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Abstract: Surface water is a crucial resource and environmental element for human survival and
ecosystem stability; therefore, accurate information on the distribution of surface water bodies is
essential. Extracting this information on a large scale is commonly implemented using moderate- and
low-resolution satellite images. However, the detection and analysis of more detailed surface water
structures and small water bodies necessitate the use of very high-resolution (VHR) satellite images.
The large-scale application of VHR images for water extraction requires convenient and accurate
methods. In this paper, a method combining a pixel-level water index and image object detection is
proposed. The method was tested using 2018/2019 multispectral 4-m resolution images obtained
from the Chinese satellite Gaofen-2 across Beijing, China. Results show that the automatic extraction
of water body information over large areas using the proposed method and VHR images is feasible.
Kappa coefficient and overall accuracy of 0.96 and 99.8% after post-classification improvement were
obtained for testing images inside the Beijing area. The Beijing water body dataset obtained included
a total of 489.53 km2 of surface water in 2018/2019, 108.01 km2 of which were ponds with an area
smaller than 2 km2. This study can be applied for water body extraction and mapping in other large
regions and provides a reference for other methods for using VHR images to extract water body
information on a large scale.

Keywords: pond; water; object-based; large-scale; high-resolution; remote sensing

1. Introduction

Water is an essential natural resource and has become a significant environmental and
social issue today. Land surface water is an indispensable vital resource, and information
on its availability and level is essential for climate change research, ecological environment
assessment, and macro-economy analysis. Surface water bodies affect the exchange of heat,
gas, and water vapor between the planet’s surface and atmosphere, as well as the activities
of different organisms, including humans, animals, plants, microorganisms, etc.

Satellite remote sensing is an advanced method for monitoring and mapping large-
scale surface water information efficiently and accurately through convenient data acqui-
sition in a scalable manner. On a global scale, researchers often use Landsat and MODIS
satellite data to determine water coverage, with resolutions ranging from 30 to 1000 m [1–7].
Landsat and Sentinel images are commonly used data for regional or national-scale analyses,
with notable examples being Landsat images of the Ontonagon River Basin (Michigan) [8]
and the Mongolian Plateau [9], Sentinel-1 synthetic aperture radar images of India and
China [10,11], Sentinel-2 images of Germany and China [12,13], and Landsat images of
China [14,15]. These high-, low-, and moderate-resolution images (Sentinel, MODIS, and
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Landsat) allow large-scale surface water body monitoring and mapping as: (a) they can
meet the scale requirements of surface coverage types to a certain extent; (b) they are free
and easy to obtain; (c) the number of images required is relatively small and the corre-
sponding computational load is manageable. Further, the latest Google Earth Engine (GEE)
provides a more effective method to monitor environmental elements of various types on
a large scale and a large area using low-, moderate- and high-resolution images. Of the
data used in the GEE, Landsat and MODIS constitute the more comprehensive open-access
data archive and are suitable for long-term dynamic monitoring [16–18], while Sentinel-2
images have the highest spatial resolution [19,20].

Surface water body types include lakes, reservoirs, rivers, ditches, ponds, etc. When
using satellite imagery to detect water bodies such as lakes and rivers, small water bodies
such as ponds are ignored. However, these small bodies play a crucial role in the ecological
environment, and awareness of their presence is important for the analysis of an area’s
ecosystem. For example, ponds have slow water circulation rates, which results in delays
in the purification of pollutants, susceptibility to eutrophication, and poor renewal ability;
this condition also makes them suitable base camps for pathogenic microorganisms and
parasites [21]. Moreover, there are far more ponds than large water bodies [22], and they
are mainly distributed in rural areas and directly related to the daily life of farmers and
their agricultural activities [23]. At the same time, it is necessary to obtain information on
multiple types of surface water bodies in a region to fully grasp the situation of different
water resource types, understand the quantity and spatial distribution, and perform more
comprehensive top-level design and environmental planning.

