%.
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Table 2. Threshold ranges of AWFgrey in low, medium, high and very high groups (106 m3).

Groups 2000 2010 2019

Low AWFgrey group [2.2, 74.3] [3.0, 169.9] [0.63, 252.3]
Medium AWFgrey group [74.3, 267.1] [169.9, 371.8] [252.3, 574.8]

High AWFgrey group [267.1, 562.0] [371.8, 725.7] [574.8, 905.2]
Very high AWFgrey group [562.0, 1038.9] [725.7, 1399.9] [905.2, 1579.0]
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Figure 4. Spatial distribution of the AWFgrey in the Yellow River Basin from 2000 to 2019.

From 2010 to 2019, the overall spatial distribution pattern of the AWFgrey in the Yellow
River Basin remained unchanged, but the number of prefecture-level cities included in the
low and very-high groups changed significantly. Specifically, the number of prefecture-level
cities in the low group increased rapidly from 26 to 36, an increase of 38.46%; the number
of prefecture-level cities in the middle group increased from 16 to 19, an increase of 18.75%;
the number of prefecture-level cities in the high group decreased from 17 to 13, a decrease of
23.53%; and the number of prefecture-level cities in the very high group decreased from 14
to 5, a decrease of 64.29%, indicating that the AWFgrey in the Yellow River Basin decreased
significantly and the ecological environment improved significantly.

3.2. Spatial and Temporal Characteristics of the AWFgrey in the Yellow River Basin

This study calculated the global autocorrelation Moran’s I index of the AWFgrey of
cities in the Yellow River Basin from 2000 to 2019. Due to space limitations, only the
global Moran’s I index for 2000, 2010, and 2019 is shown (Figure 5). The AWFgrey of the
Yellow River Basin has shown a significant positive correlation in the past 20 years, that
is, the areas with a high AWFgrey are adjacent and the areas with a low AWFgrey are also
adjacent, showing obvious spatial agglomeration. The value of Moran’s I from 2000 to
2019 decreased slightly with the change in years, from 0.494 to 0.449, indicating that with
the continuous development of the agricultural economy in the Yellow River Basin, the
development speed of different regions has been inconsistent and the gap large. Therefore,
the spatial agglomeration degree of the AWFgrey has been slightly weakened.

As the global Moran’s I index is an overall autocorrelation statistic, which represents
whether the elements are distributed with significant aggregation or separation at the
overall level, it cannot reveal the spatial agglomeration degree of specific regions. The
LISA agglomeration map is a clearer visual expression of the local Moran’s I scatter plot.
Analyzing the LISA agglomeration map can help to identify the “hot spot” and “blind
spot” areas of the AWFgrey in the Yellow River Basin and intuitively represent the local
characteristics of the AWFgrey in spatial distribution. Therefore, in this study, typical years
were selected and LISA clustering maps were drawn for the AWFgrey for each prefecture-
level city in the Yellow River Basin in 2000, 2010, and 2019 (Figure 6).

From 2000 to 2010, the number of prefecture-level cities with H–L agglomerations in
the AWFgrey of the Yellow River Basin increased slightly, while the number of H–H, L–H,
and L–L agglomerations decreased slightly. Specifically, the number of prefecture-level
cities with H–L agglomeration increased from 38 to 47, an increase of 23.68%. The number
of prefecture-level cities with H–H agglomeration decreased from 14 to 9, a decrease of
35.71%; the number of prefecture- level cities with L–H agglomeration decreased from 5 to
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3, a decrease of 40.00%; and the number of prefecture- level cities with L–L agglomeration
decreased from 15 to 13, a decrease of 13.33%.
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Figure 5. Moran’s index diagram of global autocorrelation of the AWFgrey of prefecture-level cities in
the Yellow River Basin.
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From 2010 to 2019, the number of prefecture-level cities with H–L agglomerations
in the AWFgrey of the Yellow River Basin slightly increased; the number of H–H and L–H
agglomerations remains the same; while the number of L–L agglomerations decreased
slightly. Specifically, the number of H–L prefecture-level cities increased from 47 to 50, an
increase of 6.38%; the number of prefecture-level cities with H–H agglomeration remained
unchanged at 5; the number of prefecture-level cities with L–H agglomeration remained un-
changed at 3; while the number of prefecture-level cities with L–L agglomeration decreased
from 13 to 10, a decrease of 23.08%.

