Integrated Risk Assessment of Waterlogging in Guangzhou Based on Runoff Modeling, AHP, GIS and Scenario Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. StudyArea
2.2. Risk Assessment Model of Waterlogging Disaster Based on Scenario Simulation
2.3. Urban Waterlogging Runoff Model Based on SCS
2.3.1. Design Rainstorm Process Line
2.3.2. Urban Waterlogging and Runoff Simulation Based on SCS
2.4. Risk Assessment Index System
2.4.1. Construction of Evaluation Index System
2.4.2. Normalization of Index Factors
2.4.3. Weight Analysis of Evaluation Indexes
3. Result and Analysis
3.1. Submerged Scenario Simulation
3.2. Risk Analysis of the Disaster-Causing Factors
3.3. Sensitivity Assessment of the Disaster-Pregnant Environment
3.4. Vulnerability Assessment of the Disaster-Bearing Body
3.5. Urban Waterlogging Disaster Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J. Urbanization contributed to Beijing storms. Nature 2012, 10, 11086. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y. Urban pluvial flooding and stormwater management: A contemporary review of China’s challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Du, S.; Gu, H.; Wen, J.; Chen, K.; Van Rompaey, A. Detecting Flood Variations in Shanghai over 1949–2009 with Mann-Kendall Tests and a Newspaper-Based Database. Water 2015, 7, 1808–1824. [Google Scholar] [CrossRef]
- Wang, J.; Hu, C.; Ma, B.; Mu, X. Rapid Urbanization Impact on the Hydrological Processes in Zhengzhou, China. Water 2020, 12, 1870. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef]
- Shu, Y.; Zheng, G.; Yan, X. Application of Multiple Geographical Units Convolutional Neural Network based on neighborhood effects in urban waterlogging risk assessment in the city of Guangzhou, China. Phys. Chem. Earth Parts A B C 2022, 126, 103504. [Google Scholar] [CrossRef]
- Lin, T.; Liu, X.; Song, J.; Zhang, G.; Jia, Y.; Tu, Z.; Zheng, Z.; Liu, C. Urban waterlogging risk assessment based on internet open data: A case study in China. Habitat Int. 2018, 71, 88–96. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, J.; Song, L. Waterlogging risk assessment of the Beijing-Tianjin-Hebei urban agglomeration in the past 60 years. Theor. Appl. Climatol. 2021, 145, 1039–1051. [Google Scholar] [CrossRef]
- Xue, F.; Huang, M.; Wang, W.; Zou, L. Numerical Simulation of Urban Waterlogging Based on FloodArea Model. Adv. Meteorol. 2016, 2016, 3940707. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Jiang, Z.; Xu, C.; Cai, G.; Zhan, J. Assessment of provincial waterlogging risk based on entropy weight TOPSIS–PCA method. Nat. Hazards 2021, 108, 1545–1567. [Google Scholar] [CrossRef]
- Zhou, M.; Feng, X.; Liu, K.; Zhang, C.; Xie, L.; Wu, X. An Alternative Risk Assessment Model of Urban Waterlogging: A Case Study of Ningbo City. Sustainability 2021, 13, 826. [Google Scholar] [CrossRef]
- Quan, R.-S. Rainstorm waterlogging risk assessment in central urban area of Shanghai based on multiple scenario simulation. Nat. Hazards 2014, 73, 1569–1585. [Google Scholar] [CrossRef]
- Boni, S.; Hong, H.; Nan, Z. Dynamic urban waterlogging risk assessment method based on scenario simulations. J. Tsinghua Univ. Sci. Technol. 2015, 55, 684–690. [Google Scholar]
- Zhang, M.; Xu, M.; Wang, Z.; Lai, C. Assessment of the vulnerability of road networks to urban waterlogging based on a coupled hydrodynamic model. J. Hydrol. 2021, 603, 127105. [Google Scholar] [CrossRef]
- Quan, R. Impact of future land use change on pluvial flood risk based on scenario simulation: A case study in Shanghai, China. Arab. J. Geosci. 2021, 14, 943. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Rabori, A.M.; Ghazavi, R. Urban Flood Estimation and Evaluation of the Performance of an Urban Drainage System in a Semi-Arid Urban Area Using SWMM. Water Environ. Res. 2018, 90, 2075–2082. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Rahman, M.A.; Esraz-Ul-Zannat, M.; Islam, M.F. Simulation-based modeling of urban waterlogging in Khulna City. J. Water Clim. Chang. 2021, 12, 566–579. [Google Scholar] [CrossRef]
