Phosphorus Transport in the Mississippi Delta: Associations to Surface and Groundwater Interactions
Abstract
:1. Introduction
1.1. Background
1.2. Study Area Description
Hydrogeology
1.3. Purpose and Scope
2. Methods
2.1. Sample Collection and Processing
2.2. Field Sampling Overview for the Three Study Phases
2.3. Historical Data Evaluation
Assessing Spatial and Temporal Variability of P in GW Samples
2.4. Irrigation Return Flow Evaluation
3. Results
3.1. Water Quality Variation along an Irrigation Pathway (Phase 1)
3.2. Clustered Well Depth Analysis 2016–2017 (Phase 2)
3.3. GW/SW Exchange 2017 (Phase 3)
3.4. Historical Water Quality Evaluation
Comparison of Phosphorus Concentrations in GW and SW
3.5. Spatial Variability of P in GW
3.6. Temporal Variability of P in GW
4. Discussion
4.1. P Transport in SW
4.2. GW Tracers in SW Indicate An Irrigation Signature
4.3. Effect of Reduced Conditions on P Transport
4.4. Well Depths and Proximity to Streams Provide Possible Covarying Explanations for P Instability in Delta GWs
5. Study Implications and Directions of Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coupe, R. Nitrogen and Phosphorus Concentrations and Fluxes of Streams in the Mississippi Embayment Study Unit, 1996–98; U.S. Geological Survey Water Resources Investigation Report 01-4024; USGS: Pearl, MS, USA, 2001; p. 65.
- Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J. The Quality of Our Nation’s Waters—Nutrients in the Nation’s Streams and Groundwater, 1992–2004; U.S. Geological Survey Circular 1350; USGS: Reston, VA, USA, 2010; p. 174.
- Kingsbury, J.A.; Barlow, J.R.; Katz, B.G.; Welch, H.L.; Tollett, R.W.; Fahlquist, L. Water Quality in the Mississippi Embayment--Texas Coastal Uplands Aquifer System and Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994--2008; U.S. Geological Survey Circular 1356; USGS: Reston, VA, USA, 2014.
- Welch, H.L.; Kingsbury, J.A.; Coupe, R.H. Occurrence of Phosphorus in Groundwater and Surface Water of Northwestern Mississippi. U.S. Geological Survey, Conference Paper. In Proceedings of the 2010 Mississippi water Resources Conference, Bay Saint Louis, MS, USA, 3–5 November 2010; p. 14. [Google Scholar]
- Welch, H.L.; Kingsbury, J.A.; Tollett, R.W.; Seanor, R.C. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994–2004; U.S. Geological Survey Science Investigation Report 2009-5091; USGS: Reston, VA, USA, 2009; p. 66.
- Kleiss, B.A.; Coupe, R.H.; Gonthier, G.; Justus, B. Water Quality in the Mississippi Embayment; Mississippi, Louisiana, Arkansas, Missouri, Tennessee, and Kentucky; U.S. Geological Survey Circular 1208; USGS: Reston, VA, USA, 2000; p. 37.
- Shields, F.; Cooper, C.; Testa, S., III; Ursic, M. Nutrient Transport in the Yazoo River Basin; Research Report No. 60; U. S. Department of Agriculture, Agriculture Research Service, National Sedimentation Laboratory, Water Quality and Ecology Research Unit: Oxford, MS, USA, 2008; p. 54.
- McKelvey, V.E. Geologic Deposits; U.S. Geological Survey Bulletin 1252-D; USGS: Washington, DC, USA, 1967; p. 21.
- van de Wiel, C.; van der Linden, C.G.; Scholten, O.E. Improving Phosphorus Use Efficiency in Agriculture: Opportunities for Breeding. Euphytica 2016, 207, 1–22. [Google Scholar] [CrossRef]
- Zhi, W.; Li, L. The Shallow and Deep Hypothesis: Subsurface Vertical Chemical Contrasts Shape Nitrate Export Patterns from Different Land Uses. Environ. Sci. Technol. 2020, 54, 11915–11928. [Google Scholar] [CrossRef]
- Heathwaite, A.L.; Dils, R.M. Characterising Phosphorus Loss in Surface and Subsurface Hydrological Pathways. Sci. Total Environ. 2000, 251, 523–538. [Google Scholar] [CrossRef]
- McDowell, R.; Sharpley, A. A Comparison of Fluvial Sediment Phosphorus (P) Chemistry in Relation to Location and Potential to Influence Stream P Concentrations. Aquat. Geochem. 2001, 7, 255–265. [Google Scholar] [CrossRef]
- Perkins, K.S.; Nimmo, J.R.; Rose, C.E.; Coupe, R.H. Field Tracer Investigation of Unsaturated Zone Flow Paths and Mechanisms in Agricultural Soils of Northwestern Mississippi, USA. J. Hydrol. 2011, 396, 1–11. [Google Scholar] [CrossRef]
- Stewart, J.S.; Schwarz, G.E.; Brakebill, J.W.; Preston, S.D. Catchment-Level Estimates of Nitrogen and Phosphorus Agricultural Use from Commercial Fertilizer Sales for the Conterminous United States, 2012; Scientific Investigations Report 2018-5145; USGS: Reston, VA, USA, 2019; p. 52.
- Oldham, L. Nutrient Management Guidelines for Agronomic Crops Grown in Mississippi. Miss. State Univ. Ext. Serv. Publ. 2012, 56, 2647. [Google Scholar]
- Djodjic, F.; Börling, K.; Bergström, L. Phosphorus Leaching in Relation to Soil Type and Soil Phosphorus Content. J. Environ. Qual. 2004, 33, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Sharpley, A.N.; Daniel, J.T.; Sims, J.T.; Lemunyon, J.; Steven, R.A.; Parry, R. Agricultural Phosphorus and Eutrophication, 2nd ed.; U.S. Department of Agriculture, Agricultural Research Service: Stuttgart, AR, USA, 2003; p. 44.
