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Abstract: Quantitative information on regional cropland runoff is important for sustainable agricul-
tural water quantity and quality management. This study combined the Soil Conservation Service
Curve Number (SCS-CN) method and geostatistical approaches to quantify long-term (1990–2013)
changes and regional spatial variations of cropland runoff in China. Estimated CN values from
17 cropland study sites across China showed reasonable agreement with default values from the
National Engineering Handbook (R2 = 0.76, n = 17). Among four commonly used geostatistical
interpolation methods, the inverse distance weighting (IDW) method achieved the highest accuracy
(R2 = 0.67, n = 209) for prediction of cropland runoff. Using default CN values and the IDW method,
estimated national annual cropland runoff volume and runoff depth in 1990–2013 were 253 ± 25 km3

yr−1 and 182 ± 15 mm yr−1, respectively. Estimated cropland runoff depth gradually increased from
the drier northwest inland region to the wetter southeast coastal region (range: 2–1375 mm yr−1).
Regionally, eastern, central and southern China accounted for 39% of the cultivated area and 53% of
the irrigated land area and contributed to 68% of the national cropland runoff volume. In contrast,
northwestern, northern, southwestern and northeastern China accounted for 61% of the cultivated
area and 47% of the irrigated land area and contributed to 32% of the runoff volume. Rainfall was the
main source (72%) of cropland runoff for the entire nation, while irrigation became the main source
of cropland runoff in drier regions (northwestern and southwestern China). Over the 24-year study
period, estimated cropland runoff depth showed no significant trends, whereas cropland runoff
volume and irrigation-contributed percentages decreased by 7% and 35%, respectively, owing to
implementation of water-saving irrigation technologies. To reduce excessive runoff and increase
water utilization efficiencies, regionally specific water management strategies should be further
promoted. As the first long-term national estimate of cropland runoff in China, this study provides
a simple framework for estimating regional cropland runoff depth and volume, providing critical
information for guiding developments of management practices to mitigate agricultural nonpoint
source pollution, soil erosion and water scarcity.

Keywords: cropland; runoff estimation; SCS-curve number; spatial interpolation; rainfall; irrigation

1. Introduction

Excessive cropland runoff causes soil erosion, nutrient losses and decreased water
utilization efficiency [1–3], thereby aggravating worldwide water resource shortages, soil
degradation, aquatic eutrophication and decreased crop productivity [4,5]. Shortage of wa-
ter resources, soil erosion/degradation and nonpoint source pollution are major challenges
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for agricultural sustainability at the global scale [6]. A quantitative understanding of re-
gional cropland runoff depth and volume is critical for developing sustainable management
measures for water and land resource utilization.

The Soil Conservation Service Curve Number (SCS-CN) method [7] is the most widely
adopted approach for estimating soil runoff [8–10]. Due to its simplicity and low data
requirements [11], many watershed hydrology and water quality models, such as CREAMS,
AGNPS, EPIC and SWAT [12], adopt this method to predict runoff depth/volume [13]. The
SCS-CN method estimates runoff from an expression for a rainfall-runoff curve that varies
according to a single parameter, termed the curve number [8]. The CN value that represents
soil infiltration capacity is a highly sensitive parameter [9,14], with a ±10% variation in
the CN value leading to a −45% to +55% variation in estimated runoff depth [15]. The CN
value is mainly affected by soil properties [15], land-use type [16], slope [17], antecedent
moisture conditions [18], land management practices [14] and rainfall amount [19].

To extend the SCS-CN method in application, the USDA Soil Conservation Service
developed the National Engineering Handbook (NEH) [20], which compiles the recom-
mended CN values for different soil, climate and land management schemes based on
monitoring data from 150 watersheds in the midwestern USA [7]. However, the recom-
mended CN default values provided in the NEH may not be suitable for some sites or
regions given its midwestern regional bias, e.g., Romanian River Basins [21] and south-
eastern Arizona [22]. Therefore, previous studies modified CN values by considering
rainfall intensity [23], soil moisture [24] and slope [17]. A recent study reported the large
difference of default CN values between that provided by USDA and revised CN values in
China based on rainfall-runoff monitoring data, which may lead to huge errors in runoff
estimation [19]. Several other studies suggested that the CN default values in the NEH
should be modified by considering slope, soil moisture [25] and rainfall [26] based on
field or catchment conditions to reduce the potential uncertainties in runoff estimation.
However, the applicability of CN default values for estimating national cropland runoff in
China has not been fully evaluated.