The lump shape and fine-scale heterogeneity of pond water bodies, whose size ranges
from 1 m2 to about 5 ha, are often not captured by moderate- and high-resolution sensors
such as Landsat and Sentinel, and can be monitored using very high-resolution (VHR)
images [24]. The identification of water bodies with VHR images has been studied exten-
sively in recent years. Different methods have been proposed, and they can be generally
divided into four types [25]: thematic classification, spectral unmixing, single band thresh-
olding, and spectral water indices. These methods have achieved good results [26–30];
however, they focus on improving the accuracy of water information extraction over small
areas [31–35], and few studies focus on using VHR images for the detection of surface
water bodies in large-scale regions. Specifically, the limiting factors include five aspects:
(1) Large-scale applications require massive amounts of VHR images; (2) VHR aerial pho-
tography and imagery is expensive to acquire and labor-intensive to process; (3) Each
VHR image requires significant digital storage resources, and their processing requires
substantial computational capabilities; (4) VHR images have fine surface information, and
the surface water body types included in large areas are more abundant, so more samples
and features are required to train the detection methods or models; (5) The high spatial
heterogeneity can easily cause detection errors. With the rapid development of related
technologies and methods, such as remote sensing, clustering, and parallel computing, the
adoption of VHR images is becoming more and more popular [35]. For example, McCarthy
et al. [30] used a decision tree diagram to map wetlands using WorldView-2 2 m VHR
images of the Tampa Bay watershed, a subtropical climate zone in the west-central coast of
the State of Florida. Therefore, it is necessary to expand the application of VHR images in
water body detection at large scales and to study the corresponding extraction methods.

In this paper, a novel two-level pixel-object extraction method is proposed for water
body detection at large scales based on multiple VHR optical satellite images. The method
combines a pixel-based water index and image object recognition, and is suitable for
automation of the labor-intensive process of water body extraction. The specific objectives
are to analyze the convenience and accuracy of the method flow and map detailed land
surface water body information, taking the region of Beijing, China, as a case study. Our
research can provide a reference for the related research or applications of surface water
extraction with VHR images at a large scale.
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2. Materials and Methods
2.1. Study Site

In this paper, Beijing, the capital of China, is taken as the study area (Figure 1A). Beijing
is the capital of China and the country’s political, economic, and cultural center. It is located
in the Haihe River basin, in an area that suffers from a water resource shortage and a water
quality problem [31]. Surface water accounts for about 1/3 of the total water resources in
Beijing and is directly related to the economy, agriculture, life, and environment. Therefore,
Beijing’s surface water situation needs to be studied to support water resource supply
analysis and management. However, previous surveys or studies have not used VHR
images to obtain water bodies information throughout the entire Beijing.
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Beijing is situated at the northern tip of the North China Plain (39◦28′–41◦05′ N,
115◦25′–117◦30′ E) and covers a total area of 16,410.54 km2. The western, northern, and
northeastern regions of Beijing are primarily mountainous, with altitudes ranging from
1000 to 1500 m. The southeastern part is a plain with altitudes that range from 20 to 60 m.
The climate is hot and humid in the summer and cold and dry in the winter, with prominent
warm temperate and semi-humid continental monsoon climate characteristics [36]. The
topography and climate characteristics cause the region of Beijing to feature large water
bodies such as lakes, reservoirs, rivers, and many small water bodies such as ponds
and canals.

2.2. Very High-Resolution Image and Preprocessing

In this paper, Gaofen-2 (GF-2) image data are used for the analyses. GF-2 is an optical
satellite with VHR images from a series of Chinese civilian remote sensing satellites. This
satellite provides 1 m resolution panchromatic (0.45–0.90 µm) images and 4 m resolution im-
ages with multispectral bands (blue−B1 (0.45–0.52 µm), green−B2 (0.52–0.59 µm), red−B3
(0.63–0.69 µm), and near-infrared−B4 (0.77–0.89 µm)) on a swath of 45 km. Table 1 lists
the main information of 55 images (shown in Figure 1B), including acquisition time, water
body types depicted, and major shadow noise sources. The 55 images are derived from
the China Center for Resources Satellite Data and Application (http://www.cresda.com).

http://www.cresda.com
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Since images obtained during the rainy season do not cover the entire area, we also used
the images obtained during the non-rainy season. Thus, the 55 images obtained cover most
of the Beijing area. The corresponding periods ranged from 1 March to 29 October in 2018
(37 images) and from 9 May to 11 November in 2019 (18 images). The major shadow noise
sources include hills, buildings, street trees, and trees.

Table 1. Acquisition time, water body types, and primary shadow noise sources of the GF-2.

