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Abstract: Water temperature is an important indicator of water quality for surface water resources
because it impacts solubility of dissolved gases in water, affects metabolic rates of aquatic inhabitants,
such as fish and harmful algal blooms (HABs), and determines the fate of water resident biogeochem-
ical nutrients. Furthermore, global warming is causing a widespread rise in temperature levels in
water sources on a global scale, threatening clean drinking water supplies. Therefore, it is key to
increase the frequency of spatio-monitoring for surface water temperature (SWT). However, there is a
lack of comprehensive SWT monitoring datasets because current methods for monitoring SWT are
costly, time consuming, and not standardized. The research objective of this study was to estimate
SWT using data from the Landsat-8 (L8) and Sentinel-3 (S3) satellites. To do this, we used machine
learning techniques, such as Support Vector Regression (SVR), Gaussian Process Regression (GPR),
simple neural network (ANN), and deep learning techniques (Long Short Term Memory, LSTM,
and Convolutional Long Short Term Memory, 1D ConvLSTM). Using deep and machine learning
techniques to regress satellite data to estimate SWT presents a number of challenges, including
prediction uncertainty, over- or under-estimation of measured values, and significant variation in
the final estimated data. The performance of the L8 ConvLSTM model was superior to all other
methods (R2 of 0.93 RMSE of 0.16 ◦C, and bias of 0.01 ◦C). The factors that had a significant effect
on the model’s accuracy performance were identified and quantified using a two-factor analysis of
variance (ANOVA) analysis. The results demonstrate that the main effects and interaction of the
type of machine/deep learning (ML/DL) model and the type of satellite have statistically significant
effects on the performances of the different models. The test statistics are as follows: (satellite type
main effect p *** ≤ 0.05, Ftest = 15.4478), (type of ML/DL main effect p *** ≤ 0.05, Ftest = 17.4607) and
(interaction, satellite type × type of ML/DL p ** ≤ 0.05, Ftest = 3.5325), respectively. The models were
successfully deployed to enable satellite remote sensing monitoring of SWT for the reservoir, which
will help to resolve the limitations of the conventional sampling and laboratory techniques.

Keywords: water quality; water temperature; machine and deep learning; uncertainties; Landsat-8;
Sentinel-3

1. Introduction

Water quality is a measure of a water body’s characteristics that include its thermal,
physical, chemical, and biological properties [1]. SWT is a crucial water quality parameter
indicator of the hydrological cycle energy balance, hence it has found useful applications
in hydrology, meteorology, and climatology. Globally, the surface water temperature of
aquatic ecosystems is rising, which is affecting aquatic ecosystems [2]. These climate-driven
hydrological changes have resulted in increasing snowmelt [3], surface erosion caused by
snowmelt/rainfall runoff, increasing suspended sediment concentrations [3], a decrease in
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dissolved gases, such as dissolved oxygen (DO) [3], proliferation of algal blooms [4], and
ocean acidification [5]. Consequently, warming water bodies are resulting in a wide range
of impacts, including loss of habitat for cold water fish species, low DO levels, and fish
mortality, resulting from harmful algal blooms. Global water pollution is increasing and
has a detrimental effect on the environment, human health, and economic development [6].
Despite rising global water pollution, there is a lack of monitoring data to determine the
extent of the problem [7]. The traditional SWT monitoring techniques (such as infrared
sensors and thermometers) are arduous, time-consuming, and rely on discrete sampling to
provide only a small number of in situ data points at very low sampling frequency [8,9].

The use of satellites with high spatiotemporal resolution for monitoring water quality
helps to reduce needless manual sampling, this also lowers sampling costs and time [8,9].
For optically active water quality parameters, such as Chlorophyll-a (Chl-a), Chromophoric
Dissolved Organic Matter (CDOM), and Suspended Sediments (SS), retrieval models are
established based on empirical, analytical, semi-empirical, and machine learning meth-
ods [10,11]. Chemical oxygen demand (COD), dissolved oxygen (DO), total nitrogen (TN),
and total phosphates (TP) are examples of optically inactive substances that do not directly
correlate with spectral characteristics, such as AOP/IOP/Radiative Transferee Equation
(RTE). However, they can be measured as proxies for optically active parameters or by
using artificial intelligence to establish the complex relationships that exist between them
and various satellite sensor signals [10,11]. In contrast, SWT’s spectral features depend on
thermal infrared and microwave activity, hence it is neither an optically active property
of water nor can it be identified by proxies of optically active substances. Therefore, in
order to approximate surface temperatures and surface salinity of water bodies, thermal
infrared and microwave bands are helpful [11]. For instance, Sentinel-2 MSI is unable to
monitor land surface temperature because it lacks thermal infrared bands; whereas Landsat-
8 OLI/TIRS, which is equipped with a TIRS sensor, can measure thermal emissivity to
estimate temperature [12]. Based on thermal infrared remote sensing, the split window
method (SWA) and radiative transfer equation (RTE) are used to calculate the temperature
pixel values in satellite images [12,13]. The output temperature calculated using satellite
data is a discrete temperature value that represents a pixel of the water body’s surface
under monitoring. This value is more likely to be influenced by micro-climate variables
describing the thermodynamic and dynamic state of the atmosphere, i.e., atmospheric
air temperature (AAT), relative humidity (RH), wind speed (WS), and precipitation (P).
Several studies have focused on using satellite data to measure sea surface temperature
(SST) [13–17], while only a very small number of studies have concentrated on inland
waters [12]. Most of these studies have used sensors with high spatial resolution, such
as MODIS [13,14,16], in order to monitor large coverage of SST. Similarly, Sentinel-3 land
surface temperature (LST) products may be used to track the thermal characteristics of
inland surface water because of their high temporal resolution despite having a coarse
spatial resolution. Additionally, the improved spectral, radiometric, and spatial resolution
of the Landsat-8 TIRS sensor makes it an ideal choice for monitoring inland surface water
temperature [18,19].

The two satellites used in the study are Landsat-8 (launched on 11 February 2013)
carrying the Optical Land Imager (OLI) and Thermal Infrared Sensor (TIRS) instruments,
which offer images with a higher spatial resolution (30–100 m) but a low revisit time
frequency of 16 days, and Sentinel-3A (launched on 16 February 2016) and 3B (launched
on 25 April 2018). Sentinel-3 A/B is a twin constellation equipped with the Sea and
Land Surface Temperature Radiometer (SLSTR) on board these satellites and has two
thermal bands, at 10.8 and 12 µm, which acquires LST at a coarser spatial resolution of
approximately 1-km at nadir [20]. In comparison to Landsat-8, the Sentinel-3 constellation
has a shorter revisit time of less than two days, making it suitable for applications in
near-real time analysis [20]. Furthermore, archived data for both sensors are made freely
available by the Copernicus Open Access Hub via several platforms (https://scihub.
copernicus.eu accessed on 31 July 2021) and the United States Geological Survey (USGS)
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via EarthExplorer or GloVis. Finally, the satellites’ planned life cycle for Sentinel-3 is
expected to span 15 to 20 years [21].