- Sharpley, A.; Foy, B.; Withers, P. Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water: An Overview. J. Environ. Qual. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- Osmond, D.L.; Shober, A.L.; Sharpley, A.N.; Duncan, E.W.; Hoag, D.L.K. Increasing the Effectiveness and Adoption of Agricultural Phosphorus Management Strategies to Minimize Water Quality Impairment. J. Environ. Qual. 2019, 48, 1204–1217. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, R.; Yli-Halla, M.; Turtola, E. Suspended Soil as a Source of Potentially Bioavailable Phosphorus in Surface Runoff Waters from Clay Soils. Water Res. 2000, 34, 2477–2482. [Google Scholar] [CrossRef]
- Giese, J.; Keith, B.; Maner, M.; McDaniel, R.; Singleton, B. Physical, Chemical, and Biological Characteristics of Least-Disturbed Reference Streams in Arkansas’ Ecoregions, Volume II—Data Analysis; Arkansas Department of Pollution Control and Ecology: North Little Rock, AR, USA, 1987; p. 147. [Google Scholar]
- Justus, B.G.; Caskey, B.J.; Kleiss, B.A. Number and Size of Black Bass Reflect Water Quality in the Lower Mississippi River Delta; U.S. Geological Survey, Fact Sheet 080-01; USGS: Pearl, MS, USA, 2001; p. 4.
- Justus, B.G. An Index of Ecological Integrity for the Mississippi Alluvial Plain Ecoregion; U.S. Geological Survey Scientific Investigations Report 2003-4110; USGS: Pearl, MS, USA, 2003; p. 32.
- Hargreaves, J.A. Control of Clay Turbidity in Ponds; SRAC Publication No. 460; Southern Regional Aquaculture Center: Stoneville, MS, USA, 1999; p. 4. [Google Scholar]
- Williamson, A.K.; Grubb, H.F.; Weiss, J.S. Ground-Water Flow in the Gulf Coast Aquifer Systems, South Central United States—A Preliminary Analysis; U.S. Geological Survey Water-Resources Investigations Report 89-4071; USGS: Ausin, TX, USA, 1990; p. 124.
- Omernik, J.M. Map Supplement: Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Arthur, J.K. Hydrogeology, Model Description, and Flow Analysis of the Mississippi River Alluvial Aquifer in Northwestern Mississippi; U.S. Geological Survey Science Investigation Report 01-4035; USGS: Pearl, MS, USA, 2001; p. 47.
- Clark, B.R.; Hart, R.M.; Gurdak, J.J. Groundwater Availability of the Mississippi Embayment; U.S. Geological Survey Professional Paper 1785; USGS: Reston, VA, USA, 2011; p. 62.
- Liu, Y.; Wang, P.; Gojenko, B.; Yu, J.; Wei, L.; Luo, D.; Xiao, T. A Review of Water Pollution Arising from Agriculture and Mining Activities in Central Asia: Facts, Causes and Effects. Environ. Pollut. 2021, 291, 118209. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Gosselink, J.G.; Zhang, L.; Anderson, C.J. Wetland Ecosystems; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-28630-2. [Google Scholar]
- Alhassan, M.; Pindilli, E.J.; Lawrence, C.B. Farmer Behavior Under Groundwater Management Scenarios: Implications for Groundwater Conservation in the Mississippi Alluvial Plain. Water Econ. Policy 2020, 6, 2050009. [Google Scholar] [CrossRef]
- Maupin, M.A.; Barber, N.L. Estimated Withdrawals from Principal Aquifers in the United States; U.S. Geological Survey Circular 1279; USGS: Reston, VA, USA, 2005; p. 47.
- Massey, J.H.; Stiles, M.C.; Epting, J.W.; Powers, S.R.; Kelly, D.B.; Bowling, T.H.; Leighton Janes, C.; Pennington, D.A. Long-Term Measurements of Agronomic Crop Irrigation Made in the Mississippi Delta Portion of the Lower Mississippi River Valley. Irrig. Sci. 2017, 35, 297–313. [Google Scholar] [CrossRef]
- Konikow, L.F. Groundwater Depletion in the United States (1900–2008); U.S. Geological Survey Science Investigation Report 2013–5079; USGS: Reston, VA, USA, 2013; p. 63.
- McGuire, V.L.; Seanor, R.C.; Asquith, W.H.; Nottmeier, A.M.; Smith, D.C.; Tollett, R.W.; Kress, W.H.; Strauch, K.R. Altitude of the Potentiometric Surface in the Mississippi River Valley Alluvial Aquifer, Spring 2018; U.S. Geological Survey Scientific Investigations Map 3453; USGS: Reston, VA, USA, 2020; p. 13.
- Barlow, J.R.B.; Clark, B.R. Simulation of Water-Use Conservation Scenarios for the Mississippi Delta Using an Existing Regional Groundwater Flow Model; U.S. Geological Survey Scientific Investigations Report 2011-5019; USGS: Reston, VA, USA, 2011; p. 14. [Google Scholar]
- Killian, C.D.; Asquith, W.H.; Barlow, J.R.B.; Bent, G.C.; Kress, W.H.; Barlow, P.M.; Schmitz, D.W. Characterizing Groundwater and Surface-Water Interaction Using Hydrograph-Separation Techniques and Groundwater-Level Data throughout the Mississippi Delta, USA. Hydrogeol. J. 2019, 27, 2167–2179. [Google Scholar] [CrossRef]
- Yasarer, L.M.; Taylor, J.M.; Rigby, J.R.; Locke, M.A. Trends in Land Use, Irrigation, and Streamflow Alteration in the Mississippi River Alluvial Plain. Front. Environ. Sci. 2020, 8, 66. [Google Scholar] [CrossRef]
- U.S. Geological Survey. National Field Manual for the Collection of Water-Quality Data: Chapter A4. Collection of Water Samples; U.S. Geological Survey Techniques of Water-Resources Investigations; Book 9 Handbooks for Water-Resources Investigations; USGS: Reston, VA, USA, 2006; p. 231.
- Koterba, M.T. Ground-Water Data-Collection Protocols and Procedures for the National Water-Quality Assessment Program: Collection, Documentation, and Compilation of Required Site, Well, Subsurface, and Landscape Data for Wells; U.S. Geological Survey Water-Resources Investigations 98-4107; USGS: Reston, VA, USA, 1998; p. 91.
- U.S. National Field Manual for the Collection of Water-Quality Data: Chapter A5. Processing of Water Samples (Ver. 2.2); U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9; Handbooks for Water-Resources Investigations; USGS: Reston, VA, USA, 2004; p. 166.