ID Time Water
Types

Major
Shadow ID Time Water

Types
Major

Shadow ID Time Water
Types

Major
Shadow

1 25 April 2018 - - 21 31 August 2018 River
Pond Building 41 10 September 2018

River
Pond
Ditch

Building
Street
Tree

2 25 April 2018 Reservoir Hill 22 29 October 2018 River
Pond Building 42 10 September 2018 River

Pond
Street
Tree

3 16 April 2018 River Hill 23 29 October 2018 River
Pond

Building
Street
Tree

43 10 September 2018 River
Pond

Building
Street
Tree

4 16 April 2018 River Hill 24 29 October 2018 River
Building

Street
Tree

44 18 November 2019 River Hill

5 16 April 2018 River Hill 25 29 October 2018 River
Pond Building 45 18 November 2019 Reservoir

River Hill

6 1 March 2018 Reservoir Hill 26 22 March 2018 River Hill 46 18 November 2019 - -

7 1 March 2018 River Hill 27 5 September 2018 River Hill 47 18 November 2019 River
Pond

Building
Hill

8 1 March 2018 River Hill 28 5 September 2018 River
Pond Hill 48 10 September 2018 River

Pond

Building
Street
Tree

9 25 April 2018 River Hill 29 5 September 2018
Reservoir

River
Pond

Building 49 5 September 2018
River
Pond
Ditch

Building
Tree

10 29 October 2018 River Hill 30 22 March 2018 River
Pond Building 50 5 September 2018

River
Pond
Ditch

Building
Tree

11 29 October 2018 River Hill 31 22 March 2018 River
Pond Building 51 5 September 2018

River
Pond
Ditch

Building
Tree

12 18 June 2019 River
Pond - 32 22 March 2018

River
Pond
Ditch

Building 52 10 September 2018
River
Pond
Ditch

Building
Tree

13 18 June 2019 River Hill 33 22 March 2018
River
Pond
Ditch

Building 53 9 October 2018
River
Pond
Ditch

Building
Tree

14 18 June 2019 River Hill 34 5 September 2018 River Hill 54 29 May 2019 Reservoir
River Hill

15 18 June 2019 - - 35 5 September 2018 Reservoir
River Hill 55 29 May 2019 Reservoir

River Hill

16 18 June 2019 River Hill 36 5 September 2018
Reservoir

River
Pond

Hill
Building

17 18 June 2019 River
Pond Building 37 5 September 2018 River

Pond
Hill
Tree

18 18 June 2019 River
Pond Building 38 10 September 2018 River

Pond Building

19 18 June 2019 River
Pond Building 39 9 May 2019 River

Pond Building

20 16 August 2019 River
Pond Building 40 9 May 2019 River

Pond
Building

Tree

To use VHR images on a large scale conveniently, batch processing is the most appro-
priate and effective way. First, orthorectification was implemented for all images. Then,
radiometric calibration and atmospheric correction were achieved using the Environment
for Visualizing Images (ENVI) API (version 5.3) with Interactive Data Language (IDL)
coding and processing for each image. For atmospheric correction, the Fast Line-of-Sight
Atmospheric Analysis of Hypercubes (FLAASH) model in ENVI was used, with a require-
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ment for appropriate value selection for the model parameters, such as ground elevation
and atmospheric model, based on the actual condition of each image.

2.3. Water Extraction Workflow

The overall framework presented in Figure 2 shows the procedures used in this study
to develop a convenient and accurate extraction process for water body information on a
large scale using multiple VHR optical satellite images. The proposed method comprises
five main steps: (1) Image preprocessing; (2) Water index (WI) calculation; (3) Pixel-level
water body information extraction via WI thresholds definition; (4) Image segmentation
and object extraction; (5) Calculation of the proportion of water pixels to the corresponding
image object pixels and water body detection.
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This paper’s focus is on a novel two-level pixel-object batch processing framework
for water extraction. On the first level, a pixel-based WI is used to extract water body
information. The spectral WI is widely used because of its high accuracy, easy imple-
mentation, and good results within commonly used water body information extraction
methods [26,32–34]. For VHR image applications with ample storage resources and large
numbers of images, the WI method is very suitable, as it only requires band calculations
and determination of the water threshold. The method does not require multiple surface
types to be extracted or substantial calculations and processing, which results in improved
information extraction speed.