Further, by classifying the spatiotemporal transition types of the AWFgrey in
73 prefecture-level cities in the Yellow River Basin (Table 3), the most common transi-
tion type was generally transition type IV, that is, the AWFgrey of the spatial unit itself and
the adjacent area maintained the same level of change. In the two time periods, the spatial
cohesion increased from 81.94% to 93.06%, indicating that the spatial structure change of
the AWFgrey in the Yellow River Basin has obvious path-dependent characteristics, and
this characteristic is gradually strengthening. The next transition types are type II and
type I, which reflect the influence of spatial proximity on the AWFgrey in some areas. Type
III has the least transition in both the region itself and its adjacent areas. From 2000 to
2010, there were only two prefecture levels in Zibo and Dongying. Two prefecture-level
cities, Hebi and Rizhao, appeared from 2010 to 2019, which further verified their atypical
characteristics.

From 2000 to 2010, Jiuquan belonged to H–L agglomeration; influenced by the sur-
rounding prefecture-level cities, it passively transitioned from H–L agglomeration to L–L
agglomeration. Lvliang, Huhehaote, and Wuzhong all belonged to L–L agglomeration areas,
and the AWFgrey was in a stable agglomeration state. Affected by their own AWFgrey, they
took the initiative to transition from the original L–L agglomeration to H–L agglomeration.
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Qingdao, Zaozhuang, Yantai, Jining, Taian, and Linyi all belonged to H–H agglomera-
tion areas, and the AWFgrey was in a stable agglomeration state. Affected by their own
AWFgrey, they took the initiative to transition from the original H–H agglomeration to H–L
agglomeration. Nanyang belonged to H–L agglomeration; influenced by the surrounding
prefecture-level cities, it passively transitioned from H–L agglomeration to H–H agglom-
eration. Zibo and Dongying all belonged to L–H agglomeration areas; influenced by the
surrounding prefecture-level cities, they passively transitioned from L–H agglomeration to
H–L agglomeration.

Table 3. LISA transition types of AWFgrey of 73 prefecture-level cities in the Yellow River Basin from
2000 to 2019.

Transition Type
Time Division

2000–2010 2010–2019

Type I HLt→LLt+1: Jiuquan —
LLt→HLt+1: Lvliang, Huhehaote, Wuzhong LLt→HLt+1: Yulin, Yinchuan, Guyuan

Type II HHt→HLt+1: Qingdao, Zaozhuang, Yantai, Jining, Taian, Linyi —
HLt→HHt+1: Nanyang —

Type III — HLt→LHt+1: Hebi
LHt→HLt+1: Zibo, Dongying LHt→HLt+1: Rizhao

Type IV The remaining 59 prefecture-level cities The remaining 67 prefecture-level cities

From 2010 to 2019, Yulin, Yinchuan, and Guyuan all belonged to L–L agglomeration
areas, and the AWFgrey was in a stable agglomeration state. Affected by their own AWFgrey,
they took the initiative to transition from the original L–L agglomeration to H–L agglomera-
tion. Hebei belonged to H–L agglomeration; influenced by the surrounding prefecture-level
cities, it passively transitioned from H–L agglomeration to L–H agglomeration. Rizhao
belonged to L–H agglomeration; influenced by the surrounding prefecture-level cities, it
passively transitioned from L–H agglomeration to H–L agglomeration. In general, due
to the different spatial correlation patterns of the AWFgrey in different cities, the spillover
effect of inter-provincial AWFgrey may promote the convergence or differentiation of the
AWFgrey in various regions, and then affect the overall structure of the AWFgrey spatial
distribution in the Yellow River Basin.

3.3. Analysis of Influencing Factors of the AWFgrey

In this study, SPSS 27.0 (SPSS Inc., Chicago, IL, USA) was used to test the nor-
mal distribution of the spatiotemporal series data of the AWFgrey in the Yellow River
Basin. Due to the small sample size, the results obtained by the Shapiro–Wilk Test were
Sig = 0.275 and Sig = 0.266, which are both greater than 0.05 and obey normality. Therefore,
the path analysis method could be used to study the temporal and spatial influencing
factors of the AWFgrey in the Yellow River Basin. From 2000 to 2019, the analysis results of
the influencing factors of the time series change of the AWFgrey in the Yellow River Basin
are shown in Table 2. As the spatial distribution pattern of the AWFgrey in the Yellow River
Basin was stable in different years, the dependent variable AWFgrey and the mean value
of the independent variable from 2000 to 2019 were calculated to analyze the influencing
factors of the spatial distribution of the AWFgrey.