- Fishman, M.J. Methods of Analysis by the US Geological Survey National Water Quality Laboratory: Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments; U.S. Geological Survey Open-File Report 93-125; USGS: Reston, VA, USA, 1993; p. 217.
- Sallade, Y.E.; Sims, J.T. Phosphorus Transformations in the Sediments of Delaware’s Agricultural Drainageways: II. Effect of Reducing Conditions on Phosphorus Release. J. Environ. Qual. 1997, 26, 1579–1588. [Google Scholar] [CrossRef]
- Loeb, R.; Lamers, L.P.; Roelofs, J.G. Prediction of Phosphorus Mobilisation in Inundated Floodplain Soils. Environ. Pollut. 2008, 156, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Domagalski, J.L.; Johnson, H. Phosphorus and Groundwater: Establishing Links Between Agricultural Use and Transport to Streams; Fact Sheet; U.S. Geological Survey Fact Sheet 2012-3004; USGS: Reston, VA, USA, 2012; p. 4.
- Scalenghe, R.; Edwards, A.C.; Barberis, E.; Ajmone-Marsan, F. Release of Phosphorus under Reducing and Simulated Open Drainage Conditions from Overfertilised Soils. Chemosphere 2014, 95, 289–294. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Wang, J.; Baumann, K.; Wang, S.-L.; Leinweber, P.; Rinklebe, J. Redox-Induced Mobilization of Phosphorus in Groundwater Affected Arable Soil Profiles. Chemosphere 2021, 275, 129928. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; King, K.W. Changing Rainfall Patterns over the Western Lake Erie Basin (1975–2017): Effects on Tributary Discharge and Phosphorus Load. Water Resour. Res. 2020, 56, e2019WR025985. [Google Scholar] [CrossRef]
- Justus, B.; Burge, D.R.; Cobb, J.M.; Marsico, T.D.; Bouldin, J.L. Macroinvertebrate and Diatom Metrics as Indicators of Water-Quality Conditions in Connected Depression Wetlands in the Mississippi Alluvial Plain. Freshw. Sci. 2016, 35, 1049–1061. [Google Scholar] [CrossRef]
- Justus, B.; Mize, S.V.; Wallace, J.; Kroes, D. Invertebrate and Fish Assemblage Relations to Dissolved Oxygen Minima in Lowland Streams of Southwestern Louisiana. River Res. Appl. 2014, 30, 11–28. [Google Scholar] [CrossRef]
- Toor, G.S.; Sims, J.T. Managing Phosphorus Leaching in Mid-Atlantic Soils: Importance of Legacy Sources. Vadose Zone J. 2015, 14, 1–12. [Google Scholar] [CrossRef]
- Ryden, J.C.; Syers, J.; Harris, R. Phosphorus in Runoff and Streams. Adv. Agron. 1974, 25, 1–45. [Google Scholar]
- Kleinman, P.J.; Sharpley, A.N.; Saporito, L.S.; Buda, A.R.; Bryant, R.B. Application of Manure to No-till Soils: Phosphorus Losses by Sub-Surface and Surface Pathways. Nutr. Cycl. Agroecosystems 2009, 84, 215–227. [Google Scholar] [CrossRef]
- Ballantine, D.; Walling, D.; Collins, A.; Leeks, G. The Content and Storage of Phosphorus in Fine-Grained Channel Bed Sediment in Contrasting Lowland Agricultural Catchments in the UK. Geoderma 2009, 151, 141–149. [Google Scholar] [CrossRef]
- Schilling, K.; Isenhart, T.; Wolter, C.; Streeter, M.; Kovar, J. Contribution of Streambanks to Phosphorus Export from Iowa. J. Soil Water Conserv. 2022, 77, 103–112. [Google Scholar] [CrossRef]
- Robertson, D.M.; Saad, D.A. Environmental Water-Quality Zones for Streams: A Regional Classification Scheme. Environ. Manag. 2003, 31, 0581–0602. [Google Scholar] [CrossRef] [PubMed]
- Schilling, K.E.; Kim, S.-W.; Jones, C.S. Use of Water Quality Surrogates to Estimate Total Phosphorus Concentrations in Iowa Rivers. J. Hydrol. Reg. Stud. 2017, 12, 111–121. [Google Scholar] [CrossRef]
- Irvine, C.A.; Backus, S.; Cooke, S.; Dove, A.; Gewurtz, S.B. Application of Continuous Turbidity Sensors to Supplement Estimates of Total Phosphorus Concentrations in the Grand River, Ontario, Canada. J. Gt. Lakes Res. 2019, 45, 840–849. [Google Scholar] [CrossRef]
- Kämäri, M.; Tarvainen, M.; Kotamäki, N.; Tattari, S. High-Frequency Measured Turbidity as a Surrogate for Phosphorus in Boreal Zone Rivers: Appropriate Options and Critical Situations. Environ. Monit. Assess. 2020, 192, 366. [Google Scholar]
- Van Nieuwenhuyse, E.E.; Jones, J.R. Phosphorus Chlorophyll Relationship in Temperate Streams and Its Variation with Stream Catchment Area. Can. J. Fish. Aquat. Sci. 1996, 53, 99–105. [Google Scholar] [CrossRef]
- Palmer-Felgate, E.J.; Jarvie, H.P.; Williams, R.J.; Mortimer, R.J.; Loewenthal, M.; Neal, C. Phosphorus Dynamics and Productivity in a Sewage-Impacted Lowland Chalk Stream. J. Hydrol. 2008, 351, 87–97. [Google Scholar] [CrossRef]
- Mebane, C.A.; Simon, N.S.; Maret, T.R. Linking Nutrient Enrichment and Streamflow to Macrophytes in Agricultural Streams. Hydrobiologia 2014, 722, 143–158. [Google Scholar] [CrossRef]
- Schilling, K.; Zhang, Y.-K. Baseflow Contribution to Nitrate-Nitrogen Export from a Large, Agricultural Watershed, USA. J. Hydrol. 2004, 295, 305–316. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Robeson, S.M.; Knouft, J.H. Impacts of Recent Climate Change on Trends in Baseflow and Stormflow in United States Watersheds. Geophys. Res. Lett. 2016, 43, 5079–5088. [Google Scholar] [CrossRef]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus Loss in Agricultural Drainage: Historical Perspective and Current Research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef]
- McCrackin, M.L.; Muller-Karulis, B.; Gustafsson, B.G.; Howarth, R.W.; Humborg, C.; Svanbäck, A.; Swaney, D.P. A Century of Legacy Phosphorus Dynamics in a Large Drainage Basin. Glob. Biogeochem. Cycles 2018, 32, 1107–1122. [Google Scholar] [CrossRef]
- Kulabako, N.R.; Nalubega, M.; Thunvik, R. Phosphorus Transport in Shallow Groundwater in Peri-Urban Kampala, Uganda: Results from Field and Laboratory Measurements. Environ. Geol. 2008, 53, 1535–1551. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Assessment Risk of Phosphorus Leaching from Calcareous Soils Using Soil Test Phosphorus. Chemosphere 2017, 171, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K. Soluble Phosphorus Release from Organic Soils. Agric. Ecosyst. Environ. 1983, 9, 373–382. [Google Scholar] [CrossRef]
- Johnston, W.R.; Ittihadieh, F.; Daum, R.M.; Pillsbury, A.F. Nitrogen and Phosphorus in Tile Drainage Effluent. Soil Sci. Soc. Am. J. 1965, 29, 287–289. [Google Scholar] [CrossRef]
- Walter, D.A.; Rea, B.A.; Stollenwerk, K.G.; Savoie, J.G. Geochemical and Hydrologic Controls on Phosphorus Transport in a Sewage-Contaminated Sand and Gravel Aquifer near Ashumet Pond, Cape Cod, Massachusetts; U.S. Geological Survey Open-File Report 95-381; USGS: Washington, DC, USA, 1995; p. 89.