China is one of the most water-scarce countries (the water resources per capita level is
only 25% of the world average [27]) with the agricultural sector consuming ~67% of total
water withdrawals [28]. Although advanced irrigation technologies have been gradually
applied [29], the utilization efficiency of agricultural water resources remains at a low level.
For example, 55% of Chinese provinces had agricultural water resource efficiencies less
than 0.6 [30]. As a result, many regions of China produce excessive cropland runoff and,
consequently, serious soil and nutrient losses [31,32]. Accurate quantitative information
concerning cropland runoff depths/volumes, sources (e.g., rainfall and irrigation) and
their long-term variations is required for optimizing water management practices, which is
essential for improving agricultural water resource use efficiency and mitigating nonpoint
source nutrient pollution.

This study combined the SCS-CN method and geostatistical techniques to estimate
long-term (1990–2013) and regional variations of cropland runoff derived from rainfall
and irrigation across the diverse landscapes and climates in China. The primary objectives
of this work were to (1) evaluate the applicability of the SCS-CN method combined with
geostatistical methods for assessment of cropland runoff at the national/regional scales;
(2) address spatial patterns of cropland runoff depth/volume; and (3) estimate historical
trends (1990–2013) of national cropland runoff depth/volume. As the first estimation
of long-term and spatial cropland runoff dynamics in China, this study provides critical
knowledge for guiding the development of sustainable agricultural and water resource
management strategies, and also provides a simple framework for validating CN values
and estimating cropland runoff at the regional scale.
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2. Materials and Methods
2.1. Data Resources

To estimate cropland runoff across China from 1990 to 2013, we collected data con-
cerning rainfall-runoff of monitoring sites (used for estimated CN values), soil properties,
land use, rainfall, irrigation and cultivated land area from relevant sources. Rainfall–runoff
data from 19 monitoring sites (13 experimental plots and 6 watersheds) in 6 geograph-
ical regions of China were collected from published papers and the Chinese Ecosystem
Research Network (Table 1). Soil texture and 1 km land-use data for croplands were
obtained from the Chinese Academy of Sciences Resource and Environmental Science
Data Center (http://www.resdc.cn/ accessed on 16 September 2022). Daily rainfall data
were derived from the China meteorological network (http://data.cma.cn/ accessed on
16 September 2022). Annual irrigation data (Table S1) were obtained from Zhou et al. [29]
and the China Water Resources Bulletin (http://www.mwr.gov.cn/sj/tjgb/szygb/ accessed
on 16 September 2022). Cultivated land area was acquired from the Chinese Academy of Sci-
ences Resource and Environmental Science Data Center (http://www.resdc.cn/ accessed
on 16 September 2022) and statistical yearbooks (http://www.stats.gov.cn/tjsj/ndsj/ ac-
cessed on 16 September 2022). Annual cropland irrigated area was derived from the China
Water Conservancy Yearbook (https://navi.cnki.net/knavi/yearbooks/YAGUJ/detail ac-
cessed on 16 September 2022) and Wang et al. [33].

Table 1. Characteristics of 19 rainfall-runoff studied catchments in China.

ID Province Geographical
Regions Time Catchment

Area (km2) n Clay
(%)

Sand
(%) Slope Crop

Types Lat Long Reference

1 Shaanxi

Northwest
China

1959 - 8 6.37 77 NA Corn,
wheat 38.3◦ 110.3◦ Xu et al. [34]