It can be seen from Table 4 that the absolute values of the direct path coefficients of the
factors affecting the time series changes of the AWFgrey in the Yellow River Basin are X7,
X2, X3, X4, X1, X5, X8, X9, X10, X11, X6, and X12, indicating that crop yield, economic scale,
and urban and rural structure have a great direct impact on the AWFgrey, and the direct
path coefficients are 1.712, −0.537, and 0.310, respectively. However, the direct influence
of pesticide application intensity, resource endowment, and agricultural film application
intensity are small, and the direct path coefficients are 0.022, 0.021, and 0.018, respectively.
Through the analysis of the indirect path coefficient between the influencing factors, it can
be concluded that each influencing factor has a great impact on the AWFgrey according
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to crop yield, economic scale, urban and rural structure, and technological innovation.
In terms of crop yield, population scale has a strong positive impact on the increase in
the AWFgrey, while industrial structure has a strong negative impact on the increase in
the AWFgrey according to the crop yield. In terms of economic scale, the urban and rural
structure has a strong positive impact on the increase in the AWFgrey, while population
scale has a strong negative impact on the increase in the AWFgrey according to the economic
scale. In terms of urban and rural structure, the industrial structure has a strong positive
impact on the increase in the AWFgrey, while the economic scale has a strong negative
impact on the increase in the AWFgrey according to the urban and rural structure. In terms
of technological innovation, the urban and rural structure has a strong positive impact
on the increase in the AWFgrey, while population scale has a strong negative impact on
the increase in the AWFgrey according to the technological innovation. Industrial structure
and crop yield have the largest total influence on the AWFgrey, with the total influence
coefficients of −0.473 and 0.468, respectively.

Table 4. Analysis results of influencing factors of temporal variation of AWFgrey in the Yellow River
Basin.

Influencing
Factors

Direct
Path

Factor

Indirect Path Factor Total
Influence

FactorX1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 −0.191 −0.521 −0.302 −0.281 0.074 −0.008 1.625 −0.033 −0.029 −0.002 −0.005 −0.001 0.325
X2 −0.537 −0.185 −0.307 −0.271 0.071 −0.007 1.583 −0.032 −0.028 −0.003 −0.006 −0.002 0.275
X3 0.310 0.186 0.532 0.273 −0.074 0.007 −1.641 0.032 0.028 0.004 0.006 0.002 −0.335
X4 −0.294 −0.183 −0.496 −0.288 0.072 −0.006 1.568 −0.032 −0.028 −0.001 −0.004 0.000 0.307
X5 −0.079 0.178 0.485 0.292 0.267 0.006 −1.694 0.031 0.027 0.004 0.007 0.003 −0.473
X6 0.021 0.076 0.175 0.106 0.089 −0.024 −0.663 0.016 0.015 −0.007 −0.006 −0.006 −0.207
X7 1.712 −0.181 −0.497 −0.297 −0.269 0.078 −0.008 −0.032 −0.028 −0.003 −0.006 −0.002 0.468
X8 −0.035 −0.181 −0.494 −0.284 −0.269 0.069 −0.010 1.544 −0.031 −0.003 −0.005 −0.002 0.299
X9 −0.033 −0.168 −0.457 −0.261 −0.250 0.064 −0.010 1.430 −0.033 −0.003 −0.005 −0.002 0.271
X10 0.023 0.020 0.077 0.047 0.014 −0.014 −0.007 −0.222 0.005 0.005 0.021 0.017 −0.012
X11 0.022 0.042 0.137 0.084 0.049 −0.024 −0.006 −0.431 0.008 0.008 0.022 0.018 −0.068
X12 0.018 0.014 0.055 0.037 0.007 −0.014 −0.007 −0.194 0.003 0.004 0.022 0.022 −0.032