- Kresse, T.M.; Hays, P.D.; Merriman, K.R.; Gillip, J.A.; Fugitt, D.T.; Spellman, J.L.; Nottmeier, A.M.; Westerman, D.A.; Blackstock, J.M.; Battreal, J.L. Aquifers of Arkansas—Protection, Management, and Hydrologic and Geochemical Characteristics of Groundwater Resources in Arkansas; U.S. Geological Survey Scientific Investigations Report 2014-5149; USGS: Little Rock, AR, USA, 2014; p. 334.
- Jacobson, R.B.; O’Connor, J.E.; Oguchi, T. Surficial Geological Tools in Fluvial Geomorphology. Tools Fluv. Geomorphol. 2016, 13–39. [Google Scholar] [CrossRef]
- Magilligan, F.J. Sedimentology of a Fine-Grained Aggrading Floodplain. Geomorphology 1992, 4, 393–408. [Google Scholar] [CrossRef]
- Kresse, T.M.; Clark, B.R. Occurrence, Distribution, Sources, and Trends of Elevated Chloride Concentrations in the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas; U.S. Geological Survey Scientific Investigations Report 2008-5193, USGS: Little Rock, AR, USA, 2008; p. 34. [Google Scholar]
- Barlow, J.R.B.; Coupe, R.H. Groundwater and Surface-Water Exchange and Resulting Nitrate Dynamics in the Bogue Phalia Basin in Northwestern Mississippi. J. Environ. Qual. 2012, 41, 155–169. [Google Scholar] [CrossRef]
- Gratzer, M.C.; Davidson, G.R.; O’Reilly, A.M.; Rigby, J.R. Groundwater Recharge from an Oxbow Lake-wetland System in the Mississippi Alluvial Plain. Hydrol. Process. 2020, 34, 1359–1370. [Google Scholar] [CrossRef]
- Wacaster, S.R. Using Tritium and General Geochemistry to Constrain Estimates of Recharge to the Mississippi River Valley Alluvial Aquifer. Master′s Thesis, University of Mississippi, Oxford, MS, USA, 2020. [Google Scholar]
- Adams, R.F.; Miller, B.V.; Kress, W.H. Waterborne Resistivity Inverted Models, Mississippi Alluvial Plain, 2016–2018; U.S. Geological Survey data release; USGS: Nashville, TN, USA, in press.
- Dahm, C.N.; Grimm, N.B.; Marmonier, P.; Valett, H.M.; Vervier, P. Nutrient Dynamics at the Interface between Surface Waters and Groundwater. Freshw. Biol. 1998, 40, 427–451. [Google Scholar] [CrossRef]
- Assegid, Y.; Melesse, A.; Naja, G. Spatial Relationship of Groundwater–Phosphorus Interaction in the Kissimmee River Basin, South Florida. Hydrol. Process. 2015, 29, 1188–1197. [Google Scholar] [CrossRef]
- Domagalski, J.L.; Ator, S.; Coupe, R.; McCarthy, K.; Lampe, D.; Sandstrom, M.; Baker, N. Comparative Study of Transport Processes of Nitrogen, Phosphorus, and Herbicides to Streams in Five Agricultural Basins, USA. J. Environ. Qual. 2008, 37, 1158–1169. [Google Scholar] [CrossRef]
- Vanek, V. Riparian Zone as a Source of Phosphorus for a Groundwater-Dominated Lake. Water Res. 1991, 25, 409–418. [Google Scholar] [CrossRef]
- Tesoriero, A.J.; Duff, J.H.; Wolock, D.M.; Spahr, N.E.; Almendinger, J.E. Identifying Pathways and Processes Affecting Nitrate and Orthophosphate Inputs to Streams in Agricultural Watersheds. J. Environ. Qual. 2009, 38, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Vervier, P.; Bonvallet-Garay, S.; Sauvage, S.; Valett, H.M.; Sanchez-Perez, J.-M. Influence of the Hyporheic Zone on the Phosphorus Dynamics of a Large Gravel-Bed River, Garonne River, France. Hydrol. Process. 2009, 23, 1801–1812. [Google Scholar] [CrossRef] [Green Version]
- Reitz, M.; Kress, W. The Use of National Datasets to Produce an Average Annual Water Budget for the Mississippi Alluvial Plain, 2000–2013; Fact Sheet; U.S. Geological Survey Fact Sheet 2019-3001; USGS: Nashville, TN, USA, 2019.
- U.S. Geological Survey USGS Water Data for the Nation: U.S. Geological Survey National Water Information System Database. Available online: https://doi.org/10.5066/F7P55KJN (accessed on 25 May 2022).