2 Shaanxi 1959–1972 - 7 18.26 55.21 NA Corn,
wheat 39.2◦ 110.2◦ Xu et al. [34]

3 Shaanxi 1959–2008 - 5 20.1 34.33 NA Corn,
wheat 34.9◦ 109.7◦ Xu et al. [34]

4 Shaanxi 1959–1995 - 3 28.85 24.94 NA Corn,
wheat 35.2◦ 108.2◦ Xu et al. [34]

5 Shaanxi 1959–2005 - 3 19.66 38.1 3 Corn,
wheat 34.8◦ 109.2◦ Xu et al. [34]

6 Shaanxi 2015 0.5 16 21.98 26.59 10 Corn,
wheat 34.2◦ 108◦ Sheng et al. [35]

7 Shaanxi 1958–1966 2 18 13.47 55.65 15 Corn,
wheat 36.8◦ 109.3◦ Qin et al. [36]

8 Gansu 1989 - 5 12.15 53.92 35 Corn,
wheat 35.6◦ 104.3◦ Li et al. [37]

9 Gansu 1987 100 14 13.1 46.77 NA Corn,
wheat 34.7◦ 106.1◦ Zhou and Lei [38]

10 Sichuan

Southwest
China

2013 100 25 13.17 67.92 6.5 Rice,
corn 31.5◦ 105.3◦ Chen et al. [39]

11 Sichuan 2013 5.3 15 13.39 63.71 6.5 Rice,
corn 31.1◦ 105.6◦ Chen et al. [39]

12 Sichuan 2006 100 42 41.03 31.75 5 Rice,
corn 27.5◦ 102.2◦ Tang and Sun [40]

13 Chongqing 2006 100 60 31.77 23.35 10 Rice 30.1 107.4◦ Yan et al. [41]

14 Beijing Northern
China

2001–2006 50 9 24.71 43.52 NA Corn 40.6◦ 116◦ Fu et al. [42]
15 Beijing 1993–2006 50 3 6.13 62.78 14.6 Corn 40.6◦ 117.2◦ Liu and Wang [43]

16 Guangdong Southern
China 1995 100 13 7.24 60.44 NA Rice 23.1◦ 113.4◦ Guo et al. [44]

17 Fujian
Eastern
China

2011 100 33 15.12 31.58 15 Rice 26.2◦ 119.1◦ Chen [45]

18 Anhui 2015 50 6 36.35 26.11 NA Rice,
corn 31.8 117.6◦ Zhou and Lei [38]

19 Liaoning Northeast
China 2008 60 18 27.24 50.03 10 Corn,

rice 41◦ 122.3◦ Xiao et al. [46]

Note: “n” denotes the number of studied rainfall-runoff events.

2.2. Framework for Cropland Runoff Depth Estimation

This study developed a framework that combined the SCS-CN method with geosta-
tistical techniques to estimate regional cropland runoff (Figure 1). First, we validated the
applicability of the SCS-CN method for cropland runoff estimation in China by evaluat-
ing the goodness of fit between estimated CN values from specific field experiments and

http://www.resdc.cn/
http://data.cma.cn/
http://www.mwr.gov.cn/sj/tjgb/szygb/
http://www.resdc.cn/
http://www.stats.gov.cn/tjsj/ndsj/
https://navi.cnki.net/knavi/yearbooks/YAGUJ/detail
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default CN values from the NEH. Second, we generated cropland runoff depths using
the CN value map (Figure S1) and available data for rainfall and irrigation. Third, we
determined the optimal geostatistical interpolation method for cropland runoff estimation
based on the goodness of fit for four interpolation schemes. Finally, we combined the
SCS-CN method and optimal spatial interpolation method to predict spatially explicit
runoff depths across China.
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2.2.1. Validation of the SCS-CN Method

The SCS-CN method [7] is based on the water balance equation and two fundamental
hypotheses. The first hypothesis is that the ratio of direct runoff to the maximum potential
runoff is equal to the ratio of the amount of actual infiltration to the potential maximum
retention. The second hypothesis states that the amount of initial abstraction is some
fraction of the potential maximum retention [47]. The cure number and runoff depth (Q,
mm) can be estimated as follows:

CN =
25, 400
S + 254

(1)

Q =

{
(P−λS)2

P−λS+S P ≤ λS
0 P ≥ λS

(2)

where CN is a dimensionless parameter ranging from 0 to 100 (higher CN values indicate a
greater potential for surface runoff); S is the potential maximum retention or infiltration
(mm); P is the daily rainfall depth (mm); and λ is the initial abstraction coefficient that was
empirically treated as a constant value of 0.2. Additionally, CN values were based on one of
three antecedent soil moisture conditions: CN I-dry, CN II-average and CN III-wet [48]. To
evaluate the suitability of the SCS-CN method for cropland runoff estimation in China, we
compared the default CN values in the NEH with estimated CN values from specific field
experiments (Table 1). Nash–Sutcliffe Efficiency (NSE), root mean squared error (RMSE)
and R-squared (R2) metrics were used to evaluate the goodness of fit.
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2.2.2. Comparison of Geostatistical Methods