Recent publications have shown the potential of satellites, such as Landsat-8, Sentinel-
2, and Sentinel-3 data application for monitoring water’s optical properties [22]. Single
sensors [22], multi-sensor data fusion [22,23], and inter-sensor performance comparison
approaches have all been used by researchers in investigating water quality [22–24]. As an
example, different optically active constituents in water affects the sensitivity of Landsat-8,
Sentinel-2, and Sentinel-3 spectral bands in different ways. This investigation examined the
claims of difficulties in retrieval of chromophoric dissolved organic matter (CDOM) absorp-
tion using Landsat-8 and Sentinel-2 band configurations [25]. However, a limited number
of studies have investigated water’s thermal properties using satellites in inland water bod-
ies [26]. These studies have been applying single sensors and only a limited number have
used multi-sensor data fusion [26,27]. Therefore, this study seeks to investigate inter-sensor
comparison between L8 and S3 multi-sensor data and design a two-factor ANOVA design
to compare how satellite properties and different types of machine and deep learning
methods affect the retrieval of SWT. In as far as our knowledge is concerned, there has not
been prior work that implemented such an experimental design in this research niche to
compare performances of different satellites. Furthermore, we propose that the various
models being used should take into account how microclimate factors/variables affect
SWT. Regression prediction was performed using machine and deep learning models based
on input features, such as WS, RH, P, AAT, Landsat-8 derived SWT (SWTL8), Sentinel-3
derived SWT (SWTS3), and the response variable ground-truth SWT (SWTGT). To assess
the ML/DL technique’s predictive power: GPR, SVR, ANN, LSTM, and 1D ConvLSTM
were trained on the input and output dataset. Finally, we provide a method for producing
satellite-SWT at a large spatial variation using ML/DL algorithms that takes into account a
complex interaction of hydro-meteorological variables.

2. Materials and Methods
2.1. Study Area

Mundan Reservoir is located in Mundan Township, in Pingtung County, South-
ern Taiwan. It supplies water for domestic consumption in Pingtung County and ir-
rigation use for the Hengchun area. Mundan Reservoir is situated downstream, up-
stream, and midstream of the Sihjhong River valley at coordinates (22◦07′58”–22◦09′07” N
and 120◦46′40”–120◦47′11” E) (Figure 1). It is a floodpath lake with significant seasonal
variations in water levels. It has three sampling points designated at geo-coordinates
22◦8′1.6512” N and 120◦ 46′52.6368” E for point 1, 22◦8′25.4508” N and 120◦46′57.2412” E
for point 2, and 22◦8′49.578” N and 120◦46′56.3448” E for point 3, respectively.

2.2. Data Collection and Image Preprocessing

This section, explains how in situ and satellite data were collected for specific use
in this study. Furthermore, it provides the theoretical background including equations
and software used during the data preprocessing stages. Based on the sampling con-
ducted at points 1–3 (S1–S3), which are highlighted in the reservoir map in Figure 1, SWT
ground-truth data for Mundan reservoir was obtained from the Environmental Protection
Administration, ROC (Taiwan) database, hereinafter referred to as Taiwan EPA database.
Temporal resolution of in situ measurements is 4 or 5 times per month and is dependent
on the sampling plan as laid out by Taiwan EPA. The meteorological station COR341 on
the map was used to measure and gather the micro-climate observational data variables.
Satellite data from Landsat-8 (L8) and Sentinel-3 (S3) for the selected regions of interest
and acquisition dates corresponds to Taiwan EPA sampling locations and time were col-
lected from USGS (EarthExplorer (usgs.gov)) accessed on 31 July 2021 and Sentinel Hub
(https://scihub.copernicus.eu/dhus/ accessed on 31 July 2021) databases respectively. The
S3 and L8 images were processed using European Space Agency’s (ESA) SentiNel Applica-
tion Platform version 8.0 (SNAP 8.0) and Environment for Visualizing Images (ENVI 5.3)

usgs.gov
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software, respectively. Temperature sensors were used to measure the temperature at a
depth of 0.5 m below the water surface and right on the surface at sampling points S1–S3
and these readings presented surface water temperature ground-truth data. The generic
process for WST retrieval based on satellite thermal infra-red (IR) bands involving the top
of the atmosphere radiance split window algorithm (SWA) and spectral radiance models
were used to calculate WST. The SWA needs two distinct spectral bands located in the 10–12
m electromagnetic range for the radiance attenuation from the atmospheric absorption.
The basis for the initial SWA defined in this research was proposed in another research,
which defines the link between LST and L8 bands 10 and 11 in the following mathematical
expression [28]:

LST = T10 + 1.378(T10 − T11) + 0.183(T10 − T11)
2 − 0.268 + (54.3− 2.238W)(1− ε) + (16.4W − 129.2)∆ε (1)

In the equation T10 is the brightness temperature at the sensor for L8-TIRS band 10,
and a constant factor bγ = 121.47.

Similarly, T11 is representing the brightness temperature of TIRS sensor for band 11,
while bands 10 and 11 mean and difference emissivity values for the same L8-TIRS are
represented by ε and ∆ε, respectively.

The SWT equation as expressed by the LST for the SWA used in this work is a
proposition from Du and others [28] based on the generalization of SWA by Zhengming
Wan and Dozier [29]. The expression of the equation is as follows:

LST = b0 +

(
b1 + b2

1− ε

ε
+ b3

∆ε

ε2

)
T10 + T11

2

(
b4 + b5

1− ε

ε
+ b6

∆ε

ε2

)
T10 + T11

2
+ b7(T10 − T11)

2 (2)

the coefficients bk (k = 0–7) [28].
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Figure 1. Location of Mundan water reservoir and Mundan meteorological station (COR 341) with 
respect to the map of Taiwan, the reservoir is showing the sampling points S1–S3 as indicated on 
the map (left-side). 
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For S3A/B, SWT values were extracted from sea and land surface temperature ra-
diometer (SLSTR) sensor level 2 land surface temperature (SLSTR L2) products. There are
nine spectral bands on the SLSTR that are positioned within the 0.5–12 µm spectrum range.
Furthermore, it consists of two additional channels for the recognition of fire; the visible-
infrared bands and thermal-fire bands spatial resolutions are 500 m and 1 km, respectively.
The algorithm is made up of five major steps: (1) radiometric image re-projection on the
instrument grid, geometric correction which usually yields the level 1 SLSTR L1 re-gridding
approach, and atmospheric correction; (2) the estimation of land surface emissivity (LSE)
two methods of NDVI-THM and classification-based emissivity, (3) the NSW parameters
presented by Sobrino and others [30], were used to estimate LST, and (4) validation of
LST Sentinel-3 SLSTR LST product through comparison with in situ values [30]. Figure 2
depicts a flowchart to aid understanding of the step-by-step process for preprocessing of
both L8 and S3 (Figure 2).
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SNAP 8.0 software respectively.

2.3. Machine and Deep Learning Algorithms Applied for Regression

This subsection is specifically for describing the theoretical background and all equa-
tions as well as defining all the quantities listed in the equations in order to organize and
present the various ML/DL algorithms used in this study in the following order: Gaus-
sian Process Regression (GPR), Support Vector Machine (SVM), Artificial Neural Network
(ANN), Long-Short Term Memory (LSTM), and Convolutional LSTM (ConvLSTM). The
listed ML/DL approaches were implemented in Python software version 3.6 using the
NumPy, Pandas, and Matplotlib libraries, as well as the Statsmodels, Scikit-learn, and
Statistica 13 packages for forecasting and data visualization. Additionally, the Statistica 13
software package was also used for hypothesis testing.