USGS Station Identifier | Sampling Date | SRP | Median SRP | TP | Median TP | TP:SRP Ratio | Well Depth |
---|---|---|---|---|---|---|---|
325816090464202 | 16-August-2016 | 0.87 | 1.11 | 1.3 | 8.8 | ||
325816090464203 | 16-August-2016 | 0.69 | 0.67 | 1.0 | 10.8 | ||
325816090464204 | 16-August-2016 | 0.41 | 0.69 | 0.35 | 0.67 | 0.8 | 20.3 |
330152090595602 | 15-August-2016 | 0.92 | 1.03 | 1.1 | 9.9 | ||
330152090595601 | 15-August-2016 | 0.38 | 0.49 | 1.3 | 10.5 | ||
330152090595603 | 15-August-2016 | 0.25 | 0.59 | 2.3 | 11.4 | ||
330152090595604 | 15-August-2016 | 0.15 | 0.77 | 5.0 | 13.7 | ||
330152090595605 | 15-August-2016 | 0.06 | 0.20 | 0.60 | 0.60 | 10.5 | 23.2 |
333250090323805 | 17-May-2017 | 0.47 | 1.34 | 2.9 | 18.3 | ||
333250090323803 | 17-May-2017 | 0.22 | 0.50 | 2.3 | 18.9 | ||
333250090323804 | 3-May-2017 | 0.19 | 0.22 | 0.41 | 0.50 | 2.2 | 28.7 |
333904090123801 | 24-August-2016 | 0.01 | 0.16 | 32.0 | 8.7 | ||
333904090123701 | 17-August-2016 | 0.14 | 0.29 | 2.1 | 10.1 | ||
333904090123702 | 17-August-2016 | 0.18 | 0.30 | 1.6 | 12.0 | ||
333904090123703 | 24-August-2016 | 0.02 | 0.22 | 11.6 | 13.3 | ||
333900090123703 | 17-August-2016 | 0.27 | 0.14 | 0.45 | 0.29 | 1.7 | 27.4 |
334955090402202 | 3-May-2017 | 1.64 | 1.88 | 1.1 | 19.5 | ||
335308090362102 | 3-May-2017 | 0.22 | 0.26 | 1.2 | 30.5 | ||
335308090362102 | 17-August-2016 | 0.08 | 0.22 | 0.22 | 0.26 | 2.8 | 30.5 |
USGS Station (Well) Identifier | Associated Surface Water Sampling Location | Sampling Date | SRP | TDP | TP | Nitrate | Specific Conductance | Bicarbonate | Bromide | Calcium | Hardness | Iron | Magnesium | Depth |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
323047090484401 | Big Sunflower Diversion Canal nr Redwood, MS | 19-April-2017 | 0.097 | 0.13 | NA | 0.95 | 808 | 511 | 0.04 | 110 | 428 | 568 | 37 | 8.1 |
323047090484401 | Big Sunflower Diversion Canal nr Redwood, MS | 29-June-2017 | 0.194 | 0.18 | NA | 0.775 | 813 | 539 | 0.07 | 121 | 483 | <5 | 44 | 8.1 |
323047090484401 | Big Sunflower Diversion Canal nr Redwood, MS | 27-July-2017 | 0.198 | 0.18 | NA | 0.741 | 864 | 437 | 0.08 | 121 | 482 | <5 | 44 | 8.1 |
323047090484401 | Big Sunflower Diversion Canal nr Redwood, MS | 20-September-2017 | 0.177 | 0.17 | NA | 0.89 | 785 | 489 | 0.04 | 104 | 403 | 416 | 34 | 8.1 |
325728091002701 | Steele Bayou at Hopedale, MS | 19-April-2017 | 0.036 | 0.05 | NA | 0.045 | 790 | 505 | 0.56 | NA | 409 | 32.4 | 106 | 11.3 |
325728091002701 | Steele Bayou at Hopedale, MS | 29-June-2017 | 0.025 | 0.8 | NA | <0.040 | NA | 539 | 0.65 | NA | 414 | 36.6 | 108 | 11.3 |
325728091002701 | Steele Bayou at Hopedale, MS | 27-July-2017 | 0.673 | 0.89 | NA | <0.035 | 821 | 501 | 0.64 | NA | 392 | 37 | 102 | 11.3 |
325728091002701 | Steele Bayou at Hopedale, MS | 26-September-2017 | 0.263 | 0.89 | NA | <0.033 | 803 | 548 | 0.61 | NA | 388 | 36.6 | 100 | 11.3 |
325817090464202 | Big Sunflower River nr Anguilla, MS | 30-March-2017 | 0.045 | 0.89 | NA | <0.040 | 475 | 280 | 0.06 | 59.7 | 218 | 8460 | 17 | 4.8 |
325817090464202 | Big Sunflower River nr Anguilla, MS | 28-June-2017 | 0.163 | 1.21 | NA | <0.040 | NA | 226 | 0.04 | 45.2 | 165 | 8760 | 13 | 4.8 |
325817090464202 | Big Sunflower River nr Anguilla, MS | 2-August-2017 | 0.54 | 1.22 | NA | <0.038 | 488 | 250 | 0.05 | 46.8 | 177 | 7720 | 15 | 4.8 |
325817090464202 | Big Sunflower River nr Anguilla, MS | 26-September-2017 | 0.19 | 1.12 | NA | <0.040 | 491 | 254 | 0.03 | 50 | 187 | 7560 | 15 | 4.8 |
330152090595603 | Steele Bayou nr Glen Allan, MS | 29-March-2017 | NA | 1.19 | NA | NA | 697 | 566 | 0.04 | 109 | 422 | 16,600 | 37 | 11.6 |
330152090595603 | Steele Bayou nr Glen Allan, MS | 14-July-2017 | 0.954 | 1.17 | NA | <0.031 | 833 | 579 | 0.05 | 112 | 426 | 16,700 | 35 | 11.6 |
330152090595603 | Steele Bayou nr Glen Allan, MS | 26-July-2017 | 0.962 | 1.19 | NA | <0.034 | 820 | 512 | 0.03 | 107 | 411 | 16,800 | 35 | 11.6 |
330152090595603 | Steele Bayou nr Glen Allan, MS | 26-September-2017 | 0.977 | 1.07 | NA | <0.036 | 831 | 565 | 0.01 | 108 | 413 | 17,100 | 35 | 11.6 |
332348090505301 | Bogue Phalia near Leland, MS | 28-March-2017 | 0.11 | 0.1 | NA | <0.040 | 603 | 490 | 0.02 | 118 | 406 | 2810 | 27 | 11.9 |
332348090505301 | Bogue Phalia near Leland, MS | 28-June-2017 | 0.149 | 0.13 | NA | <0.040 | 671 | 428 | 0.02 | 107 | 368 | 2810 | 25 | 11.9 |