On the second level, pixel-level water body information and image objects are com-
bined to obtain the object-level water body information. Batch processing is implemented
for the entire acquisition process. Lakes, reservoirs, and ponds generally manifest with
internal homogeneity, and each entity can be regarded as an independent and complete
object. The WI extraction method–based pixels will appear as “salt and pepper” noise,
reducing the integrity and comprehensiveness of the ground objects. If the misclassified
pixels are located inside an object, this will affect the integrity of the object. Therefore,
these three types of water bodies are more suitable for object-based extraction methods
which ensure that each surface type object is extracted completely [37,38]. In this paper,
object-oriented and WI methods are combined to extract water body information and the
whole process is realized using IDL coding to achieve batch processing of multiple images.

2.3.1. Spectral Water Index

When extracting water body information from VHR images, shadows are a common
cause of algorithm confusion. Conventional WIs, such as the normalized difference water
index and the High-Resolution Water Index [26], have limited ability to distinguish water
bodies from shadows. The Two-Step Urban Water Index [25] (TSUWI), which was devel-
oped using GF-2 high-resolution images, can distinguish between urban building shadows
and water bodies effectively without the need to determine the water thresholds for the
images at the different locations and dates. The TSUWI is a combination of the urban
water index (UWI) and the urban shadow index (USI). The UWI is used to distinguish
water (classifying shadows as water) and non-water body types, and is based on binary
classification using a linear support vector machine on some bands. The USI is used to
distinguish between water and shadow types based on the UWI image, and works in a
similar fashion to the UWI. The indices are calculated using the following equations:

UWI =
G− 1.1× R− 5.2×NIR + 0.4
|G− 1.1× R− 5.2×NIR| , (1)

USI = 0.25× G
R
− 0.57× NIR

G
− 0.83× B

G
+ 1.0, (2)

and
TSUWI = (UWI > T1) ∧ (USI > T2), (3)

where G, R, NIR, and B represent the reflectance of green, red, near-infrared, and blue
bands, respectively. The thresholds T1 and T2 are usually set at 0.

During practical applications, we found that due to the difference in scene brightness
and scene contrast at different times and locations, the optimal thresholds of UWI and USI
in each image were not necessarily 0, but some values close to 0 (Figure 3B). Thus, it is
necessary to consider the spatial heterogeneity and determine the threshold according to the
actual imaging conditions. In UWI and USI images, the contrast of target and background
pixels is evident, and the frequency histogram follows a bimodal distribution, which is
suitable for threshold-based segmentation methods.
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are water bodies and shadows, while dark color is the background.

Taking a typical UWI image as an example, the study area’s number of water pixels
is usually much smaller than that of the background pixels (Figure 3). In Figure 3A, the
spatial distribution range of the bright water and shadow pixels is much smaller than that
of the dark background, as is the corresponding number of pixels in Figure 3B. Thus, the
peak of the bright water and shadow pixels is not pronounced, and it is relatively tricky
to determine the threshold between the bright water and shadow pixels and the dark
background pixels.

Typical threshold segmentation methods include Otsu, maximum entropy, iteration,
2-Mode, etc. [39]. The 2-Mode method requires that the grayscale histogram of the target
image has pronounced double peaks. The iterative method requires different thresholds
for each water body and shadow object in the image. After experiments, the number
of thresholds for each iteration was enormous and computationally expensive. We also
conducted experiments using the Otsu and the maximum entropy methods, and the results
showed that the Otsu method performed relatively well. Japanese scholar Otsu proposed
the algorithm in 1979 as a method to determine an image binarization threshold [40] by
maximizing the inter-class variance between two classes of pixels. The Otsu algorithm is a
universal algorithm for selecting thresholds in image segmentation, and it is widely used
in digital image processing due to its advantages of simple calculations and robustness to
different image brightness and contrast levels.

2.3.2. Object Detection

ENVI-IDL’s “envi_fx_segmentonly_doit” function was used to perform segmentation
for all images to detect objects. The segmentation scale is a key factor of the segmentation
function, and its value is related to the integrity of the detected objects. Beijing spans a wide
coverage and has a varied topography and surface. Thus, different images have different
optimal scales. At the same time, it is difficult to determine the optimal scale for each image
automatically. Depending on the topography and surface characteristics, Beijing can be
divided into two regions: mountains and plains. Five images in each region were selected as
samples, and the optimal segmentation scale for each sample image was determined using
trial and error. The optimal scale factor needs to be such that the segmented water body
objects have the highest homogeneity, while other types have the highest heterogeneity.
The average value of the five sample images’ optimal scales was taken as the optimal
segmentation scale of all the images in each region.
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2.3.3. Combination of Pixel-Based Water Index and Image Object