Four common geostatistical methods were evaluated for the spatial interpolation of
cropland runoff: (1) inverse distance weighting (IDW), (2) ordinary kriging (OK), (3) spline
and (4) trend surface analysis (TSA) [49]. IDW assumes that each measurement point has
a regional influence that decreases with distance. Thus, the closer a point is to the center
of the site to be estimated, the higher the weight given by IDW. Like IDW, kriging gives
the closest donor the highest weight. However, kriging is more sophisticated than IDW
in that kriging weights come from a semivariogram with an assumption that the spatial
variation is homogeneous across the surface. Among various forms of kriging, OK has been
widely demonstrated as a reliable estimation method. The spline interpolation method
estimates runoff for an ungauged catchment by fitting a minimum-curvature surface to the
calibration data. It resembles a flexible plastic sheet passing through each data point, but
otherwise bending as little as possible. The TSA (polynomial regression) is a deterministic
interpolation method utilizing a polynomial fit to georeferenced data through a multiple
regression process between observed values and geographic locations.

To select the best interpolation method for cropland runoff estimation, we split the
available data sets (n = 697) into two parts; 70% were randomly selected for model cali-
bration and the remaining 30% were used for validation. We used ArcGIS (10.2) to extract
the predicted runoff depth from interpolated results, then compared it with the calculated
runoff depth (validation data set) to evaluate the goodness of fit for the predictions. The
NSE, RMSE, R2 and mean absolute error (MAE) [50] were used to evaluate the goodness of
fit for the different interpolation methods [51]. This validation scheme overcomes the limi-
tation of cross-validation techniques that often suffer from the lack of independence [52].

2.2.3. National Cropland Runoff Estimations

Based on default CN values in the NEH and daily rainfall data, the daily rainfall-runoff
depth for croplands in China was estimated. We summed the daily rainfall-runoff depth
to calculate the annual rainfall-runoff depth. We then used the best spatial interpolation
method to predict the annual regional rainfall-runoff depth. According to regional crop irri-
gation information (irrigation amount, irrigation date and frequency, etc. [53,54], Table S1),
we estimated the daily irrigation-runoff depths for crops during the growing season. Runoff
volume is the sum of rainfall- and irrigation-contributed volumes, in which the rainfall-
runoff volume was equal to the product of the rainfall-runoff depth and the cultivated land
area (similarly, irrigation-runoff volume is equal to the product of rainfall-runoff depth
and irrigated land area). For regionally explicit spatial analysis, China was divided into
seven geographical regions, i.e., northern China (NC), northeast China, eastern China
(EC), central China (CC), southern China (SC), southwest China (SWC) and northwest
China (NWC).

2.3. Statistical Analyses

The temporal trends of annual runoff depth, runoff volume, irrigation contribution, cul-
tivated area and irrigated area were determined with linear least-squares regression analy-
ses using SPSS (ver. 17.0, SPSS, Chicago, IL, USA). One-way ANOVA with a least-significant
difference (LSD) multiple comparisons test were performed using SPSS (ver. 17.0, SPSS,
Chicago, IL, USA) to assess differences in runoff depth among different land uses, com-
ponents, as well as across seven geographic regions. Spatial interpolation and raster
calculation of runoff depth were performed using ArcGIS software (ver. 10.2, ESRI, Red-
lands, CA, USA). All graphs were generated using Excel 2017 (Microsoft, Inc., Redmond,
Washington, DC, USA) and Prism 8.0 (GraphPad Software, Inc., San Diego, CA, USA).