332348090505301 | Bogue Phalia near Leland, MS | 26-July-2017 | 0.027 | 0.14 | NA | <0.040 | 729 | 479 | 0.02 | 113 | 393 | 3220 | 27 | 11.9 |
332348090505301 | Bogue Phalia near Leland, MS | 19-September-2017 | 0.11 | 0.13 | NA | <0.040 | 661 | 392 | 0.01 | 99.6 | 345 | 2890 | 23 | 11.9 |
333145090261901 | Quiver River nr Sunflower, MS | 29-March-2017 | 0.207 | 0.28 | NA | <0.035 | 937 | 485 | 0.21 | 130 | 464 | 16,100 | 34 | 19.5 |
333145090261901 | Quiver River nr Sunflower, MS | 27-June-2017 | 0.022 | 0.3 | NA | <0.039 | 1000 | 464 | 0.21 | 118 | 421 | 15,200 | 31 | 19.5 |
333145090261901 | Quiver River nr Sunflower, MS | 25-July-2017 | 0.12 | 0.3 | NA | <0.037 | 988 | 437 | 0.21 | 119 | 423 | 15,900 | 31 | 19.5 |
333145090261901 | Quiver River nr Sunflower, MS | 28-September-2017 | 0.088 | 0.28 | NA | <0.038 | 1020 | 471 | 0.10 | 119 | 425 | 17,200 | 31 | 19.5 |
333250090323803 | Big Sunflower River at Sunflower, MS | 17-May-2017 | 0.219 | 0.28 | 0.5 | <0.037 | 694 | 381 | 0.05 | 87.5 | 317 | 9150 | 24 | 19.1 |
333250090323804 | Big Sunflower River at Sunflower, MS | 26-June-2017 | 0.203 | 0.33 | NA | <0.038 | 637 | 298 | 0.03 | 92.5 | 312 | 9090 | 20 | 28.7 |
333250090323805 | Big Sunflower River at Sunflower, MS | 17-May-2017 | 0.469 | 0.49 | 1.34 | <0.036 | 610 | NA | 0.07 | 67 | 252 | 8480 | 21 | 18.4 |
333904090123801 | Tallahatchie River at Money, MS | 29-March-2017 | 0.131 | 0.13 | NA | <0.040 | 196 | 117 | 0.06 | 25.4 | 89 | 3640 | 6 | 8.7 |
333904090123801 | Tallahatchie River at Money, MS | 27-June-2017 | 0.015 | 0.06 | NA | <0.040 | 233 | 125 | 0.06 | 25.2 | 87 | 7340 | 6 | 8.7 |
333904090123801 | Tallahatchie River at Money, MS | 25-July-2017 | 0.039 | 0.1 | NA | <0.040 | 232 | 131 | 0.07 | 23.8 | 84 | 9030 | 6 | 8.7 |
333904090123801 | Tallahatchie River at Money, MS | 28-September-2017 | 0.04 | 0.04 | NA | <0.040 | 232 | 126 | 0.05 | 22.7 | 80 | 9040 | 6 | 8.7 |
334955090402202 | Big Sunflower River nr Merigold, MS | 3-May-2017 | 1.64 | 1.65 | 1.88 | 0.166 | 205 | 130 | 0.21 | NA | 90 | 38.9 | 25 | 19.5 |
334956090402202 | Big Sunflower River nr Merigold, MS | 10-July-2017 | 1.32 | 1.3 | NA | <0.040 | 210 | 114 | 0.19 | NA | 90 | 38.2 | 25 | 14.9 |
334956090402202 | Big Sunflower River nr Merigold, MS | 24-July-2017 | 1.73 | 1.69 | NA | <0.040 | 196 | 105 | 0.19 | NA | 85 | 36.4 | 23 | 14.9 |
334956090402202 | Big Sunflower River nr Merigold, MS | 28-September-2017 | 0.647 | 1.19 | NA | <0.040 | 237 | 148 | 0.22 | NA | 100 | 39.7 | 26 | 14.9 |
341210090343701 | Big Sunflower nr Clarksdale, MS | 10-July-2017 | 0.017 | 3.12 | NA | 0.051 | 2010 | 1100 | 0.01 | 262 | 993 | 24,000 | 82 | 6.6 |
341210090343701 | Big Sunflower nr Clarksdale, MS | 2-August-2017 | 0.021 | 2.83 | NA | <0.038 | 2060 | NA | 0.01 | 299 | 1150 | 44,200 | 97 | 6.6 |
Site Name | USGS Station Identifier | Sampling Date | Soluble Reactive Phosphorus | Total Phosphorus | Specific Conductance | Alkalinity | Bicarbonate | Bromide | Calcium | Hardness | Magnesium | TP:SRP (when SC > 350 uS) | TP:SRP (when SC < 350 uS) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Big Sunflower River nr Anguilla, MS | 7288700 | 30-March-2017 | 0.079 | 0.48 | 168 | 50 | 61 | 0.028 | 18.7 | 70 | 5.67 | 6.1 | |
Big Sunflower River nr Anguilla, MS | 7288700 | 28-June-2017 | 0.078 | 0.32 | 175 | 35 | 43 | 0.014 | 12.6 | 47 | 3.85 | 4.1 | |
Big Sunflower River nr Anguilla, MS | 7288700 | 2-August-2017 | 0.135 | 0.28 | 538 | 105 | 127 | 0.085 | 60.3 | 230 | 19.3 | 2.1 | |
Big Sunflower River nr Anguilla, MS | 7288700 | 26-September-2017 | 0.163 | 0.31 | 173 | 60 | 73 | 0.014 | 15.3 | 58 | 4.89 | 1.9 | |
Big Sunflower River at Clarksdale, MS | 7288000 | 28-March-2017 | 0.048 | 0.2 | 211 | 194 | 236 | 0.053 | 25.4 | 90 | 6.49 | 4.2 | |
Big Sunflower River at Clarksdale, MS | 7288000 | 10-July-2017 | 0.128 | 0.3 | 207 | 82 | 100 | 0.035 | 21.2 | 79 | 6.33 | 2.3 | |
Big Sunflower River at Clarksdale, MS | 7288000 | 2-August-2017 | 0.133 | 0.23 | 430 | 208 | 252 | 0.062 | 50.4 | 191 | 15.8 | 1.7 | |
Bogue Phalia near Leland, MS | 7288650 | 27-March-2017 | 0.046 | 0.2 | 206 | 99 | 116 | 0.027 | 24.4 | 89 | 6.86 | 4.3 | |
Bogue Phalia near Leland, MS | 7288650 | 28-June-2017 | 0.05 | 0.17 | 281 | 96 | 116 | 0.033 | 30.3 | 112 | 8.76 | 3.4 | |
