Impacts of Climate Change and Human Activities on Streamflow of Upper Yongding River Basin, North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Trend Detection
2.3.2. Change Point Detection
2.3.3. Budyko Method
2.3.4. Determination of the Parameter α in Fu’s Equation
2.3.5. Assessing the Impacts of Climate Change and Human Activities on Streamflow by the DMC Method
3. Results
3.1. Spatio-Temporal Variation Characteristics of Hydro-Meteorological Factors
3.2. Abrupt Changes in Streamflow
3.3. Effects of Climate Change and Human Activities on Streamflow
4. Discussion
4.1. Impacts of Climate Change and Human Activities on Streamflow by the DMC Method
4.2. Impacts of Human Activities on Streamflow in the UYRB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Schiermeier, Q. Increased flood risk linked to global warming. Nature 2011, 470, 316. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.; Hoekstra, A. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Bouimouass, H.; Fakir, Y.; Tweed, S.; Leblanc, M. Groundwater Sustainability in a Semiarid Traditional Irrigation Piedmont Supplied by High Mountain Streamflow. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 19–30 April 2021. EGU21-9925. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Yakir, H.; Morin, E. Hydrologic response of a semi-arid watershed to spatial and temporal characteristics of convective rain cells. Hydrol. Earth Syst. Sci. 2011, 15, 393–404. [Google Scholar] [CrossRef]
- Kazemi, H.; Hashemi, H.; Maghsood, F.F.; Hosseini, S.H.; Sarukkalige, R.; Jamali, S.; Berndtsson, R. Assessment of streamflow decrease due to climate vs. human influence in a semiarid area. Hydrol. Earth Syst. Sci. Discuss. 2020. Available online: https://hess.copernicus.org/preprints/hess-2019-618/ (accessed on 7 August 2022). [CrossRef]
- Tariku, T.B.; Gan, K.E.; Tan, X.; Gan, T.Y.; Tilmant, A. Global warming impact to river basin of blue nile and the optimum operation of its multi-reservoir system for hydropower production and irrigation. Sci. Total Environ. 2021, 767, 144863. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Milly, P.; Dunne, K.A. Colorado river flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 2020, 367, 1252–1255. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, B.; Liu, D.L.; Zhang, M.; Feng, P.; Cheng, L.; Yu, Q.; Eamus, D. Impacts of future climate change on water resource availability of eastern Australia. J. Hydrol. 2019, 573, 49–59. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 411. [Google Scholar] [CrossRef]
- Bai, P.; Liu, W.; Guo, M. Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China. Theor. Appl. Climatol. 2014, 117, 293–301. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; McVicar, T.; Guo, J.; Tang, Y.; Yao, A. Isolating the impacts of climate change and land use change on decadal streamflow variation: Assessing three complementary approaches. J. Hydrol. 2013, 507, 63–74. [Google Scholar] [CrossRef]
- Wang, W.; Shao, Q.; Yang, T.; Peng, S.; Xing, W.; Sun, F.; Luo, Y. Quantitative assessment of the impact of climate variability and human activities on runoff changes: A case study in four catchments of the Haihe River basin, China. Hydrol. Process. 2013, 27, 1158–1174. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, F.F.; Brown, A.E. Predicting effects of plantation expansion on streamflow regime for catchments in Australia. Hydrol. Earth Syst. Sci. 2012, 16, 2109–2121. [Google Scholar] [CrossRef]