After the image segmentation step, the surface types are the form of image objects. The
object-based water body information is obtained using the corresponding pixel proportion
at the same spatial position (Figure 4), named the two-level pixel-object method.
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First, each object is numbered, and the number of its pixels is counted (Figure 4B).
Then, the number of water pixels in the corresponding space of the object is counted
(Figure 4C). Finally, the ratio of the number of these pixels for the two types is calculated
(Equation (4)), and image objects with a ratio above a threshold (>0.1) are identified as
water objects. In addition, to further eliminate salt-and-pepper noise, water bodies with
fewer pixels than a specific value (7 pixels) are defined as misidentified and are dismissed
from the output.

R =
pixelwater

pixelobject
(4)

where R is the ratio of the number of the two types of pixels at the same spatial position;
Pixelwater is the number of water pixels (determined from applying Otsu’s method on
the TSUWI image) contained in the land surface objects; pixelobject is the number of pixels
contained in the land surface object as determined through the image segmentation process.

2.4. Post-Classification Improvement

Due to the complexity of surface cover types, in some areas, the TSUWI cannot
distinguish some land surface types with spectra similar to water with complete precision.
In addition, some images were in the non-rainy season, causing some seasonal water
bodies to be in a dry state. These bodies did not have any water spectrum characteristics
and cannot be extracted using the WI. These two factors caused errors in the water body
detection. To map the water with higher accuracy, the object-based water results were
revised through visual interpretation to correct the misclassifications. The final water
results were exported as vector data layers using the ENVI API.

The visual interpretation includes three aspects:
(1) Dry water bodies. Visual interpretation was carried out based on the spectral

characteristics and morphology of dry water bodies and referencing other images.
(2) Misclassified water bodies. Objects incorrectly classified as water bodies were deleted.
(3) Unclassified and misclassified water bodies. Visual interpretation was used

to supplement the unclassified water bodies and revise the water bodies misclassified
as background.

2.5. Accuracy Assessment

For each image, there were one thousand reference pixels (test samples) of two land
surface types (water and non-water). The reference pixels were selected at random, and the
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actual surface type of the reference pixels was determined through visual interpretation.
The reference images for the visual interpretation were the VHR images (GF-2) used in this
paper. The accuracy assessment was assessed through the kappa coefficient (KC), overall
accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA) derived from the
confusion matrix [25]. The confusion matrix was produced via a pixel-by-pixel comparison
between the extraction results and the reference pixels.

3. Results
3.1. Water Mapping and Accuracy

Figure 5 shows the surface water distribution of Beijing in 2018/2019, which was
abundant and widely distributed. The total water body area was 489.53 km2 (including the
seasonally dried-up water bodies), and was in general distributed unevenly (Figure 6). Due
to the Miyun Reservoir, which had the largest water body area of 141.42 km2 in 2018/2019,
the Miyun District had the largest extent of surface water (177.44 km2, 36.57%), followed
by Fangshan District (55.76 km2, 11.49%), Yanqing District (37.86 km2, 7.80%), Huairou
District (36.54 km2, 7.53%) and Daxing District (32.32 km2, 6.66%).
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Given the large number of images and the challenge of collecting test samples, four
typical testing images were selected to assess the accuracy and display the corresponding
water body information extraction results in detail. The four images were selected along
a north–south direction: one in the mountain (Figure 7A), one in the transition zone
between mountain and plain (Figure 7B), and two in the plain (Figure 7C,D). The shadow
in Figure 7A–D images included mainly hill shadows, building shadows, buildings and
hill shadows, and building and tree shadows, respectively.
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The surface water body results after the post-classification improvement of the four
typical testing images are presented in Figure 8, and the accuracies before and after the
post-classification improvement of the four typical testing images are presented in Table 2.
The results of Figure 8 show that water body information extracted based on VHR images
describes the shape, area, and spatial distribution of surface water bodies accurately,
especially the ponds in Figure 8B–D, which were distributed widely. Statistical analysis
(Table 2) shows that the four images had a mean KC equal to 0.84, a mean OA of 99.2%, and
a mean PA and UA of water of 83.1% and 86.6% before post-classification improvement, and
corresponding values of 0.96, 99.8%, 94.8%, and 98.5% after post-classification improvement.
This indicates that post-classification improved the water extraction accuracy significantly,
especially for the image of Figure 8C, whose results before the post-classification had
many building shadows and consequently a lower KC. The accuracy before and after
post-classification improvement illustrated that the water body information extraction
and mapping pipeline presented in this paper successfully achieved high accuracy in all
testing images.
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Table 2. Summary of classification accuracies of the method for the four testing images.