Bogue Phalia near Leland, MS | 7288650 | 26-July-2017 | 0.098 | 0.2 | 678 | 260 | 310 | NA | 84 | 314 | 25.3 | 2.0 | |
Bogue Phalia near Leland, MS | 7288650 | 19-September-2017 | 0.103 | 0.21 | 357 | NA | NA | NA | 39 | 144 | 11.3 | 2.0 | |
Steele Bayou nr Glen Allan, MS | 7288847 | 29-March-2017 | 0.084 | 0.35 | 131 | 48 | 59 | 0.016 | 16.6 | 61 | 4.71 | 4.2 | |
Steele Bayou nr Glen Allan, MS | 7288847 | 14-July-2017 | 0.079 | 0.18 | NA | 82 | 100 | 0.029 | 21.2 | 79 | 6.29 | 2.3 | |
Steele Bayou nr Glen Allan, MS | 7288847 | 26-July-2017 | 0.065 | 0.17 | 421 | 136 | 165 | 0.068 | 44.2 | 167 | 13.7 | 2.6 | |
Steele Bayou nr Glen Allan, MS | 7288847 | 26-September-2017 | 0.074 | 0.23 | 184 | 77 | 94 | 0.019 | 19.4 | 72 | 5.66 | 3.1 | |
Steele Bayou at Hopedale, MS | 7288860 | 19-April-2017 | 0.062 | 0.28 | 210 | 106 | 128 | 0.019 | 25.5 | 93 | 7.16 | 4.5 | |
Steele Bayou at Hopedale, MS | 7288860 | 29-June-2017 | 0.048 | 0.19 | 274 | 102 | 124 | 0.037 | 26.2 | 97 | 7.61 | 4.0 | |
Steele Bayou at Hopedale, MS | 7288860 | 27-July-2017 | 0.09 | 0.22 | 355 | 116 | 141 | 0.058 | 36.5 | 137 | 11.2 | 2.4 | |
Quiver River nr Sunflower, MS | 7288580 | 27-June-2017 | 0.103 | 0.3 | 181 | 56 | 69 | 0.023 | 14.7 | 58 | 5.15 | 2.9 | |
Quiver River nr Sunflower, MS | 7288580 | 25-July-2017 | 0.124 | 0.2 | 504 | 176 | 213 | 0.094 | 54.1 | 210 | 18.1 | 1.6 | |
Quiver River nr Sunflower, MS | 7288580 | 28-September-2017 | 0.16 | 0.29 | 207 | 67 | 82 | 0.049 | 17 | 68 | 6.27 | 1.8 | |
Big Sunflower Diversion Canal nr Redwood, MS | 323045090484300 | 19-April-2017 | 0.104 | 0.35 | 109 | 37 | 45 | 0.014 | 10.4 | 39 | 3.11 | 3.4 | |
Big Sunflower Diversion Canal nr Redwood, MS | 323045090484300 | 29-June-2017 | 0.08 | 0.26 | NA | 58 | 71 | 0.028 | 16.8 | 63 | 5.03 | 3.3 | |
Big Sunflower Diversion Canal nr Redwood, MS | 323045090484300 | 27-July-2017 | 0.131 | 0.21 | 488 | 197 | 240 | 0.072 | 54.9 | 209 | 17.6 | 1.6 | |
Big Sunflower Diversion Canal nr Redwood, MS | 323045090484300 | 20-September-2017 | 0.103 | 0.22 | 192 | 81 | 98 | 0.019 | 19.6 | 74 | 6.13 | 2.1 | |
Big Sunflower River at Sunflower, MS | 7288500 | 17-May-2017 | 0.094 | 0.42 | 89 | 25 | 30 | 0.016 | 8.1 | 31 | 2.58 | 4.5 | |
Big Sunflower River at Sunflower, MS | 7288500 | 26-June-2017 | 0.109 | 0.42 | 163 | 42 | 51 | 0.025 | 15.9 | 60 | 4.8 | 3.9 | |
Big Sunflower River at Sunflower, MS | 7288500 | 27-July-2017 | 0.159 | 0.26 | 471 | 82 | 98 | 0.075 | 52.9 | 202 | 17 | 1.6 | |
Peason correlation value to TP | 0.22 | 1.00 | −0.56 | −0.63 | −0.63 | −0.43 | −0.50 | −0.49 | −0.47 | ||||
Peason correlation value to SRP | 1.00 | 0.22 | 0.27 | 0.01 | 0.01 | 0.35 | 0.24 | 0.26 | 0.31 |
USGS Station Number | Sampling Date | Latitude | Longitude | TDP | Well Depth | Well Distance to Nearest Waterbody | General Well Classification (Based on Depth and Distance to Stream) | River or Stream |
---|---|---|---|---|---|---|---|---|
(mg/L) | (meter) | (meter) | ||||||
341210090343701 | 10-July-2017 | 34.20278 | −90.57694 | 3.12 | 6.6 | 7 | Shallow well near small to medium river | Sunflower |
341210090343701 | 16-November-2010 | 34.20278 | −90.57694 | 3.06 | 6.6 | 7 | Shallow well near small to medium river | Sunflower |
341210090343701 | 2-August-2017 | 34.20278 | −90.57694 | 2.83 | 6.6 | 7 | Shallow well near small to medium river | Sunflower |
334956090402202 | 24-July-2017 | 33.83222 | −90.67278 | 1.69 | 14.9 | 40 | Shallow well near small to medium river | Sunflower |
334956090402202 | 3-May-2017 | 33.83222 | −90.67278 | 1.65 | 14.9 | 40 | Shallow well near small to medium river | Sunflower |
333251090323801 | 17-November-2010 | 33.54750 | −90.54389 | 1.56 | 12.6 | 63 | Shallow well near small to medium river | Sunflower |
333251090323801 | 22-February-2011 | 33.54750 | −90.54389 | 1.52 | 12.6 | 63 | Shallow well near small to medium river | Sunflower |
341210090343703 | 16-November-2010 | 34.20278 | −90.57694 | 1.35 | 0.9 | 7 | Shallow well near small to medium river | Sunflower |
334956090402202 | 10-July-2017 | 33.83222 | −90.67278 | 1.30 | 14.9 | 40 | Shallow well near small to medium river | Sunflower |
330142091000801 | 24_June-1998 | 33.02821 | −91.00221 | 1.22 | 33.5 | 255 | Deep well near a large river | Mississippi |