3. Results and Discussion
3.1. Performance of the SCS-CN and Geostatistical Methods

Estimated CN values from the 17 experimental plots and catchments in China demon-
strated satisfactory agreement with the default CN values from the NEH [7] with an R2
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value of 0.76 (Figure 2A). For this analysis, two data points that used monthly rather than
daily rainfall-runoff data were excluded due to their outlier status. Differences between
the estimated and default CN values ranged from –5.4 to 9.9, with an RMSE of 5.6. The
runoff monitoring data used to estimate CN values in this study were collected from
6 geographical regions (Table 1) representing nearly all major soil types, crop types, slopes,
climate and ancillary attributes of China’s croplands. Thus, the default CN values in the
NEH were deemed suitable for cropland runoff estimation in China.
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Figure 2. (A) Comparisons of estimated CN values from 19 studied catchments in China (orange
dots denote CN values estimated from monthly rainfall-runoff data that were excluded due to their
outlier status) and default CN values in the National Engineering Handbook, and (B) comparisons
among four spatial interpolation methods (i.e., inverse distance weighting (IDW), ordinary kriging
(OK), spline and trend surface analysis (TSA)) for predicting annual cropland runoff depths. n = 209.
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Among the four spatial interpolation methods evaluated, the IDW (with a value of
2 for the power parameter, Figure S2) performed best with an R2 of 0.67 and RMSE of
116.7 mm yr−1. In contrast, the TSA method provided the poorest metrics with an R2 of
0.40 and RMSE of 157.5 mm yr−1 (Figure 2B). The better performance of the distance-based
IDW and OK methods (Figure 2B) indicated that runoff depth was strongly influenced
by its migration distance [55], which may be related to the high spatial heterogeneities in
climate, topography and farming practices. The IDW method provided a lower runoff bias
than the OK method (Figure 2B), indicating that the more complex method failed to provide
a higher accuracy [56]. The poor performances (i.e., lower R2 and NSE values) of the TSA
and the Spline methods (Figure 2B) in predicting national cropland runoff depths might
be related to the assumptions of monotonic or continuous spatial distribution trends of
estimated variables in these methods. In general, regional cropland runoff depths showed
non-monotonic or discontinuous spatial distribution trends due to the mixed influence of
multiple factors (e.g., irrigation, soils, terrain, etc.) [10]. In addition, the sparse sampling
density (~19,700 km2 per sampling point) in this study aggravates the uncertainties to
predict non-monotonic or discontinuous spatial distribution trends of national cropland
runoff depths using the TSA or Spline methods [57].

Considering its highest prediction accuracy, the IDW method was subsequently used
for spatial interpolation of cropland runoff depths across different time scales. Similar
to precipitation prediction results [58], prediction accuracies for runoff depth showed
significantly (p < 0.05) increasing trends with increasing time scales (Figure S3). This
indicates that, as the time scale decreases, the spatial autocorrelation of precipitation data
also decreases [59]. Considering its superior prediction accuracy (R2 = 0.69, NSE = 0.69), the
yearly scale for runoff depth point data was used for regional cropland runoff predictions.

3.2. Spatial Patterns of National Cropland Runoff

Using default CN values from the NEH and the IDW method, estimated national
average cropland runoff depth (Mean ± SD) was 182 ± 15 mm yr−1 from 1990 to 2013.
Due to the high rainfall associated with paddy fields distributed in the wetter regions
(i.e., EC, CC, SC and SWC [60]), estimated paddy field runoff depth (370 ± 35 mm yr−1)
was ~3.2-fold higher than that of upland agricultural lands (Figure S4A). Comparing
cropland runoff sources (precipitation vs. irrigation, Figure S4B), the rainfall-runoff depth
(131 ± 15 mm yr−1) was significantly (p < 0.01) higher than the irrigation-runoff depth
(51 ± 4 mm yr−1). Our estimated rainfall-runoff depth (131 ± 15 mm yr−1) was within the
range (67 to 203 mm yr−1) reported in previous studies [61,62], providing a measure of
validation for our results.

Estimated cropland runoff depth (upland: 16–869 mm yr−1; paddy field: 2–1375 mm yr−1)
varied by one to three orders of magnitude across all provinces in China (Figure 3A).
Estimated cropland runoff depth gradually increased from the drier northwest inland to
the wetter southeast coast (Figure 3A) due to the spatial distribution of rainfall [60]. As such,
the estimated cropland runoff depths in the EC, CC and SC regions were much higher than
the national average, with Guangdong (812 ± 141 mm yr−1), Guangxi (481 ± 77 mm yr−1)
and Hainan (638 ± 101 mm yr−1) having the highest cropland runoff depths. The high
cropland runoff depths (Figure 3A) in the EC, CC and SC regions were attributed to the
high rainfall and low agricultural water-use efficiency (0.53 ± 0.09 in 2000–2015, Wang
et al. [30]). Due to high cropland runoff depths (Figure 3A), the EC, CC and SC regions
were identified as potential hotspots for cropland nutrient losses in China [2,63].
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Figure 3. Spatial patterns of (A) annual average cropland runoff depth (different lowercase letters in-
dicate that mean values are statistically different at p < 0.01), and (B) the irrigation-runoff percentages
across seven geographical regions in China. Box plots illustrate the 25th, 50th and 75th percentiles;
whiskers indicate the 2.5th and 97.5th percentiles; and points represent data outliers. The smaller
map frame at the lower left corner represents the ten-dash line of Nansha Islands.