- Tsihrintzis, V.A.; Sidan, C.B. ILLUDAS and PSRM-QUAL predictive ability in small urban areas and comparison with other models. Hydrol. Processes 2008, 22, 3321–3336. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Y.; Fu, Y. Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suribabu, C.R.; Bhaskar, J. Evaluation of urban growth effects on surface runoff using SCS-CN method and Green-Ampt infiltration model. Earth Sci. Inform. 2015, 8, 609–626. [Google Scholar] [CrossRef]
- Darabi, H.; Choubin, B.; Rahmati, O.; Torabi Haghighi, A.; Pradhan, B.; Kløve, B. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. J. Hydrol. 2019, 569, 142–154. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, T.; Fu, J.; Li, J.; Cao, Z.; Feng, P. Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model Using GF-2 Data. Remote Sens. 2021, 13, 4381. [Google Scholar] [CrossRef]
- Chen, Z.; Li, K.; Du, J.; Chen, Y.; Liu, R.; Wang, Y. Three-dimensional simulation of regional urban waterlogging based on high-precision DEM model. Nat. Hazards 2021, 108, 2653–2677. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, C.; Fan, G.; Tian, M.; Wang, J. A New Urban Waterlogging Simulation Method Based on Multi-Factor Correlation. Water 2022, 14, 1421. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, M.; Wen, J.; Du, S.; Xu, H.; Wang, L.; Yang, Y. A Simple GIS-Based Model for Urban Rainstorm Inundation Simulation. Sustainability 2019, 11, 2830. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.; Wang, H.; Li, Z.; Yang, Z.; Shao, W.; Ding, X.; Weng, B.; Yu, Y.; Yan, D. Urban flood inundation and damage assessment based on numerical simulations of design rainstorms with different characteristics. Sci. China Technol. Sci. 2020, 63, 2292–2304. [Google Scholar] [CrossRef]
- Yang, P.; Huang, X.; Peng, L.; Zheng, Z.; Wu, X.; Xing, C. Safety evaluation of major hazard installations based on regional disaster system theory. J. Loss Prev. Process Ind. 2021, 69, 104346. [Google Scholar] [CrossRef]
- Crichton, D. The risk triangle. Nat. Disaster Manag. 1999, 102, 17. [Google Scholar]
- Liao, D.; Zhang, Q.; Wang, Y.; Zhu, H.; Sun, J. Study of Four Rainstorm Design Methods in Chongqing. Front. Environ. Sci. 2021, 9, 51. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, Q.-H.; Fan, J.; Han, F.-P.; Dai, Q.-H. Application of the SCS-CN Model to Runoff Estimation in a Small Watershed with High Spatial Heterogeneity. Pedosphere 2011, 21, 738–749. [Google Scholar] [CrossRef]
- Zhang, S.; Pan, B. An urban storm-inundation simulation method based on GIS. J. Hydrol. 2014, 517, 260–268. [Google Scholar] [CrossRef]
- Hou, J.; Du, Y. Spatial simulation of rainstorm waterlogging based on a water accumulation diffusion algorithm. Geomat. Nat. Hazards Risk 2020, 11, 71–87. [Google Scholar] [CrossRef]
- Sun, S.; Zhai, J.; Li, Y.; Huang, D.; Wang, G. Urban waterlogging risk assessment in well-developed region of Eastern China. Phys. Chem. Earth Parts A B C 2020, 115, 102824. [Google Scholar] [CrossRef]
- Roy, S.; Bose, A.; Singha, N.; Basak, D.; Chowdhury, I.R. Urban waterlogging risk as an undervalued environmental challenge: An Integrated MCDA-GIS based modeling approach. Environ. Chall. 2021, 4, 100194. [Google Scholar] [CrossRef]
- Valis, D.; Hasilová, K.; Forbelská, M.; Pietrucha-Urbanik, K. Modelling Water Distribution Network Failures and Deterioration. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 924–928. [Google Scholar]
- Liu, F.; Liu, X.; Xu, T.; Yang, G.; Zhao, Y. Driving Factors and Risk Assessment of Rainstorm Waterlogging in Urban Agglomeration Areas: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Water 2021, 13, 770. [Google Scholar] [CrossRef]
- Pandey, A.C.; Singh, S.K.; Nathawat, M.S. Waterlogging and flood hazards vulnerability and risk assessment in Indo Gangetic plain. Nat. Hazards 2010, 55, 273–289. [Google Scholar] [CrossRef]