It can be seen from Table 5 that the absolute values of the direct path coefficients of
the factors affecting the spatial variation of the AWFgrey in the Yellow River Basin are X4,
X1, X7, X12, X6, X3, X9, X5, X10, X8, X11, and X2, indicating that technological innovation,
population size, and crop yield have a strong direct impact on the AWFgrey, with the direct
path coefficients being 0.369, 0.355, and 0.284, respectively. However, the direct effects of
planting structure, pesticide application intensity, and economic scale are relatively small,
with the direct path coefficients being −0.057, 0.033, and −0.026, respectively. According to
the analysis of the indirect path coefficients of the influencing factors, it can be concluded
that each influencing factor has a strong impact on the AWFgrey according to economic scale,
crop yield, population scale, and resource endowment. Among these, in terms of economic
scale, crop yield has a strong positive impact on the increase in the AWFgrey, while planting
structure has a strong negative impact on the increase in the AWFgrey according to the
economic scale. In terms of crop yield, population scale has a strong positive impact on
the increase in the AWFgrey, while planting structure has a strong negative impact on the
increase in the AWFgrey according to the crop yield. In terms of population size, crop yield
has a strong positive impact on the increase in the AWFgrey, while economic scale has a
strong negative impact on the increase in the AWFgrey according to the population size. In
terms of resource endowment, population size has a strong positive impact on the increase
in the AWFgrey, while planting structure has a strong negative impact on the increase in the
AWFgrey according to the resource endowment. Technological innovation, population size,
and resource endowment have the largest total impact on the AWFgrey, with total impact
coefficients of 0.949, 0.947, and 0.668, respectively.
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Table 5. Analysis results of influencing factors of spatial variation of AWFgrey in the Yellow River
Basin.

Influencing
Factors

Direct
Path

Factor

Indirect Path Factor Total
Influence

FactorX1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 0.355 0.004 0.019 0.275 −0.018 0.054 0.245 0.007 −0.001 0.000 0.004 0.001 0.947
X2 −0.026 −0.054 −0.029 0.041 0.003 −0.004 0.010 0.024 0.034 0.011 0.014 0.036 0.060
X3 0.077 0.087 0.010 0.114 −0.046 0.025 0.089 0.002 −0.005 −0.014 −0.004 −0.011 0.323
X4 0.369 0.265 −0.003 0.024 −0.035 0.041 0.247 0.015 0.009 0.004 0.003 0.010 0.949
X5 −0.071 0.091 0.001 0.050 0.181 0.030 0.117 0.012 0.011 −0.012 −0.003 0.003 0.411
X6 0.081 0.239 0.001 0.023 0.186 −0.026 0.151 0.009 0.007 −0.006 0.003 0.001 0.668
X7 0.284 0.307 −0.001 0.024 0.321 −0.029 0.043 0.017 0.014 0.006 0.007 0.018 1.010
X8 −0.057 −0.045 0.011 −0.003 −0.097 0.015 −0.012 −0.085 −0.061 −0.010 −0.011 −0.040 −0.395
X9 −0.074 0.004 0.012 0.005 −0.046 0.011 −0.007 −0.055 −0.047 −0.007 −0.016 −0.049 −0.267
X10 0.066 0.000 −0.004 −0.017 0.024 0.012 −0.007 0.024 0.009 0.007 0.006 0.007 0.128
X11 0.033 0.048 −0.011 −0.010 0.030 0.007 0.006 0.057 0.020 0.035 0.013 0.055 0.284
X12 0.103 0.005 −0.009 −0.008 0.035 −0.002 0.001 0.049 0.022 0.035 0.005 0.018 0.252

4. Conclusions and Suggestions
4.1. Conclusions

In order to provide a scientific decision-making basis for the sustainable utilization
of water resources and green development of agriculture in the Yellow River Basin, the
temporal and spatial variation characteristics and influencing paths of the agricultural grey
water footprint were studied in this paper. The main conclusions are as follows:

(1) Based on the water footprint theory, the AWFgrey of the Yellow River Basin from 2000
to 2019 was calculated. Taking 2015 as the study period, the results showed that the
AWFgrey of the Yellow River Basin had a trend of rising first and then falling. The
values and growth rates of the AWFgrey in different regions were quite different. The
downstream value was much higher than that of the middle and upper reaches, but the
growth rate was lower than that of the middle and upper reaches. In terms of temporal
variation, the thresholds of the low, medium, high, and very-high AWFgrey groups
increased, while the proportion of prefecture-level cities in the high and very-high
AWFgrey groups decreased. In terms of spatial distribution, the low-AWFgrey group
was mainly concentrated in the upper and middle reaches, the middle-AWFgrey group
was mainly concentrated in the middle and lower reaches, and the high- and very-
high-AWFgrey groups were mainly concentrated in the lower reaches and gradually
decreased over time.

(2) Based on the LISA agglomeration map, the spatial correlation characteristics of the
AWFgrey of the cities in the Yellow River Basin were analyzed. The results showed
that the distribution of the AWFgrey in the Yellow River Basin not only had continuity
in time, but also had obvious spatial agglomeration, and this difference gradually
decreased. Generally, the “High–Low” agglomeration and the “Low–Low” agglomer-
ation were dominant. From 2000 to 2019, most prefecture-level cities maintained the
same transition changes as the neighboring regions. In the two time periods, spatial
cohesion increased from 81.94% to 93.06%, indicating that the spatial structure change
of the AWFgrey in the Yellow River Basin had obvious path-dependent characteristics,
and this characteristic was gradually strengthened.