I. Gaussian Process Regression (GPR)

The probabilistic machine learning models known as Gaussian Process Regressors
(GPRs) are built on kernel functions and are similar to the Bayesian version of SVM
models [31,32]. They are ideal models for resolving classification and regression prediction
problems due to their computational efficiency [31,32]. GPR models often do not experience
overfitting issues in contrast to ANNs [31,32]. Despite the benefits mentioned, researchers
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rarely use GPR models for hydrological and water resource modeling. The model can be
mathematically expressed as follows using the notations form [33]:

Observation model:
(y| f ), φ ∼∏n

i=1 p(yi| fi, φ) (3)

GP prior:
f (x)|θ ∼ gp

(
m(x), k

(
x, x′ |θ

))
(4)

Hyper prior:
θ, φ ∼ p(θ)p(φ) (5)

where m(x) and k(x, x′|θ) indicate the mean and covariance functions and θ and Φ are
parameters of the covariance function and the observation model, respectively. The joint
distribution of training outputs (f ) and test outputs

(
f
)

is given by:

[
f
f̃

]
|x, x̃, θ ∼ N(0,

[
K f , f K f , f
K f , f K f , f

]
) (6)

Marginal distribution of x as p( f |x,θ) = N ( f |0, K f , f ) the conditional distribution of

f (corresponding to test inputs x) is:

f̃ | f , x, x̃, θ ∼ N(K f , f K f , f
−1 f , K f , f − K f , f K f , f

−1K f , f ) (7)

where K f , f = k(x,x|θ) and K f , f = k(x,x|θ)).
Different kernel functions can be used, including: quadratic, square d exponential,

exponential, matern 5/2, matern 3/2, and their performances contrasted.

II. Support Vector Machine (SVM)

Similar to GPR, SVM machine learning models have been successful in handling
a variety of classification and regression problems. SVR is a nonparametric regression
technique that creates a hyperplane with the lowest possible marginal error in order to
construct correlations between predictor and response variables. It is based on the structural
risk minimization theory [34]. The approximation function f(x) for an SVM model is denoted
as follows for mapping training data of size n for input vector ((x1, . . . , xn) into output
vector (y1, . . . , yn)) based on the learning function:

f (x) = ∑l
i=1(αi − α∗i ) K (xi, x) + b (8)

where <xi, x> denotes the dot product of two vectors, x is the problem variable vector, b is
the bias, αi − α∗i are dual variables.

The radial basis function (RBF) is acknowledged in the literature as a superior kernel
function [34,35]. Therefore, the Gaussian RBF is used as the kernel function for the SVM
model in this study, which is based on empirical literature, and is defined as follows:

K (xi, x) = exp(− ‖ x− xi ‖2) (9)

III. Artificial Neural Network (ANN)

In contrast to SVM, ANN models use the assumption of minimizing empirical risk.
Recently, multi-variate pattern classification and modeling of complicated environmental
variables have dominated ANN research [36,37]. Simple ANNs consists of input layer(s),
hidden layer(s), and one output layer and they are denoted by the basic function:

Y = f (X, W) + € (10)

where Y denotes the model’s response variables, X denotes its predictor variables, W
denotes its weights, € denotes its bias term, and the function denotes the model’s functional
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relationship between its outputs, inputs, and parameters as mapped by an activation
function. The network’s selected activation functions were the sigmoid function for the
hidden layer and the rectified linear unit (ReLU) activation function for the output layer. In
this study, three hidden layers and five input variables were used to predict the SWT.

IV. Long Short Term Memory (LSTM)

LSTM and gated recurrent units (GRUs) are recurrent neural network (RNN) vari-
ants [38]. However, LSTM and GRU maintain the advantage of memorizing long-term
sequences by utilizing memory cells to store the activation value of previous data in the
historical sequences. On the one hand, GRU preserves the benefits of LSTM for memorizing
long-term sequences, while simplifying the architecture of the neural net, reducing training
parameters, and mitigating the network’s over- and under-fitting problems, and it often
outperforms LSTM in the scenarios of long text and small dataset [38]. On the other hand,
regardless of LSTM high network complexity, which is frequently accompanied by over-
and under-fitting, it provides increased flexibility to form ensemble learning methods for
deep learning neural networks, such as convolutional LSTM (ConvLSTM) and combined
full convolution LSTM (CFCC-LSTM) [39]. The ability to perform extensive feature engi-
neering using ensemble deep learning networks is a useful application to high dimensional
end-to-end spatiotemporal sequence prediction methods in satellite, which is why this
study opted for an LSTM network over a GRU network [39]. Due to its capacity to learn
on lengthy data sequences, while avoiding the inherent issues of gradient vanishing and
explosion in RNN, LSTM outperforms RNN and GRU in lengthy time series predictions.
An LSTM network has an input vector [h(t−1), x(t)] at time step t. The network cell state
is denoted by c(t). The output vectors passing through the network between consecutive
time steps t, t + 1 are denoted by h(t). The forget gate, input gate, and output gate are the
three gates that make up an LSTM network and are used to update and control the cell
states [38–42]. The gates are customized by hyperbolic tangent and sigmoid activation
functions. On the assumption that new information would have entered the network, the
forget gate directs that the information in a cell state be forgotten. Its output is computed
by the function:

ft = σ
(

W f ∗ [ht−1, xt]
)

(11)

On the basis of the new input information, the input gate controls how new informa-
tion will be encoded into the cell state, and its output is indicated by the function:

it = σ(Wi ∗ [ht−1, xt] + bi) (12)

The output gate regulates how data encoded in the cell state is transmitted back to the
network (as the new input) input in the subsequent time step through the output vector
h(t) [40,42]. The output gate’s activations are represented as:

ot = σ(Wo ∗ [ht−1, xt] + bo) (13)

and the cell’s output vector is given by:

ht = ot ∗ tanh(Ct) (14)

C̃t= tanh(Wc ∗ [ht−1, xt] + bc) (15)

C̃t= tanh(Wc ∗ [ht−1, xt] + bc) (16)

All of the steps are illustrated in Figure 3.
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V. Convolutional Long Short Term Memory (Conv-LSTM)

ConvLSTM is a type of recurrent neural network used for spatiotemporal prediction
that incorporates convolutional structures in both input-to-state and state-to-state transi-
tions [38,39]. Traditional RNN, GRU, LSTM, or CNN cannot fully exploit the temporal and
spatial properties of open surface data using satellite images because data from various
open surfaces water bodies is often spatially nonlinear and temporally dependent. Follow-
ing that, the ConvLSTM algorithm was proposed to extend the capabilities of LSTM [43–45].
By using the inputs and past states of its local neighbors, the ConvLSTM predicts the
future state of each cell in the grid. Using a convolution operator in the state-to-state
and input-to-state transitions makes this is simple to accomplish (see Figure 4). The main
equations of ConvLSTM are displayed below, where ∗ denotes the convolution operator
and � the Hadamard product [38,39,45]:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci � Ct−1 + bi) (17)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f � Ct−1 + b f

)
(18)

Ct = ft � Ct−1 + it � tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (19)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco � Ct + bo) (20)

Ht = ot � tanh(Ct) (21)
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Sigmoid function:

σ(x) =
1

1 + e−x (22)

Tanh function:

tanh =
ex − e−x

ex + e−x (23)

All steps and units are illustrated in Figure 4.

2.4. Sliding Window Time Series Cross-Validation and Model Evaluation Metrics

After successful application of all the regression models, the model performances were
evaluated by measuring the following accuracy metrics: coefficient of determination (R2),
root mean square error (RMSE), and uncertainties, i.e., bias-variance trade-off. To rigorously
evaluate the performance of our proposed method, cross-validation was performed using
the sliding window time series cross-validation (SWTSCV) method, which divided data
into a series of overlapping training-testing sets [46]. As shown in Figure 5, each set is
moved forward through the time series. SWTSCV is the most appropriate and robust
evaluation method because it takes into account time indices and is capable of capturing
autocorrelations. The principle is that the model should be trained using time series and
its performance should be evaluated using (unseen) test data, which should always be the
future data. Each model was evaluated on the test set, and the R2 and RMSE values were
recorded. The SWTSCV-model scores were displayed using boxplots, and the average of
the recorded and model errors were computed [47]. In our study, we used 10-time series
split (i.e., i = 10). Time series cross-validation was selected because it is usually the most
effective method for estimating the uncertainty in error statistics and gaining insight into
the generalization ability of a model.
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2.5. Performance Evaluation Metrics

This experiment compares the prediction accuracy of baseline ML to DL models
presented under the machine learning section: GPR, SVR, ANN, LSTM, and 1D-ConvLSTM.
Lee and Kim. [48] used Nash–Sutcliffe Efficiency (NSE) and RMSE as model performance
evaluation metrics in a similar study. However, our model evaluation was based on (R2),
RMSE, and bias-variance trade-offs. Mean absolute error (MAE) measures the extent to
which a model is able to predict extreme events or outliers, such as extreme temperature
heat wave or cold, and in this study MAE was not a useful metric because our data did not
have extreme events or outliers as such.