325817090464202 | 2-August-2017 | 32.97139 | −90.77833 | 1.22 | 4.8 | 79 | Shallow well near small to medium river | Sunflower |
325817090464202 | 28-June-2017 | 32.97139 | −90.77833 | 1.21 | 4.8 | 79 | Shallow well near small to medium river | Sunflower |
330152090595603 | 29-March-2017 | 33.03111 | −90.99889 | 1.19 | 11.4 | 27 | Shallow well near small to medium river | Steele Bayou |
330152090595603 | 26-July-2017 | 33.03111 | −90.99889 | 1.19 | 11.4 | 27 | Shallow well near small to medium river | Steele Bayou |
334956090402202 | 28-September-2017 | 33.83222 | −90.67278 | 1.19 | 14.9 | 40 | Shallow well near small to medium river | Sunflower |
335910090532901 | 30-June-2010 | 33.96278 | −90.89139 | 1.17 | 36.6 | 147 | Deep well near a large river | Mississippi |
330152090595603 | 14-July-2017 | 33.03111 | −90.99889 | 1.17 | 10.1 | 27 | Shallow well near small to medium river | Steele Bayou |
325817090464210 | 18-November-2010 | 32.97139 | −90.77833 | 1.17 | 7.2 | 79 | Shallow well near small to medium river | Steele Bayou |
335910090532901 | 26-June-2008 | 33.96278 | −90.89139 | 1.15 | 36.6 | 147 | Deep well near a large river | Mississippi |
341210090343701 | 23-February-2011 | 34.20278 | −90.57694 | 1.14 | 6.6 | 7 | Shallow well near small to medium river | Sunflower |
325817090464202 | 26-September-2017 | 32.97139 | −90.77833 | 1.12 | 4.8 | 79 | Shallow well near small to medium river | Sunflower |
330152090595601 | 26-September-2017 | 33.03111 | −90.99889 | 1.07 | 11.4 | 27 | Shallow well near small to medium river | Steele Bayou |
330159091061301 | 5-August-2010 | 33.03306 | −91.10361 | 1.07 | 32.6 | 567 | Deep well near a large river | Mississippi |
335910090532901 | 4-November-2008 | 33.96278 | −90.89139 | 1.06 | 36.6 | 147 | Deep well near a large river | Mississippi |
340413090340301 | 25-June-1998 | 34.07060 | −90.56795 | 1.04 | 24.4 | 68 | Deep well near small to medium river | Sunflower |
332440090502196 | 4-November-2008 | 33.41111 | −90.83917 | 1.02 | 2.5 | 13 | Shallow well near small to medium river | Bogue Phalia |
332242091030401 | 13-September-2010 | 33.37012 | −91.05983 | 1.01 | 21.3 | 18270 | Deep well near a large river | Mississippi |
335910090532901 | 20-August-2008 | 33.96278 | −90.89139 | 0.97 | 36.6 | 147 | Deep well near a large river | Mississippi |
333615091041101 | 5-August-2010 | 33.60417 | −91.06972 | 0.96 | 36.6 | 92 | Deep well near a large river | Mississippi |
332440090502196 | 25-June-2008 | 33.41111 | −90.83917 | 0.96 | 2.5 | 13 | Shallow well near small to medium river | Bogue Phalia |
325917090230601 | 23-September-2010 | 32.98818 | −90.38509 | 0.95 | 35.4 | 53 | Deep well near a large river | Yazoo |
324358090335201 | 26-August-2010 | 32.73278 | −90.56444 | 0.91 | NA | 1890 | Deep well near a large river | Yazoo |
344727090232901 | 16-June-2010 | 34.79083 | −90.39139 | 0.90 | NA | 525 | Deep well near a large river | Mississippi |
325728091002701 | 26-September-2017 | 32.95778 | −91.00750 | 0.89 | 11.3 | 17 | Shallow well near small to medium river | Steele Bayou |
325728091002701 | 27-July-2017 | 32.95778 | −91.00750 | 0.89 | 11.3 | 17 | Shallow well near small to medium river | Steele Bayou |
325817090464202 | 30-March-2017 | 32.97139 | −90.77833 | 0.89 | 4.8 | 79 | Shallow well near small to medium river | Sunflower |
343322090292101 | 16-June-2010 | 34.55611 | −90.48917 | 0.87 | NA | 1935 | Deep well near a large river | Mississippi |
332530090211201 | 15-July-2010 | 33.42500 | −90.35333 | 0.86 | 35.1 | 98 | Deep well near a large river | Yazoo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Justus, B. Phosphorus Transport in the Mississippi Delta: Associations to Surface and Groundwater Interactions. Water 2022, 14, 2925. https://doi.org/10.3390/w14182925
Justus B. Phosphorus Transport in the Mississippi Delta: Associations to Surface and Groundwater Interactions. Water. 2022; 14(18):2925. https://doi.org/10.3390/w14182925
Chicago/Turabian StyleJustus, Billy. 2022. "Phosphorus Transport in the Mississippi Delta: Associations to Surface and Groundwater Interactions" Water 14, no. 18: 2925. https://doi.org/10.3390/w14182925
APA StyleJustus, B. (2022). Phosphorus Transport in the Mississippi Delta: Associations to Surface and Groundwater Interactions. Water, 14(18), 2925. https://doi.org/10.3390/w14182925