(3) Based on the path analysis method, the influencing factors of AWFgrey spatial and
temporal variation in the Yellow River Basin were analyzed. The results showed that
crop yield, economic scale, and urban and rural structure were the main driving factors
affecting the temporal variation of the AWFgrey in the Yellow River Basin, and their
direct path coefficients were 1.712, −0.537, and −0.310, respectively. Technological
innovation, population size, and crop yield were the main influencing factors affecting
the spatial distribution pattern, and their direct path coefficients were 0.369, 0.355,
and 0.284, respectively. Crop yield was the only common factor influencing the
spatio-temporal evolution of the AWFgrey in the Yellow River Basin. Chen’s research



Water 2022, 14, 2759 15 of 18

holds that economic development and technological effects are the main negative and
positive factors behind the decline in the grey water footprint, respectively [67]. In
this study, economic scale was the main negative factor that leads to the increase in
the agricultural grey water footprint. For the temporal change of the agricultural grey
water footprint, scientific and technological innovation was the main negative factor
that leads to the increase in the agricultural grey water footprint. Kong found that,
according to the intensity and grey water footprint of Chinese provincial agriculture
and the agricultural GDP, there was a growth inhibitory effect of the grey water
footprint, and the driving role was determined [68]. In this study, we found the
opposite conclusion in that economies of scale affected the main negative factors
driving the temporal changes of the agricultural grey water footprint of the Yellow
River. This may be caused by the study of the regional difference taking cities as the
research object, so the scale was smaller and the results were more targeted.

4.2. Suggestions

Based on the above research conclusions, we proposed the following suggestions:

(1) Appropriately control the population and the scale of agricultural economic develop-
ment in the areas along the Yellow River Basin, and achieve balanced development
between urban and rural areas. On the one hand, for the regions with a large popula-
tion, the government should issue corresponding subsidy policies for out-migrating
workers based on the actual situation of the city, and encourage a large number of
young people to work and do business in the eastern region. On the other hand, for
the regions with a small population, the government should strengthen the construc-
tion of living facilities for the residents, improve the level of education and medical
care, reduce the cost of living, and attract people from other provinces to settle in this
area, in order to realize the overall development of urban and rural areas in the Yellow
River Basin.

(2) Based on regional resource endowments, the layout of agricultural production should
be optimized and the agricultural planting structure should be rationally adjusted
to maximize the efficiency of grain output. Each region should build important agri-
cultural production bases with distinctive advantages according to their regional
resource endowments. Furthermore, the layout of agricultural production should
be optimized and the agricultural planting structure should be rationally adjusted
to maximize the scale efficiency of grain production, thereby reducing the agricul-
tural grey water footprint, and accelerating the high-quality development of various
agricultural regions.

(3) Rely on the progress of agricultural science and technology to develop environment-
friendly agriculture. Specifically, it is necessary to call on all municipal agricultural
technology centers to hold online training courses on chemical fertilizer and pesti-
cide reduction and efficiency enhancement technologies to guide farmers on how to
popularize and apply “soil testing and formula fertilization technology” according to
the fertilizer requirements of different crops. In addition, the National Agricultural
Technology Center can also conduct training courses in various cities to demonstrate
the relevant techniques to farmers and encourage them to observe and communicate,
so as to explore new technologies for reducing chemical fertilizers and pesticides.

While offering a new perspective on evaluating agricultural water environment pol-
lution in the Yellow River Basin, our study has limitations that represent opportunities
for further research. First, due to the current academic circles not having reached a uni-
fied view on the definition of or calculation methods for the total agricultural grey water
footprint (including planting, livestock, poultry breeding, and aquaculture, as well as data
limitations), when calculating the agricultural grey water footprint, we only considered the
grey water footprint produced by the application of chemical fertilizers (nitrogen fertilizers
and compound fertilizers) in the planting industry. This may lead to a conservative value
of the calculated agricultural grey water footprint. Second, through an empirical analysis,
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it was concluded that the agricultural grey water footprint of different regions in the Yellow
River basin has differences in the spatial scale, but how does the spatial differences evolve?
Will the gap in the agricultural grey water footprint of different regions converge over time?
If so, what kind of convergence will it show? Due to the limitations of space and the focus
of this paper, we have not yet discussed these issues yet. In the future, spatial convergence
and other models will be introduced to further analyze these issues.
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