R2 is a measure of how simulated variables can be predicted based on measured
variables. Its strength ranging from 0 to 1, closer to 0 indicates a lower correlation, while
close to 1 represents a high correlation.

R2 =
SSR
SST

=

[
∑n

i=1(yi − yi)
(
ŷi − ŷi

)]2[
∑n

i=1(yi − yi)
2 ∑n

i=1
(
ŷi − ŷi

)2
] (24)

RMSE is the standard deviation of the errors.

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (25)

Bias is the mean error defined by the following function:

Bias =
1
n ∑n

i=1(yi − ŷi) (26)

where ŷi and yi are the ith prediction and observation values, while yi and ŷi are the
calculated averages for the ith term observation and prediction values; and n is the total
sample size for all data points. The higher the magnitude of R2 and the lower the RMSE,
variance, and bias, the higher the model precision and accuracy for SWT, showing a better
fit for the model predictions.

2.6. Hypothesis Testing (Two-Factor ANOVA) and Post-Hoc Scheffe

In this study, two different satellite sensors are applied, which affect model perfor-
mances in different ways. Similarly, five different ML/DL algorithms are used and they
affect model performance differently. Our research design allows us to focus on comparing
three things: (1) how the different ML/DL models performed, (2) how the two satellites
performed when compared to each other, and (3) how the effects of both the satellite used
and ML/DL algorithm used affects model performance. Therefore, a two-factor ANOVA
experimental design was adopted to test the following hypothesis:

HO : no main effects on model accuracy due to the type of satellite used (Factor 1)

HO : no main effects on model accuracy due to the type of ML/DL used (Factor 2)

HO : no interactive effects (Interaction) on model accuracy
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In case of interactive effects between the two factors, the Scheffe method was used
for a post-hoc comparison of the simple main effect. In the absence of interactive effects
between the two factors, main effects were tested at α = 0.05 significance level.

3. Results
3.1. Descriptive Statistics

The descriptive statistics (sample size, mean, standard deviation, range, and inter-
quartile range) for the in situ measured RH, WS, Precip, SWTGT, and the satellite derived
SWT, i.e., SWTL8 and SWTS3 provide a summary of the data used in this study (Table 1).
The historical data for in situ observations span a period of 28 years (January 1993 to
2020); however, the only matching satellite data and in situ observations spanned the
years 2013 to 2020 due to the fact that L8 and S3 were operationalized during the years
2013 and 2016, respectively. We briefly outline some notable characteristics of our time
series datasets before discussing model performances. In comparison to L8 (N = 882),
sample size for S3 (N = 1050) was huge because S3 samples more frequently than L8, nearly
once per day vs. twice a month. The range, median, and mean for L8’s estimated SWT
were higher than those calculated by S3, indicating a difference in the two sensors’ levels
of accuracy. There were no significant differences in the distribution of the other micro-
climate data, as determined by the measure of central tendency scores as a result of all the
data being measured and collected from the same meteorological station. There were no
notable outliers, but shifting seasonal patterns allowed for the observation of seasonality
as reflected in the cyclical maximum and minimum values of parameters, such as AAT,
SWTGT, SWTL8, SWTS3, and P.

Table 1. Descriptive statistics for all the input variables to the data of the models from 1993–2020.

Landsat-8 Data Set
Index RH (%) WS (m/s) Precip (mm) AAT (◦C) SWTL8 (◦C) SWTGT (◦C)

Count (N) 882 882 882 882 882 882
Mean 66.8 1.42 0.10 27.4 27.7 26.0

Std. Dev 19.6 1.34 0.66 4.31 3.69 3.75
Min 10 0 0 17 19.1 19.1

First Quartile 57.3 0.3 0 23.6 24.7 23
Median 69 1 0 27.6 27 25.9

Third Quartile 80 2.4 0 31 30.3 28.7
Max 99 7.7 5 36.9 37.6 36.3

Sentinel-3 Data Set
Index RH (%) WS (m/s) Precip (mm) AAT (◦C) SWTS3 (◦C) SWTGT (◦C)

Count (N) 1050 1050 1050 1050 1050 1050
Mean 77.9 1.39 0.07 26.0 24.1 25.1

Std. Dev 13.3 1.82 0.49 4.73 4.23 4.55
Min 38 0 0 14.4 12.4 11

First Quartile 67 0.1 0 22 21.2 21.7
Median 76 0.8 0 27.0 24.4 25.5

Third Quartile 90 1.9 0 29.1 27 28.2
Max 100 10.1 6.5 36 35.5 36

Notes: RH–Relative Humidity, WS–Wind Speed, Precip–Precipitation, AAT–Atmospheric Air Tempera-
ture, SWTS3 –Sentinel-3 Surface Water Temperature, SWTGT–Surface Water Temperature Ground Truth,
SWTL8 –Landsat-8 Surface Water Temperature.

3.2. Long Term Atmospheric Air and Surface Water Temperature Trends for Mundan Water
Reservoir (1993–2020)

In the past 28 years, Taiwan EPA has collected data from SWT sampling points and
station COR314; the results have shown a gradual but significant increase in both SWT and
AAT around Mundan. Figure 6 depicts data recorded by the relevant authorities in the study
area for almost three decades from 1993 to 2020. During the recorded period, both AAT
and SWT for Mundan reservoir increased by 0.15 ◦C and 0.12 ◦C, respectively indicating
warming temperatures in and around the Mundan Reservoir. As of 2006, the annual
average atmospheric air temperature recorded was higher than the average (31.6 ◦C), and
similarly, at the same time the annual average surface water temperature was higher than
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the average (28.5 ◦C). The trends for SWT and AAT are identical and they confirm a higher
positive correlation (Figure 6). In fresh water ecosystems, photic zone water temperature
measurements typically react quickly to brief changes in meteorological forcing, so that
lake surface water essentially displays the same temperature signature as the surrounding
air (see Figure 6). Surface water temperature generally mirrors rises in air temperature
better than similar declines.
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3.3. Exploratory Data Analysis–Correlation between Different Variables

Pairwise multi-correlation analysis was performed on all variables used in this study,
whether they were input or output variables (Figure 7). The resulting correlogram shows
a combination of scatter plots (depicting a correlation between each pair of numerical
variables) and histograms showing the distribution of each variable along the diagonal
line. The thermodynamic exchanges between the reservoir boundary system and its sur-
roundings, which is primarily atmospheric air, is responsible for the significant positive
correlation between atmospheric air and surface water temperature (ρ = 0.70) [49]. Addi-
tional factors, such as secondary hydrological factors, i.e., snowmelt input, surface run-off,
discharge, streambed including groundwater input being a key factor, and topography
also contribute towards this thermodynamic exchange [50–52]. Therefore, it is imperative
that research that evaluates the future impacts of warming water bodies consider changes
in local hydrological and climatological factors. Similarly, satellite derived surface water
temperature (SWTS3) showed strong positive correlations (ρ < 0.81) with SWTGT and
(ρ = 0.55) AAT. However, there was a significant inverse relationship between relative
humidity and SWTGT (ρ < −0.36), SWGS3 (ρ < −0.25), and AAT (ρ < −0.65). Except for
its association with AAT (ρ < −0.31), wind speed’s correlation with other variables ranges
from mildly negligible to low or no meaningful correlation.
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3.4. Machine Learning Models

Three ML (GPR, SVM, ANN) and two DL-based models (LSTM, ConvLSTM) were
selected for the test. SWTSCV was used to test both the train and test datasets. The grid-
search range and selected hyperparameters of each ML method (GPR, SVR, ANN), as well
as LSTM and ConvLSTM, are explained and highlighted in Table 2. The hyperparameter
optimization was carried out in various ML/DL modules in the scikit-learn 0.20.3 Python
v3.6 packages. Table 2 lists the grid-search hyperparameter optimization specifications for
all of the models used.
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Table 2. Grid-search range of the parameters of each ML/DL method with test values for the hyper-parameters are sorted in ascending order.