Processing Testing Images Reference Points (Water) Accuracy
Ground Truth Extraction Results KC OA (%) PA (%) UA (%)

Before
post-

classification

Image A 246 238 0.976 99.1 96.7 99.6
Image B 43 38 0.912 99.3 88.4 95.0
Image C 17 12 0.701 99.0 70.6 70.6
Image D 17 13 0.784 99.3 76.5 81.3

After
post-

classification

Image A 246 244 0.995 99.8 99.2 100.0
Image B 43 42 0.988 99.9 97.7 100.0
Image C 17 15 0.936 99.8 88.2 100.0
Image D 17 16 0.940 99.8 94.1 94.1

3.2. Pond Body Statistics

Small surface water bodies, like ponds, are widely abundant in nature, and understand-
ing their quantity and distribution is very important for water environment monitoring
and governance. The surface water bodies in Beijing named lakes are mostly wetland
landscapes for environment and tourism purposes and have a small area. In this paper,
they are considered as ponds. After consulting the relevant information of the Beijing
reservoirs, 2 km2 was used as the threshold for reservoir classification, that is, water bodies
(reservoirs and ponds) larger than 2 km2 were considered reservoirs, while those with an
area smaller than 2 km2 were considered ponds.

According to statistics of the results, in 2018/2019, there were 13,073 ponds with a total
area of 108.01 km2 in Beijing (Figure 9). We classified ponds with an area less than 10,000 m2

in bins of width 1000 m2. The ponds with areas of 1000–2000 m2 were the most abundant,
with 2703 bodies covering a total area of 4.00 km2. They were followed by 2041 ponds
with areas of 2000–3000 m2 spanning 5.04 km2. There were also 2040 ponds smaller than
1000 m2 and spanning a total of 1.28 km2. Beijing had 1413 ponds with areas in the range of
10,000–100,000 m2, covering 36.11 km2, and 107 ponds in the range of 100,000–500,000 m2

with a total area of 20.50 km2.
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4. Discussion
4.1. Contributions of This Study

In this study, in order to satisfy the need for extracting large-scale water body informa-
tion based on VHR images at a large scale, a convenient and accurate pipeline is explored
and proposed. Rapid and accurate acquisition of large-scale surface water information
based on VHR images is an important requirement for efficient environmental monitoring
and constitutes one of the major foci of remote sensing application research. This study’s
processing pipeline was constructed by combining WI, object detection, and batch pro-
cessing, thus resulting in significant large-scale application efficiency in extracting land
surface information from VHR images. The WI and object detection ensure the method’s
convenience and the integrity of water objects, respectively. The batch processing through
writing code automates the water body detection process. The average KC and OA before
the post-classification of the four test images are 0.84 and 99.2% in this study. The KC and
OA of the water body dataset in China extracted by Li et al. [11] based on Sentinel-1 data
are 0.86 and 0.93. A surface water map of China produced by Jiang et al. [14] with Landsat
8 data has a KC and an OA of 0.78 and 0.90. Considering that the pipeline emphasizes
the great potential of incorporating VHR satellite data in water detection at a large scale,
and the fine surface information of VHR images has a greater impact on the error of water
detection, the accuracy of this study is comparable or better compared to these studies.