- Zhao, G.; Tian, P.; Mu, X.; Jiao, J.; Wang, F.; Gao, P. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. J. Hydrol. 2014, 519, 387–398. [Google Scholar] [CrossRef]
- Andaryani, S.; Nourani, V.; Ball, J.; Asl, S.J.; Keshtkar, H.; Trolle, D. A comparison of frameworks for separating the impacts of human activities and climate change on river flow in existing records and different near-future scenarios. Hydrol. Process. 2021, 35, e14301. [Google Scholar] [CrossRef]
- Fu, B. On the calculation of land surface evaporation. Atmos. Sci. 1981, 5, 25–33. (In Chinese) [Google Scholar]
- Jinbo, L. Geological background along the banks of the yongding river. Urban Geol. 2012, 7, 1. [Google Scholar]
- Wang, L.; Wang, Z.; Koike, T.; Yin, H.; Yang, D.; He, S. The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change. Hydrol. Process. 2010, 24, 1123–1132. [Google Scholar] [CrossRef]
- Ren, L.; Wang, M.; Li, C.; Zhang, W. Impacts of human activity on river runoff in the northern area of China. J. Hydrol. 2002, 261, 204–217. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, D.; Yang, Y.; Tian, F.; Hu, Y.; Han, S. Advances in clarification of the driving forces of water shortage in Haihe River Catchment. Chin. J. Eco-Agric. 2018, 26, 1443–1453. [Google Scholar]
- Xia, J.; Zeng, S.; Du, H.; Zhan, C. Quantifying the effects of climate change and human activities on runoff in the water source area of Beijing, China. Hydrol. Sci. J. 2014, 59, 1794–1807. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, L.; Xia, J.; Yang, Z. Water cycle characteristic and its responses to climate change of the Yongding river basin. J. Basic Sci. Eng. 2013, 21, 501–511. [Google Scholar]
- Mo, C.; Ruan, Y.; Mo, G.; Zhu, X.; Sun, G. Studying Response of Runoff to Climate Change and Human Activities Based on Elastic Coefficient. J. China Hydrol. 2018, 38, 41–45. (In Chinese) [Google Scholar]
- Zhang, L.; Yu, S.; Duan, Y.; Shan, L.; Chen, X.; Xu, Z. Quantitative Assessment of the Effects of Climate Change and Human Activities on Runoff in the Yongding River Basin. Clim. Change Res. 2013, 9, 391–397. (In Chinese) [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Mann, H.B. Non-parametric test against trend. Econometrika 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves. U. S. Geological-Survey-Water-Supply; U. S. Government Printing Office: Washington, DC, USA, 1960; Volume 1541-B, pp. 31–66. [Google Scholar]
- Marlatt, W.E.; Budyko, M.I.; Miller, D.H. Climate and Life. J. Range Manag. 1975, 28, 160. [Google Scholar] [CrossRef]
- Li, D.; Pan, M.; Cong, Z.; Zhang, L.; Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 2013, 49, 969–976. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Zhou, G.; Wei, X.; Chen, X.; Zhou, P.; Liu, X.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.; Han, L.; et al. Global pattern for the effect of climate and land cover on water yield. Nat. Commun. 2015, 6, 5918. [Google Scholar] [CrossRef]
- Pirnia, A.; Golshan, M.; Darabi, H.; Adamowski, J.; Rozbeh, S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. J. Water Clim. Chang. 2018, 10, 725–742. [Google Scholar] [CrossRef]
- Pockley, P. The evaporation paradox. Australas. Sci. 2009, 396, 30. [Google Scholar]
- Liu, C.; Zhang, D. Temporal and Spatial Change Analysis of the Sensitivity of Potential Evapotranspiration to Meteorological Influencing Factors in China. Acta Geogr. Sin. 2011, 66, 579–588. (In Chinese) [Google Scholar]