Model Hyper-Parameter Name Hyperparameter Description Grid Search Parameter Values Optimal Hyper-Parameter Value
length_scale The length-scale of the respective feature

dimension is specified.
0.5, 1, 2, 3 1

Kernel function Transforms data that is linearly
inseparable into data that is linearly
separable and specifies the kernel type to
be used in the algorithm.

RBF, Constant, and exponential RBF

GPR

n_restarts_optimizer The number of optimizer restarts required
to find the kernel parameters that
maximize the log-marginal likelihood.

5, 7, 9, 11, 13 9

Cost (C) Regularization parameter 0.1, 1, 10, 100, 1000 10
gamma Kernel coefficient for RBF, poly

and Sigmoid
0.0001, 0.001, 0.01, 0.1, 1 0.0001

Kernel function Transformation of linearly inseparable
data to linearly separable ones and
specifying the kernel type to be used in
the algorithm

RBF, Sigmoid, Linear, and Polynomial RBF
SVM

epsilon (ε) Defines a tolerance margin in which
errors are not penalized.

0.01, 0.1, 1, 1.5 0.1

Activation functions The activation function compute the
input values of a layer into output values

ReLU, Sigmoid, Softplus, and tanh Sigmoid–hidden layers and
ReLU–output layer

Optimizer The optimizer changes the learning rate
and weights of neurons in the neural
network to achieve lowest loss function

Adam, SGD, RMSprop, and Adagrad Adam

Learning rate Learning rate manipulates the step size
for a model to attain the minimum
loss function

0.001, 1 0.01

Neurons The number of neurons in every layer is
set to be the same and should be adjusted
to the solution complexity

10, 100 65

Epochs The number of times a whole dataset is
passed through the neural network model

20, 100 100

Batch size Batch size is the number of training data
sub-samples for the input.

50, 500 100

ANN

Drop out Dropout is another regularization layer.
The dropout layer, randomly drops a
certain number of neurons in a layer

0, 2 0.9
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Table 2. Cont.

Model Hyper-Parameter Name Hyperparameter Description Grid Search Parameter Values Optimal Hyper-Parameter Value
Dropout rate The rate of how much percentage of

neurons to drop is set in the dropout rate
0, 0.5 0.15

Batch Normalization The batch normalization layer normalizes
the values passed to it for every batch.
This is similar to standard scaler in
conventional Machine Learning

0, 1 0.90

Learning rate Learning rate controls the step size for a
model to reach the minimum
loss function

0.001, 1 10−3

Epochs The number of times a whole dataset is
passed through the neural network model

20, 100 100

Batch size Batch size is the number of training data
sub-samples for the input.

50, 500 100
LSTM

Drop out The dropout layer is another name for the
regularization layer, which randomly
drops a set number of neurons in a layer.

0, 2 0.5

Learning rate Learning rate controls the step size for a
model to reach the minimum
loss function

0.001, 1 10−3

Epochs The number of times an entire dataset is
processed through the neural
network model.

20, 100 100

Batch size Batch size is the number of training data
sub-samples for the input.

50, 500 100
ConvLSTM

Drop out The dropout layer is another name for the
regularization layer, which randomly
drops a set number of neurons in a layer.

0, 2 0.5
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4. Discussion
4.1. Factors Affecting the Accuracy of SWT Predictions

The accuracy of predictions in water quality parameters has been shown to depend on
several factors that include but are not limited to the type of machine and deep learning
modeling algorithms used [53–55], type of satellites used [56], and atmospheric correction
methods applied [57]. However, no one factor has, up to this point, consistently provided
optimal results in every situation. In a study reported by Arias-Rodriguez and others [55],
who used cross-validation of machine learning algorithms to calculate Secchi Disk Depth
(SDD) and turbidity estimates for the Valle de Bravo reservoir in central Mexico using
MERIS data from 2002 to 2012 [55], the models did well estimating both parameters
as reflected by excellent cross-validation (CV) scores. GPR performed better than the
other models (SDD: R2 = 0.81; RMSE = 0.15; Turbidity: R2 = 0.86; RMSE = 0.95); the
other models linear regression (LR), SVM, and random forest regressor (RFR) trailed
behind. In another separate but similar study, water reflectance data obtained from both a
hand-held spectroradiometer and satellite data was used to examine four ML approaches
for retrieving three water quality parameters (Chl-a, SS, and turbidity) over the coastal
waters of Hong Kong [53]. They also mapped the spatial distribution of these parameters.
According to the results of cross-validation, ANN was able to reach the highest levels
of accuracy for the water quality indicators for both in situ reflectance data (0.89 Chl-
a, 0.93 SS, and 0.82 turbidity) and satellite data (0.91 Chl-a, 0.92 SS, and 0.85 turbidity).
Further comparisons were made between the water quality characteristics retrieved by the
ANN model and those retrieved by the standard C2RCC-Nets processing chain model for
Case-2 Regional/Coast Color (C2RCC). The results of the standard Case-2 Regional/Coast
Color (C2RCC) processing chain model C2RCC-Nets and the ANN model were further
compared with station-based water quality data using a different set of satellite data. The
potential of using ML and neural networks (NNs) for the retrieval of water quality metrics
is demonstrated by all of the studies that have been cited [53]. This has only been applied
to optically active and inactive water quality parameters. Our work expands the scope of
this research to include thermal infrared channels for determining the thermal properties
of surface water.

Our study demonstrates the following:
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mal and fire monitoring, was therefore used in this investigation. Data products for Sen-
tinel-3 always remain freely available and accessible through the Copernicus Hub 
(https://scihub.copernicus.eu/ accessed on 31 July 2021), covering a large monitoring area 
and gathering satellite images once per day, despite the fact that it has a coarser spatial 
resolution. Only a few studies have been conducted to assess how well Sentinel-3 SLSTR 
products perform. In one such rare study, the Sentinel-3 SLSTR LST product was assessed 
in analyzing seasonal variations and to perform a separate inter-sensor comparison with 
MODIS [62]. The two LST datasets from Sentinel-3 and MODIS displayed the same pat-
tern during seasonal variation. However, comparisons of sensor performance show that 
Sentinel-3 LST performed better overall and in all seasons. This study was designed to 
compare the performances of two distinct satellite sensors S3-SLSR and L8-TIRS for re-
trieval of SWT. 

Our study demonstrates the following: 
 Both performance assessment metric scores indicate that L8-TIRS outperformed S3-

SLSR. According to the two line graphs in Figure 9, L8 has a lower RMSE than S3 for 
all models, while the opposite is true for R2 (refer to Figure 8); 

 Furthermore, the results of the two sample t-tests confirm the null hypothesis (H0), 
which states that the average RMSE score for Landsat-8 is assumed to be less than or 
equal to the average of Sentinel-3’s RMSE score, with equal or pooled variance (p-
value = 0.9453, (p(x≤T) = 0.05). This means that the probability of a type I error, which 
involves rejecting the correct H0, is too high: 94.53% for the 50 samples. This is further 
evidence that L8 SWT estimates are more precise than S3 estimates;  

 These sensor performances may be attributed to the following factors: sensor charac-
teristics, L8 has a higher spatial resolution compared to S3, data processing, season, 
day-night changes (in the case of Sentinel-3), and atmospheric correction. 