Conversely, estimated cropland runoff depths in the drier NC, NEC and NWC regions
were much lower than the national average, with Shanxi (32 ± 10 mm yr−1) and Inner
Mongolia (39 ± 16 mm yr−1) having the lowest cropland runoff depths (Figure 3A). Low
rainfall [60] and low CN values (Figure S1) due to low antecedent soil moisture conditions
were the major causes of limited cropland runoff in these drier regions [64]. However,
low vegetation coverage, high slopes and low agricultural water-use efficiency (0.30 ± 0.23
from 2000 to 2015, Wang et al. [30]) in the NWC region make this area a hotspot for soil
erosion in China [3]. Although there was high agricultural water-use efficiency (0.63 ± 0.13
from 2000 to 2015, Wang et al. [30]) in the NC and NEC regions (the major grain production
area in China [65]), water scarcity is a critical risk in this region [66]. Therefore, it is
strongly warranted to avoid unnecessary cropland runoff and increase agricultural water-
use efficiency in the NC, NEC and NWC regions.

Annual average national cropland runoff volume estimated from the cultivated area
and runoff depth was 253 ± 25 km3 yr−1 with 120 ± 15 km3 yr−1 from upland crops and
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133 ± 14 km3 yr−1 from paddy fields. Although paddy fields and irrigated areas accounted
for ~1/3 of the upland area (Figure S5B,D), the total paddy field (Figure 4D) runoff volume
was 11% higher than that in the uplands (Figure 4A). The EC, CC and SC regions accounted
for 39% of the cultivated area (Figure S5E) and 53% of the irrigated area (Figure S5F) and
resulted in a 68% contribution to the national runoff volume (Figure 4G). In contrast, the
NC, NEC, SWC and NWC regions accounted for 61% of the cultivated area (Figure S5E)
and 47% of the irrigated area (Figure S5F), but contributed only 32% of the total national
runoff volume (Figure 4G).
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Figure 4. Contribution percentage of cropland (A,D,G) runoff volume, (B,E,H) rainfall-runoff volume,
and (C,F,I) irrigation-runoff volume from the seven geographical regions (see Figure 3 for locations)
to the total runoff of China.

In terms of runoff components, estimated rainfall- and irrigation-runoff volumes were
182 ± 22 km3 yr−1 and 81 ± 8 km3 yr−1, respectively. Although rainfall was the main source
(72%) of cropland runoff for the entire nation, irrigation was the main source of cropland
runoff in regions with lower runoff depths (NWC and SWC, Figure 3B). This implies a
complementary relationship between water inputs from irrigation and rainfall [67]. The
EC, CC, SC and SWC regions accounted for 87% of total cropland rainfall-runoff volume
(Figure 4H) owing to their higher rainfall [60]. Notably, despite the high rainfall in the SC
region, irrigation still contributed to more than 20% of cropland runoff volume (Figure 3B),
which was ascribed to the large irrigation requirements to support the multi-cropping
systems (2–3 crop types grown per year) [68].