Second, the method’s pipeline provides support and reference for large-scale VHR
image applications, such as country-wide studies, for high-precision land surface infor-
mation extraction, and especially for water body extraction. Most researchers have been
interested in national and even global remote sensing applications. An automatic extraction
approach is suitable for mapping surface types at large geographical scales [41]. Although
most machine learning methods, such as random forest, can achieve better information
extraction [42,43], they are supervised information extraction methods. Historically, prepar-
ing training datasets has often been a subjective and time-consuming step in many land
surface information supervised extraction approaches over large areas. To sidestep the
time-consuming task of preparing training datasets, when Huang et al. [41] used random
forest to extract surface water, the surface water coverage was determined using training
datasets automatically derived from prior classification masks. Particularly deep learning
methods, such as when Cheng et al. [27] used U-Net, also have a complex mechanism and
require hardware with very high computational performance. Some large-scale application
methods also have some shortcomings. The multi-band thresholding method used by
McCarthy et al. [30] can only be locally applied. Some WIs contain bands other than the
usual near-infrared, red, green, and blue; for example, an automated water extraction index
developed by Feyisa et al. [34] includes a short wave infrared band. This situation makes
these WIs inapplicable to most VHR images. The remote sensing index used in this article
is an unsupervised method and also does not require the preparation of training samples.
It has the advantages of simplicity and practicality, and can be implemented automatically
with only a threshold value. At the same time, the implementation of object detection was
also achieved in an automatic manner.

Third, in this paper, a high-accuracy water map of Beijing is presented from the period
2018/2019. To our knowledge, no publicly available high-precision map of the surface
water of this area has been previously presented. Previous studies mapping this area’s
surface water [44,45] only considered parts of the area, such as the urban part, as the
experimental object to evaluate water extraction methods, and did not extract the water
body distribution of the wider area of Beijing. The high-precision water distribution in the
entire Beijing area that we have obtained can be used as basic data and maps to provide
support for Beijing’s ecosystem assessment, environmental protection, and water body
change detection.
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4.2. Assessment of the Method’s Pipeline

We evaluated the effectiveness of the method’s pipeline from two aspects, namely the
combination of pixel-based WI and image objects and the batch processing capability.

4.2.1. Pixel-Object Combination

The extraction of water body information through the use of the WI in this study
suffered from two shortcomings. First, the pixels extracted using the WI contained salt-
and-pepper noise. Second, the Otsu threshold is equal to the mean value of the mean
levels of the two classes partitioned by this threshold. When the two intra-class variances
are substantially different, this threshold becomes biased toward the class with the larger
variance. As a result, pixels belonging partially to this class will be misclassified into the
other class due to its smaller variance [46]. As shown in Figure 10, the proposed pixel-
object combination method helps overcome these two issues. In Figure 10B, marked areas
1 and 2, there are some misclassified water pixels (which were actually shadows). When
combining the pixel-level result with the segmented image objects, as shown in Figure 10C,
areas 1 and 2, these misclassified pixels are rejected, as their number was relatively small,
and they had a lower ratio than the acceptable threshold (<0.1). In addition, the combined
pixel-object method ensured the integrity of each water body when using VHR images to
identify water bodies such as ponds and rivers Figure 10(D1,D2) in batches at a large scale.
Thus, the water information accuracy was increased by excluding misclassified pixels and
improving the integrity of the identified water bodies.
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Figure 10. Comparison of the surface water extraction results before and after applying the object
detection module. Column 1: (A,D), two false color sample images; Column 2: Pixel-level water
extraction results in (B,E); Column 3: Water extraction results with the two-level pixel-object method
(C,F). 1 and 2 are surface water sample objects.

4.2.2. Batch Processing

Batch processing facilitated the processing of multiple images and information ex-
traction. All steps were implemented in code, from image preprocessing to combining
the pixel-based WI with the object detection results. Once the images have been ac-
quired and organized appropriately, the workflow can be applied to process multiple
high-resolution images.
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4.3. Post-Classification Improvement

Figure 11 shows three samples after the post-classification improvement, including
dried water bodies (Figure 11A–C), misclassified objects (Figure 11D–F), and unclassified
and misclassified water bodies (Figure 11G–I).
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The dried water basin (which is normally a river) exhibited a seasonal characteristic,
that is, the seasonal rain has led to a river flow cut-off (Figure 11A). It is difficult to avoid
misclassification in such situations. When analyzing high-resolution images, due to the
limited swath width of the high-resolution satellite and the cloudy and rainy weather in the
rainy season, it is very difficult to obtain images on the same date to cover the entire study
area. Thus, a large number of images covering a longer time span is usually required. This
condition causes some images to be acquired during the non-rainy season. At present, few
studies focus on the identification of dried water bodies and there is also no corresponding
mature application. In this case, the dry water body identification was augmented through
visual interpretation, so that the river object maintained its integrity (Figure 11C).