- Vališ, D.; Hasilová, K.; Forbelská, M.; Vintr, Z. Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data. Measurement 2020, 149, 107026. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Chattaraj, D.; Paul, B.; Sarkar, S. Integrated Multi-parametric Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) based Spatial modelling for Flood and Water logging Susceptibility Mapping: A case study of English Bazar Municipality of Malda, West Bengal, India. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 2021, 1–20. [Google Scholar]
- Lin, K.; Chen, H.; Xu, C.-Y.; Yan, P.; Lan, T.; Liu, Z.; Dong, C. Assessment of flash flood risk based on improved analytic hierarchy process method and integrated maximum likelihood clustering algorithm. J. Hydrol. 2020, 584, 124696. [Google Scholar] [CrossRef]
Data | Name | Format | Remarks |
---|---|---|---|
Basic geographic data | River system | Shapefile | River network water system was extracted from the topographic elevation map by GIS. |
Elevation | Grid file | Extracted from DEM data. | |
Residential site | Shapefile | Extracted from land-use data. | |
Hydrologic data | Design storm | Paper/ electronic documents | Consulted the formula for rainstorm intensity in Guangzhou and determined the parameters of the different rain types. |
Socioeconomic data | Socioeconomic data of the city | Paper/ electronic documents | From the national economic and social development statistical bulletin, statistical yearbook, etc. |
First-Level Indexes | Second-Level Indexes | Specific Indexes |
---|---|---|
Urban waterlogging disaster risk (RT) | Risk of disaster-causing factor (R1) | Rainfall (P1) |
Sensitivity of disaster-pregnant environment (R2) | Water network buffer distance (P2) | |
Surface relief (P3) | ||
Vegetation coverage (P4) | ||
Vulnerability of disaster-bearing body (R3) | Population density (P5) | |
GDP density (P6) | ||
Road network density (P7) |
Factors | Indexes | Weights |
---|---|---|
Risk of disaster-causing factor (0.482) | Rainfall (P1) | 1.00 |
Sensitivity of disaster-pregnant environment (0.226) | Water network buffer distance (P2) | 0.66 |
Surface relief (P3) | 0.21 | |
Vegetation coverage (P4) | 0.12 | |
Vulnerability of disaster-bearing body (0.291) | Population density (P5) | 0.27 |
GDP density (P6) | 0.38 | |
Road network density (P7) | 0.34 |
Rainfall Return Period (a) | 2 | 5 | 10 | 20 | 50 | 100 |
---|---|---|---|---|---|---|
Rainfall (mm) | 76.0 | 87.8 | 96.6 | 105.5 | 117.2 | 126.0 |
Rain peak (mm/min) | 2.75 | 3.17 | 3.49 | 3.81 | 4.24 | 4.56 |
Runoff depth (mm) | 26.5 | 33.8 | 39.6 | 45.7 | 54.0 | 60.5 |
Rainfall Return Period (a) | 2 | 5 | 10 | 20 | 50 | 100 |
---|---|---|---|---|---|---|
Rainfall (mm) | 26.5 | 33.8 | 39.6 | 45.7 | 54.0 | 60.5 |
Waterlogging volume (104 m3) | 19,018.4 | 24,261.0 | 28,404.5 | 32,769.0 | 38,738.4 | 43,379.1 |
Elevation (m) | 1.55 | 1.74 | 1.88 | 2.03 | 2.23 | 2.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Liu, W.; Yuan, Z.; Zhang, H.; Lin, H.; Wang, Y. Integrated Risk Assessment of Waterlogging in Guangzhou Based on Runoff Modeling, AHP, GIS and Scenario Analysis. Water 2022, 14, 2899. https://doi.org/10.3390/w14182899
Xie S, Liu W, Yuan Z, Zhang H, Lin H, Wang Y. Integrated Risk Assessment of Waterlogging in Guangzhou Based on Runoff Modeling, AHP, GIS and Scenario Analysis. Water. 2022; 14(18):2899. https://doi.org/10.3390/w14182899
Chicago/Turabian StyleXie, Shuai, Wan Liu, Zhe Yuan, Hongyun Zhang, Hang Lin, and Yongqiang Wang. 2022. "Integrated Risk Assessment of Waterlogging in Guangzhou Based on Runoff Modeling, AHP, GIS and Scenario Analysis" Water 14, no. 18: 2899. https://doi.org/10.3390/w14182899
APA StyleXie, S., Liu, W., Yuan, Z., Zhang, H., Lin, H., & Wang, Y. (2022). Integrated Risk Assessment of Waterlogging in Guangzhou Based on Runoff Modeling, AHP, GIS and Scenario Analysis. Water, 14(18), 2899. https://doi.org/10.3390/w14182899