3.3. Temporal Variations in National Cropland Runoff

Estimated cropland and paddy field runoff depths showed no significant (p > 0.05)
trends over the 1990–2013 period of investigation, whereas a significant (p < 0.01) downward
trend was observed for the upland areas in China (Figure 5A). The irrigation-runoff depth
of upland and paddy fields showed significant (p < 0.01) decreasing trends with rates of
−3.8 mm yr−1 and −2.2 mm yr−1, respectively, whereas no significant (p > 0.05) change
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was observed for rainfall-runoff depth (Figure 5A). Therefore, the decline in upland runoff
depth was attributed to a decrease in irrigation-runoff depth. Paddy fields were mainly
distributed in the EC, CC and SWC regions (Figure S5C,D) where rainfall was the major
water source for runoff (Figure 3B), thereby resulting in no change in paddy field runoff
depth over the investigation period. The declining trend for irrigation-runoff depths
(Figure 5A) was mainly ascribed to increasing irrigation water-use efficiency in China
(increasing from 0.51 in 2011 to 0.57 in 2020, Figure S6A), resulting from water-saving
irrigation technologies (WSI, e.g., drip irrigation, micro-sprinkler irrigation and shallow-
wet irrigation, [69]. From 2000 to 2012, the irrigated area employing WSI technologies
increased by 90% (from 16.4 × 104 km2 to 31.2 × 104 km2, Figure S6B) due to increased
investments in agricultural irrigation efficiency projects [33].
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Figure 5. Temporal trends of national cropland (A) runoff depth and (B) runoff volume during
1990–2013 in China. Rainfall-runoff volume was equal to the product of rainfall-runoff depth and
cultivated land area; irrigation-runoff volume is equal to the product of rainfall-runoff depth and
irrigated land area.

Although cropland runoff depths showed no temporal trends at the national scale
(Figure 5A), upland runoff depths in the Zhejiang, Yunnan, Xinjiang, Qinghai, Ningxia,
Inner Mongolia, Heilongjiang and Shanghai provinces and paddy field runoff depths in the
Yunnan, Xinjiang, Qinghai, Ningxia, Inner Mongolia, Heilongjiang and Shanghai provinces
showed significant (p < 0.05) downward trends during the 1990–2013 investigation period
(Figure 6A–C). The decline in irrigation-runoff depth was the major driver for decreasing
cropland-runoff depth in these provinces (Figure S7A–F). Widespread adoption of WSI
technologies was the largest contributor to the decreased irrigation-runoff depth in the
NC region. In contrast, the reduced irrigation-runoff depth (Figure 6G–I) in the SC region
was attributed to a reduced multiple cropping index [70]. Meanwhile, Shaanxi province
showed a significant (p < 0.05) upward trend in both upland and paddy field runoff
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depths (Figure 6A–C), ascribed primarily to a change in cropping systems from low-water-
consuming crops to high-water-consuming crops [71].
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Figure 6. Temporal trends of annual (A–C) cropland runoff depth, (D–F) cropland runoff volume,
(G–H) cultivated area and (J–L) irrigated area from 1990 to 2013. Unchanged indicated by p > 0.05,
* indicates p < 0.05, ** indicates p < 0.01. The smaller map frame of each figure at the lower right
corner represents the ten-dash line of Nansha Islands.

Estimated cropland runoff volume (Figure 5B) and irrigation-contributed percentage
(Figure 7) in China decreased by 7% and 35% from 1990 to 2013, respectively. Upland
runoff volume (Figure 5B) and its irrigation-contributed percentage (Figure 7) showed
significant (p < 0.05) decreasing trends, while no significant changing trend (p > 0.05) was
observed for paddy fields (Figures 5B and 7). Considering the decreased cultivated area
(Figure S8A) in cropland during the 1990–2013 period contributed no change in the rainfall-
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runoff volume (Figure 5B), and a ~31% increase in irrigated cropland area (Figure S8B).
Therefore, decreasing irrigation-runoff depth was the main cause of decreasing cropland
runoff volume. Similarly, the irrigated area in the uplands increased by 31% (Figure S8B);
no significant changing trend was observed in the rainfall-runoff volume (Figure 5B). Thus,
decreasing irrigation-runoff depth was the major driver for the decreasing upland runoff
volume and irrigation-contributed percentage (Figure 5B). The lack of temporal changing
trend for paddy field runoff volume was attributed to the offsetting effects of decreasing
runoff depth and increasing the irrigated area (Figure S8B).
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Figure 7. Temporal trend of the irrigation contribution to cropland runoff during 1990–2013 in China.