Due to problems such as image resolution, classification features, and classification
methods, the information extraction process based on remote sensing images will inevitably
lead to misclassifications and omissions. Classifying shadows as water was the main
misclassification phenomena; in addition, unclassified and misclassified water bodies also
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affected accuracy, as shown in Figure 11D,G, respectively. Through visual interpretation,
the misclassifications and omissions were revised (Figure 11F,I).

4.4. Limitations and Improvements

One limitation of this study was data access. When using VHR images to classify a
large land area, data availability is a key issue, especially for water bodies affected by the
rainy season. In some areas, images can be obtained only during the non-rainy seasons. In
this case, seasonal water may be in a dry state, which affects the classification results, while
the visual interpretation of dry water bodies is more time-consuming. Therefore, a possible
improvement in our approach is to research a method for the automatic identification of
dried water bodies that can be applied in practical applications.

Another limitation was the river flow cut-off caused by the drying up. Water is unique
compared to many other land cover types because it can be highly variable, ebbing and
flowing over time, sometimes at regular annual rates and sometimes in long-term trends.
The existing continuous extraction methods of linear water bodies are mostly aimed at
specific regions and topographical conditions; they have poor applicability under different
conditions and require manual interventions during the identification process. Although
the interpretation accuracy of these methods is high, their computational cost is high, their
efficiency is low, and they are not suitable for emergency applications. A vital issue to be
considered next is therefore the continuous and automatic extraction of linear water bodies
by combining various water body identification and morphological filtering methods.

In addition, this study only extracted the surface water body in 2018/2019. A future
improvement can extract Beijing’s surface water distribution from more recent years to
detect the spatial changes of surface water.

In the proposed pipeline for water extraction and mapping, one limitation was the
misclassification caused mainly by the TSUWI. When the UWI and USI were used to extract
the water bodies, the two thresholds obtained by Otsu could not separate water well, and
some other objects were classified as water. We found that the two indices were not really
suitable for this purpose by setting multiple thresholds manually. For example, several
water body extraction experiments were carried out on the image in Figure 8C, and multiple
values were used for the two thresholds, including 0. However, the water body extraction
results of these experiments still contained many building shadows. Thus, it is necessary
to research other water indices or improve the TSUWI. As surface landscapes over large
areas have vast differences, the equations for the formulation of UWI and USI, which were
established through the study of relatively few images, are not representative and require
more high-resolution images to achieve good modeling of the image information. For
example, the coverage of rural land was not considered during the development of the
TSUWI. Thus, the applicability of the equations needs to be further explored.

Another limitation was the ratio (R) used when combining the pixel-based WI informa-
tion with the extracted image objects. The R value was defined artificially and contained a
certain degree of subjectivity, so some non-water pixels were not eliminated and were there-
fore misclassified as water objects. The last limitation is the post-classification improvement.
Although it results in an improvement of the water bodies’ information accuracy, this visual
interpretation method is time-consuming.

5. Conclusions

In this paper, a method is presented for VHR satellite image analysis with the aim of
extracting surface water body information on a large scale. Beijing is taken as the research
area, whose water body information from 2018/2019 was extracted using a combination of
image object detection, the TSUWI spectral WI, and batch processing.

From the presented work, two main conclusions can be reached. First, the two-level
pixel-object method used in this paper achieved relatively good results with regard to
its effectiveness in water body information extraction. Based on the pixel-level water
information, the identified image objects removed the salt-and-pepper noise and some
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misclassified water pixels effectively. Object detection also guaranteed the integrity of
the extracted water bodies, especially in the case of ponds. Second, the proposed batch
processing framework is suitable for large-scale water information extraction based on
VHR images, as it allows the automatic extraction of water body information. After
implementing the two-level pixel-object method, only the acquisition of the original images
is required.

Water is an important environmental and ecological element, and small water bodies
also play a key role in the balance of many ecosystems. The VHR remote sensing images
can be used to extract fine surface water body information, including small water bodies.
Based on the WI and the object detection method, the proposed method can be used
to conveniently and accurately extract water on a large scale with VHR images, and is
suitable for batch processing. At the same time, our method’s pipeline can also provide
a basis for other similar studies. A limitation of the present study is that there will be
water classification errors due to the defined TSUWI and R values. Moreover, the post-
classification improvement is time-consuming. In the future, additional efforts will be
devoted to dealing with these two aspects, thus improving the accuracy and broadening
the applicability of the current method’s pipeline.
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