- Yang, Y.; Tian, F. Abrupt change of runoff and its major driving factors in haihe river catchment, China. J. Hydrol. 2009, 374, 373–383. [Google Scholar] [CrossRef]
- Ding, A.; Zhao, Y.; Hao, D.; Zhang, S.; Qiao, G. Analysis of variation characteristics of runoff and their influencing factors in the yongding river basin. South North Water Transf. Water Sci. Technol. 2013, 11, 17–22. (In Chinese) [Google Scholar]
- Zhang, S.; Lu, X. Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena 2009, 77, 130–142. [Google Scholar] [CrossRef]
- Hou, L. Study on Mechanism of Ecohydrological Response at the Water resources Shortage Watershed in Northern China—A Case Study of Yongding River. Ph.D. Thesis, China Institute of Water Resources and Hydropower Research, Beijing, China, 2019. [Google Scholar]
- Gibson, J. Aggregate and distributional impacts of China’s household responsibility system. Aust. J. Agric. Resour. Econ. 2020, 64, 14–29. [Google Scholar] [CrossRef]
- Tan, G. Analysis on the implementation of sustainable utilization planning of water resources in the capital in the early 21st century. Haihe Water Conserv. 2004, 4, 25–26. (In Chinese) [Google Scholar]
- Wang, D. Analysis on the progress and measures of implementing the capital water resources planning project in Zhangjiakou. Haihe Water Conserv. 2003, 5, 12–13. (In Chinese) [Google Scholar]
Basin | Hydrological Station | River Basin Area (km2) | Average Annual Precipitation (mm) | Average Annual Runoff (mm) | CV |
---|---|---|---|---|---|
Yang River | Xiangshuibu | 14600 | 389 | 27 | 0.59 |
Sanggan River | Shixiali | 23300 | 433 | 24 | 0.59 |
Watershed | Period | P (mm/Year) | E0 (mm/Year) | R (mm/Year) | ΔRc (mm) | ΔRh (mm) | ΔRc (%) | ΔRh (%) |
---|---|---|---|---|---|---|---|---|
Yang River Basin | 1961–1982 | 398 | 1044 | 42 | ||||
1983–2003 | 380 | 1006 | 27 | −1 | −14 | 9.4 | 90.6 | |
2004–2017 | 389 | 1024 | 5 | −0 | −36 | 0.5 | 99.5 | |
Sanggan River Basin | 1961–1982 | 447 | 940 | 36 | ||||
1983–2003 | 416 | 928 | 26 | −4 | −7 | 37.3 | 62.7 | |
2004–2017 | 438 | 970 | 3 | −2 | −31 | 6.5 | 93.5 |
Watershed | Period | P (mm/Year) | R2m (mm) | R2c (mm) | ΔRc (mm) | ΔRc (%) | ΔRh (mm) | ΔRh (%) |
---|---|---|---|---|---|---|---|---|
Yang River Basin | 1961–1982 | 398 | 42 | 40 | ||||
1983–2003 | 380 | 27 | 38 | −3 | 21.4 | −12 | 78.6 | |
2004–2017 | 389 | 5 | 40 | −2 | 5.9 | −34 | 94.1 | |
Sanggan River Basin | 1961–1982 | 447 | 36 | 36 | ||||
1983–2003 | 416 | 26 | 34 | −3 | 24.9 | −8 | 75.1 | |
2004–2017 | 438 | 3 | 36 | −1 | 1.8 | −32 | 98.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, L.; Guo, Y.; Qi, Y.; Shen, Y.-J.; Shen, Y. Impacts of Climate Change and Human Activities on Streamflow of Upper Yongding River Basin, North China. Water 2022, 14, 2798. https://doi.org/10.3390/w14182798
Deng L, Guo Y, Qi Y, Shen Y-J, Shen Y. Impacts of Climate Change and Human Activities on Streamflow of Upper Yongding River Basin, North China. Water. 2022; 14(18):2798. https://doi.org/10.3390/w14182798
Chicago/Turabian StyleDeng, Liqiang, Ying Guo, Yongqing Qi, Yan-Jun Shen, and Yanjun Shen. 2022. "Impacts of Climate Change and Human Activities on Streamflow of Upper Yongding River Basin, North China" Water 14, no. 18: 2798. https://doi.org/10.3390/w14182798
APA StyleDeng, L., Guo, Y., Qi, Y., Shen, Y. -J., & Shen, Y. (2022). Impacts of Climate Change and Human Activities on Streamflow of Upper Yongding River Basin, North China. Water, 14(18), 2798. https://doi.org/10.3390/w14182798