There were contrasting temporal trends for cropland runoff volumes across the differ-
ent regions (Figure 6D–F). Estimated upland runoff volumes showed decreasing trends
in the NC, NEC, EC, CC, SWC and NWC regions (Figure 6D), whereas decreasing trends
were observed for paddy field runoff volumes mainly in the SWC, CC and EC regions
(Figure 6E). Decreasing runoff volumes for most provinces were attributed to reduced
irrigation-runoff depth (Figure S7D–F), especially in provinces (i.e., Zhejiang, Yunnan and
Guizhou) with decreased cultivated land areas (Figure 6G–I). In contrast, increasing upland
and paddy field runoff volumes in Shaanxi province (Figure 6D–F) were ascribed to the
combination of increasing rainfall-runoff depth (Figure S7A–C), irrigation-runoff depth
(Figure S7D–F) and irrigated area (Figure 6J–L). Increasing cropland runoff volume in Tibet
(Figure 6D–F) was mainly attributed to increasing irrigation-runoff depth (Figure S7D–F)
and irrigated land area (Figure 6J–L).

3.4. Implications for Cropland Water Management

In China, agricultural nonpoint source pollution [2,63], soil erosion [62] and water
scarcity [66] are major risks to agricultural sustainability. Therefore, it is necessary to reduce
excessive cropland runoff to mitigate agricultural nutrient loss, soil loss and water scarcity.
Given the severe negative environmental impacts caused by excessive runoff (Figure 3A)
in the EC, CC and SC (nonpoint source pollution [63]), NWC (soil erosion [3]), and NC
and NEC (water scarcity [66]) regions, these areas should be prioritized for region-specific
actions to reduce cropland runoff.

Considering the marked decrease in the national cropland runoff volume originating
from implementation of WSI technologies from 1990 to 2013 (Figure 5), relevant WSI tech-
nologies (i.e., drip and micro-sprinkler irrigation in uplands and shallow-wet irrigation in
paddy fields, [69]) should be further extended to reduce excessive runoff and associated nu-
trient/soil loss. Given the high rainfall (Figure 3A) and low agricultural water-use efficiency
(0.59 ± 0.13) in the EC, CC and SC regions [30], optimization of cropping systems [72]
and WSI technologies should be preferentially implemented to reduce upland runoff. To
mitigate paddy field runoff, it is warranted to adopt WSI technologies and cyclic irrigation
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technology (partially reusing runoff water as irrigation water [67]. In areas with water
scarcity due to limited rainfall (Figure 3A) and low agricultural water-use efficiency (0.30
± 0.23), such as the NWC region [30], implementing WSI technologies, optimized cropping
systems, rainwater harvesting and water-conserving crops (i.e., plant low-water-consuming
crops) could attenuate soil and water loss caused by runoff. Rainwater harvesting tech-
nologies not only reduce cropland runoff yield, but also drastically improve agricultural
productivity and reduce sediment/nutrient transport in arid and semi-arid regions [73]. As
the main grain-producing region in China, the NC region with low rainfall (Figure 3A) and
high demand for agricultural water resources requires intensive use of WSI technologies
and rainwater harvesting technologies to increase water-use efficiency.

4. Conclusions

This study developed a framework to estimate the long-term (1990–2013) and regional
variations of cropland runoff derived from rainfall and irrigation in China. Integration of
the SCS-CN and geostatistical (IDW) methods provided a reasonable estimate of cropland
runoff for China. Estimated annual national cropland runoff depth and runoff volume in
1990–2013 were 182 ± 15 mm yr−1 and 253 ± 25 km3 yr−1, respectively. Cropland runoff
depth gradually increased from the drier northwest inland to the wetter southeast coast
(range: 2–1375 mm yr−1). The EC, CC and SC regions accounted for 39% of the cultivated
area and 53% of the irrigated land area and contributed 68% of the national runoff volume.
In contrast, the NEC, NC, SWC and NWC regions accounted for 61% of the cultivated area
and 47% of the irrigated land area, but contributed only 32% of the runoff volume. Rainfall
was the main source (72%) of cropland runoff for the entire nation, whereas irrigation
became the main source for cropland runoff in drier regions (NWC and SWC) with lower
runoff depths. Over the 24-year study period, estimated cropland runoff volume and
the irrigation-contributed percentage in China decreased by 7% and 35%, respectively,
which was primarily attributed to the implementation of water-saving irrigation (WSI)
technologies. Relevant water management strategies (i.e., WSI technologies, optimized
cropping systems, rainwater harvesting, etc.) are warranted to further reduce cropland
runoff in different regions of China. The developed framework provided a useful tool for
estimating cropland runoff at the national and regional scales.
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