The five models tested performed well on both the test and training sets (accuracy > 0.67
for S3 and >0.71 for L8). Refer to Figure 8;
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evidence that L8 SWT estimates are more precise than S3 estimates;  

 These sensor performances may be attributed to the following factors: sensor charac-
teristics, L8 has a higher spatial resolution compared to S3, data processing, season, 
day-night changes (in the case of Sentinel-3), and atmospheric correction. 

DL models outperformed all other models in terms of greater R2 and as well as
lower RMSE values when comparing the five generated models, achieving the high-
est accuracy in testing data. In terms of R2 and RMSE, 1D-ConvLSTM performed
ahead of every other model for both satellites following the descending order: 1D-
ConvLSTM > LSTM > ANN > SVM > GPR (Figure 8);
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all models, while the opposite is true for R2 (refer to Figure 8); 
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which states that the average RMSE score for Landsat-8 is assumed to be less than or 
equal to the average of Sentinel-3’s RMSE score, with equal or pooled variance (p-
value = 0.9453, (p(x≤T) = 0.05). This means that the probability of a type I error, which 
involves rejecting the correct H0, is too high: 94.53% for the 50 samples. This is further 
evidence that L8 SWT estimates are more precise than S3 estimates;  

 These sensor performances may be attributed to the following factors: sensor charac-
teristics, L8 has a higher spatial resolution compared to S3, data processing, season, 
day-night changes (in the case of Sentinel-3), and atmospheric correction. 

Two deep-learning architectures (LSTM and 1D-ConvLSTM) performed relatively
better than conventional and simple ANN architectures on test data used to evaluate
different models. LSTM layers provide an added advantage over conventional model
architecture when working with time series data since they are made up of memory
cell blocks (known as hidden units in simple hidden layers). The hidden memory cell
blocks can store information for longer time interval [58]. Deep-learning architectures
needed more time to train than basic ML structures despite having superior predictive
accuracy because they had more trainable parameters. Although adopting techniques,
such as transfer learning or graphics processing unit (GPU) computing, can help to
reduce training times;

Water 2022, 14, 2935 19 of 29 
 

 

mal and fire monitoring, was therefore used in this investigation. Data products for Sen-
tinel-3 always remain freely available and accessible through the Copernicus Hub 
(https://scihub.copernicus.eu/ accessed on 31 July 2021), covering a large monitoring area 
and gathering satellite images once per day, despite the fact that it has a coarser spatial 
resolution. Only a few studies have been conducted to assess how well Sentinel-3 SLSTR 
products perform. In one such rare study, the Sentinel-3 SLSTR LST product was assessed 
in analyzing seasonal variations and to perform a separate inter-sensor comparison with 
MODIS [62]. The two LST datasets from Sentinel-3 and MODIS displayed the same pat-
tern during seasonal variation. However, comparisons of sensor performance show that 
Sentinel-3 LST performed better overall and in all seasons. This study was designed to 
compare the performances of two distinct satellite sensors S3-SLSR and L8-TIRS for re-
trieval of SWT. 

Our study demonstrates the following: 
 Both performance assessment metric scores indicate that L8-TIRS outperformed S3-

SLSR. According to the two line graphs in Figure 9, L8 has a lower RMSE than S3 for 
all models, while the opposite is true for R2 (refer to Figure 8); 

 Furthermore, the results of the two sample t-tests confirm the null hypothesis (H0), 
which states that the average RMSE score for Landsat-8 is assumed to be less than or 
equal to the average of Sentinel-3’s RMSE score, with equal or pooled variance (p-
value = 0.9453, (p(x≤T) = 0.05). This means that the probability of a type I error, which 
involves rejecting the correct H0, is too high: 94.53% for the 50 samples. This is further 
evidence that L8 SWT estimates are more precise than S3 estimates;  

 These sensor performances may be attributed to the following factors: sensor charac-
teristics, L8 has a higher spatial resolution compared to S3, data processing, season, 
day-night changes (in the case of Sentinel-3), and atmospheric correction. 

For all the evaluated models, the median R2 values ranged from 0.67 to 0.92, while the
median RMSE scores ranged from 0.16 to 3.4 ◦C. In addition, L8 models performed
better than their S3 corresponding models. It is also important to note that for both
satellites, DL models performed better than conventional ML techniques. Similarly,
this trend is also observed for the RMSE metric.
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Figure 8. Distribution of SWTSCV performance metric evaluation scores, 10-R2, and RMSE scores 
for each algorithm because the sliding windows were split into 10-time series splits. The subplots 
column (a, c) are R2 and RMSE for L8, similarly (b, d) shows the same for S3. 

The type of satellite selected for the estimation of a water quality parameter is also a 
significant factor influencing the prediction accuracy since sensor-specific features, such 
as the spatial, spectral, and temporal resolutions of satellite imaging, affect the accuracy 
of mapping water quality. The importance of sensor selection in retrieval of water quality 
parameters is highlighted in a similar study that compared ground-truth SWT measure-
ments to Landsat-5 Thematic Mapper (TM) and -7 Enhanced Thematic Mapper Plus 
(ETM+) derived SWT measurements [59], absolute errors were within acceptable 2 °C 
range, indicating that the Landsat algorithm is stable enough to determine seasonal trends 
and assess inter-annual variability of lake, reservoir, and estuarine temperatures. Several 
studies [56,60,61], also carried out an inter-sensor comparison through analyzing different 
spectral designs and resolutions of MultiSpectral Instrument (MSI) and Operational Land 
Imager (OLI) sensors and discussed the effects that the different sensor designs had on 
the performance of the sensors in retrieving Chlorophyll-a. Despite the fact that these 
studies compare different water quality parameters (Chlorophyll-a) and different sensors 
(OLI and MSI) to those used in this study, their relevance is that they explain how different 
sensors perform differently under specified conditions. Primarily, there are more bands 
in the MSI, particularly in the visible-near infrared area (three red-edge bands: 700–800 
m). Additionally, some of these MSI bands, such as the green (3), red (4), and near infrared 
(8a) bands, have a finer spectral resolution. The spatial resolutions for the MSI are 10 m (4 
bands), 20 m (6 bands), and 60 m (3 bands), but the spatial resolution for all the OLI bands 
is 30 m for all bands because thermal infrared bands (B10 and B11) can be resampled at 
30m. Similar findings were achieved by other scientists who compared the performances 
of statistical models using these two sensors [61]. In all these cases, MSI showed superior 
performances over OLI and this can be attributed to finer spectral and higher spatio-tem-
poral MSI resolution [60]. However, due to a lack of thermal IR bands, MSI is unable to 
monitor temperature. Sentinel-3 SLSTR, which carries 9 bands and can be applied for ther-
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for each algorithm because the sliding windows were split into 10-time series splits. The subplots
column (a,c) are R2 and RMSE for L8, similarly (b,d) shows the same for S3.

The type of satellite selected for the estimation of a water quality parameter is also a
significant factor influencing the prediction accuracy since sensor-specific features, such as
the spatial, spectral, and temporal resolutions of satellite imaging, affect the accuracy of
mapping water quality. The importance of sensor selection in retrieval of water quality pa-
rameters is highlighted in a similar study that compared ground-truth SWT measurements
to Landsat-5 Thematic Mapper (TM) and -7 Enhanced Thematic Mapper Plus (ETM+) de-
rived SWT measurements [59], absolute errors were within acceptable 2 ◦C range, indicating
that the Landsat algorithm is stable enough to determine seasonal trends and assess inter-
annual variability of lake, reservoir, and estuarine temperatures. Several studies [56,60,61],
also carried out an inter-sensor comparison through analyzing different spectral designs
and resolutions of MultiSpectral Instrument (MSI) and Operational Land Imager (OLI) sen-
sors and discussed the effects that the different sensor designs had on the performance of
the sensors in retrieving Chlorophyll-a. Despite the fact that these studies compare different
water quality parameters (Chlorophyll-a) and different sensors (OLI and MSI) to those used
in this study, their relevance is that they explain how different sensors perform differently
under specified conditions. Primarily, there are more bands in the MSI, particularly in the
visible-near infrared area (three red-edge bands: 700–800 m). Additionally, some of these
MSI bands, such as the green (3), red (4), and near infrared (8a) bands, have a finer spectral
resolution. The spatial resolutions for the MSI are 10 m (4 bands), 20 m (6 bands), and 60 m
(3 bands), but the spatial resolution for all the OLI bands is 30 m for all bands because ther-
mal infrared bands (B10 and B11) can be resampled at 30m. Similar findings were achieved
by other scientists who compared the performances of statistical models using these two
sensors [61]. In all these cases, MSI showed superior performances over OLI and this can
be attributed to finer spectral and higher spatio-temporal MSI resolution [60]. However,
due to a lack of thermal IR bands, MSI is unable to monitor temperature. Sentinel-3 SLSTR,
which carries 9 bands and can be applied for thermal and fire monitoring, was therefore
used in this investigation. Data products for Sentinel-3 always remain freely available
and accessible through the Copernicus Hub (https://scihub.copernicus.eu/ accessed on
31 July 2021), covering a large monitoring area and gathering satellite images once per
day, despite the fact that it has a coarser spatial resolution. Only a few studies have been

https://scihub.copernicus.eu/
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conducted to assess how well Sentinel-3 SLSTR products perform. In one such rare study,
the Sentinel-3 SLSTR LST product was assessed in analyzing seasonal variations and to
perform a separate inter-sensor comparison with MODIS [62]. The two LST datasets from
Sentinel-3 and MODIS displayed the same pattern during seasonal variation. However,
comparisons of sensor performance show that Sentinel-3 LST performed better overall
and in all seasons. This study was designed to compare the performances of two distinct
satellite sensors S3-SLSR and L8-TIRS for retrieval of SWT.

Our study demonstrates the following:
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 These sensor performances may be attributed to the following factors: sensor charac-
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day-night changes (in the case of Sentinel-3), and atmospheric correction. 

These sensor performances may be attributed to the following factors: sensor charac-
teristics, L8 has a higher spatial resolution compared to S3, data processing, season,
day-night changes (in the case of Sentinel-3), and atmospheric correction.

Scattergrams (Figure 9) were used as a simple way to visualize and evaluate model
performance by regressing the observed SWT (in the y-axis) vs. predicted SWT (in the
x-axis) and comparing how the different models performed using the slope and intercept
parameters against the identity line (1:1) [63]. All the regression models showed a highly
significant relation between predicted and observed SWT, a confirmation that the models
performances were satisfactory. The scatter plots highlight average R2 and RMSE of every
model in each subplot.

4.2. Hypothesis Testing: Two-Factor ANOVA

Every ML/DL model was subjected to a SWTSCV in Scikit-Learn, producing an array
of ten scores for 10-time series splits. Since two satellites and six ML/DL models were used,
this resulted in 12 groups with 10 RMSE scores per group. The two factors that were taken
into consideration when designing a two-factor ANOVA experiment were satellite type
and ML/DL type.

Our research demonstrated the following:
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Type of ML/DL main effect (F = 17.4607, p = 4.001 × 10−12 ***);
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involves rejecting the correct H0, is too high: 94.53% for the 50 samples. This is further 
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Figure 9. Observed vs. predicted WST regression scattergrams derived from the ML/DL models test data. The name of the ML/DL, R2 and RMSE are shown in the 
graph legends. The distribution of the scatter point markers along the line of equality (1:1) are also visualized in the figure; (a) Landsat-8 models are in the left and 
middle left columns, and (b) Sentinel-3 models are in the middle right and right columns.

Figure 9. Observed vs. predicted WST regression scattergrams derived from the ML/DL models test data. The name of the ML/DL, R2 and RMSE are shown in the
graph legends. The distribution of the scatter point markers along the line of equality (1:1) are also visualized in the figure; (a) Landsat-8 models are in the left and
middle left columns, and (b) Sentinel-3 models are in the middle right and right columns.
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4.3. Hypothesis Testing: Scheffe’s Post-Hoc Multiple Comparison

The main effects for both factors and their interactive effects are significant, therefore
Scheffe’s post-hoc pairwise multiple comparison is used to identify group pair means
that differ significantly. The highlights of the post hoc analysis show that pairwise group
comparison between GPR (S3 and L8), SVM (S3 only), and ANN (S3 only) models for
both showed significant differences with all other machine and deep learning models. In
contrast, all the other pairwise comparisons did not exhibit statistical evidence of significant
difference (Table 3).

4.4. Bias-Variance Trade-off for the ML/DL Models

R2 is constrained in its utility as a validation metric score because high R2 does not
always imply high accuracy if the estimates are significantly biased [64–66]. Nonetheless,
it can frequently be applied as an assessment tool to evaluate the algorithm’s consistency
across a range of measurements [64–66]. The limitation of RMSE estimates is that they do
not capture the average error [49]. Therefore, to avoid potentially erroneous interpretations
of R2 and RMSE, bias-variance decomposition of the error was used as a tool to simultane-
ously identify the bias errors (underfitting) and variance errors (overfitting) that prevent
supervised learning algorithms from generalizing beyond their training sets. The GPR
emerges for having inflated bias across all satellites (Figure 11), which can be explained by
the fact that its simple model architecture fails to capture key data regularities, leading to
underfitting. Similar to GPR, SVM and ANN are relatively low complexity models that are
plagued by the same bias problem, the only difference is that the severity of their bias is
significantly diminished. DL models are ideal for solving regression prediction problems
for large data samples because, despite them being more complex models than ML, they
nevertheless maintained lower bias and variance metrics (Figure 11), making them accurate
and precise in determining SWT.
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Table 3. Post-Hoc Scheffe test p-values for all 12 groups’ two level factors (Satellite Type * ML Algorithm) for RMSE.

L8 L8 L8 L8 L8 L8 S3 S3 S3 S3 S3 S3

SLT ML/DL GPR SVM-RBF SVM-Lin ANN LSTM ConvLSTM GPR SVM-RBF SVM-Lin ANN LSTM ConvLSTM

L8 GPR

L8 SVM-RBF 0.001

L8 SVM-Lin 0.001 1.00000

L8 ANN 0.001 0.8999947 1.00000

L8 LSTM 0.001 0.8999947 1.00000 0.8999947

L8 ConvLSTM 0.001 0.8999947 1.00000 0.8999947 0.8999947

S3 GPR 0.001 0.001 0.00000 0.001 0.001 0.001

S3 SVM-RBF 0.8999947 0.001 0.000000 0.001 0.001 0.001 0.001

S3 SVM-Lin 0.8999947 0.001 0.000000 0.001 0.001 0.001 0.001 0.00000

S3 ANN 0.001 0.01 0.01 0.001 0.001 0.001 0.001 0.001 1.00000

S3 LSTM 0.001 0.8999947 0.8999947 0.8999947 0.8999947 0.8999947 0.001 0.001 0.999781 0.001

S3 ConvLSTM 0.001 0.8999947 0.8999947 0.8999947 0.8999947 0.8999947 0.001 0.001 0.999974 0.001 0.8999947

Notes: p-value figures highlighted in blue and red color indicate p *** < 0.001 and p ** < 0.01, respectively. Error; Between MS = 0.07129, df = 108.
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Figure 11. Bias-Variance Trade-offs and MSE bar charts for all the models: (a) L8, and (b) S3 models.

4.5. Spatio-Temoporary Variation Thermal Maps for Mundan

Based on L8 and S3 1D-ConvLSTM projections, SWT delineation maps show the spatial
distribution of water temperature in Mundan Reservoir. The SWT geo-spatial distribution
maps for the years 2016, 2018, and 2020 shows the average annual pixel temperature values
calculated. The average annual pixel temperature values predicted using 1D-ConvLSTM
for both satellites were plotted and to smoothen the inter-pixel values Kriging interpolation
was used. The mean pixel temperature values for all the satellites show a noticeable increase
from 2016 to 2020, while L8 SWT estimates are typically higher than S3 estimates (Figure 12).
The Mundan Reservoir showed some differences in the pixel-to-pixel comparison between
Landsat-8 and Sentinel-3 products of the corresponding years, with the exception of S3 2016
and 2018-pixel, temperature readings being higher in the northern parts of the reservoir
(red and orange color). The disparity can be attributed to uncertainties, biases, and errors
in monitoring small inland waters using various sensors, which are caused by a variety
of factors [67,68]. These factors include complex optical water properties, surface glint,
atmospheric aerosol heterogeneity, and the proximity of reflecting surfaces. Furthermore,
radiation effects from the environment (adjacent effects) with complex geometry add to the
difficulty, particularly for small inland lakes [19]. A combination of these factors makes
obtaining accurate information on observed water systems difficult.
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Figure 12. Time series for the spatial distribution of SWT based on ConvLSTM predictions smoothened by Kriging interpolation in Mundan water reservoir. Figure 12. Time series for the spatial distribution of SWT based on ConvLSTM predictions smoothened by Kriging interpolation in Mundan water reservoir.
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For all the satellites, there is a general increase in the area covered by pixels with
temperatures above the mean pixel value, indicating that the reservoir is warming. The
reservoir’s mean pixel values display rising temperatures and heat gain (orange). Hu [68]
recommended that the sensor’s pixel size be at minimum four times more than the width
of the surface slick being detected by the satellite. For the Mundan reservoir, which covers
a total area of 1.13 km2, a full resolution projected satellite picture of Sentinel-3 resampled
at 300 m × 300 m SLSR pixel theoretically yields 13 pixels. Under such circumstances,
the accuracy of the results at specific sampling points is likely to be impacted by the
effects of neighboring and adjacent pixels and an increased number of mixed pixels. For
instance, an error resulting from the patchiness of sporadic blooms in water polluted by
algal blooms [68,69]. In contrast, Landsat-8 TIRS pixels can be resampled at a resolution of
30 m × 30 m, covering 1111 pixels for the same 1.13 km2. Therefore, a sampling point is
clearly discernable with minimum effects from its neighboring or adjacent pixels and has
less mixed pixels overall. These are some of the possible underlying reasons behind the
superior performances by L8.

5. Conclusions

Our research described the retrieval of SWT over Mundan Water Reservoir based on
Sentinel-3A/B SLSTR and Landsat-8 TIRS sensors. Observations of long term temperature
trends in Mundan Reservoir is indicating that the reservoir is experiencing warming. This
combined together with the spatio-temporary SWT variation maps in Section 4.5 shows that
water bodies are a good indicator of how climate change is affecting the aquatic ecosystems.
To be specific, Mundan Reservoir surface water is warming at a rate of 0.12 ◦C per year and
the warming rate of the AAT surrounding the reservoir area is 0.15 ◦C per year. We were
successful in developing ML and DL models that explain potential sources of uncertainty
relating to the spatial, spectral, and temporal resolutions of satellite images as well as how
ML/DL model type affects SWT mapping in Mundan water reservoir. All of the models
performed satisfactorily when tested against in situ measurements, with the largest error
being a RMSE of 5 ◦C or less (RMSE < 5 ◦C) that was encountered by the worst performing
GPR. The following conclusions can be noted as follows:

(1) The ANOVA result demonstrated that the ML/DL model used had a more signif-
icant impact on estimation accuracy than the type of satellite used. However, it
demonstrates that both factors had a significant impact in improving SWT’s estima-
tion accuracy;

(2) To further support this, DL models applied to low resolution satellites performed
significantly well;

(3) The considered important evaluation metrics for estimation of SWT were R2, RMSE,
and bias-variance trade-off evaluators;

(4) The maximum prediction accuracy was achieved by the ConvLSTM based on L8-TIRS
data, with R2 = 0.93, RMSE = 0.15 ◦C.

This study’s successful implementation of the ConvLSTM algorithm to enhance the
estimate performance of SWT to get even higher precision with low resolution sensors,
such as Sentinel-3’s SLSR, is a significant contribution. Additionally, applying a DL model
has demonstrated its ability to manage model uncertainties.

Author Contributions: Conceptualization, S.S.M. and J.-L.C.; methodology, S.S.M.; software, S.S.M.
and J.-L.C.; validation, S.S.M. and J.-L.C.; formal analysis, S.S.M.; investigation, S.S.M.; resources,
J.-L.C.; data curation, S.S.M.; writing—original draft preparation, S.S.M.; writing—review and editing,
J.-L.C.; visualization, S.S.M.; supervision, J.-L.C.; project administration, J.-L.C.; funding acquisition,
J.-L.C. All authors have read and agreed to the published version of the manuscript.

Funding: The National Pingtung University of Science and Technology (NPUST) in Taiwan’s depart-
ment of Soil and Water Conservation, in collaboration with the department of Civil Engineering,
funded this research.



Water 2022, 14, 2935 25 of 27

Data Availability Statement: The USGS and ESA websites provide free access to primary data in the
form of satellite images. Following formal approval of your request, you can access ground-truth
data from the Taiwan EPA website. However, the corresponding author can also make all of the
curated data used in this specific study available upon your request.

Acknowledgments: We gratefully acknowledge the Taiwan EPA, USGS, and ESA for providing us
with free data for use in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mansourmoghaddam, M.; Ghafarian Malamiri, H.R.; Rousta, I.; Olafsson, H.; Zhang, H. Assessment of Palm Jumeirah Island’s

construction effects on the surrounding water quality and surface temperatures during 2001–2020. Water 2022, 14, 634. [CrossRef]
2. Suzuki, H.; Nakatsugawa, M.; Ishiyama, N. Climate change impacts on stream water temperatures in a snowy cold region

according to geological conditions. Water 2022, 14, 2166. [CrossRef]
3. Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Effects of climate change on stream temperature, dissolved oxygen, and sediment

concentration in the sierra Nevada in California. Water Resour. Res. 2013, 49, 2765–2782. [CrossRef]
4. Ho, J.C.; Michalak, A.M.; Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature

2019, 574, 667–670. [CrossRef]
5. Findlay, H.S.; Turley, C. Ocean acidification and climate change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021;

pp. 251–279. [CrossRef]
6. The Food and Agriculture Organization of the United Nations (FAO); The International Water Management Institute (IWMI).

Water Pollution from Agriculture: A global Review. FAO: Rome, Italy; International Water Management Institute (IWMI):
Colombo, Sri Lanka. CGIAR Research Program on Water, Land and Ecosystems 2017, (WLE). Available online: https://www.fao.
org/3/i7754e/i7754e.pdf (accessed on 20 June 2021).

7. Damania, R.; Desbureaux, S.; Rodella, A.-S.; Russ, J.; Zaveri, E. Quality Unknown: The Invisible Water Crisis; World Bank
Publications: Washington, DC, USA, 2019. [CrossRef]
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